Chemical Composition, Biological Activities and In Silico Analysis of Essential Oils of Three Endemic Prangos Species from Turkey
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Composition
2.2. Antioxidant Activity
2.3. Enzyme Inhibitory Effects
Multivariate Analysis
2.4. Molecular Docking
3. Materials and Methods
3.1. Plant Materials
3.2. Essential Oil Extraction and GC-MS Analysis
3.3. Determination of Antioxidant and Enzyme Inhibitory Effects
3.4. Multivariate Analysis
3.5. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Djilani, A.; Dicko, A. The therapeutic benefits of essential oils. Nutr. Well Being Health 2012, 7, 155–179. [Google Scholar]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiocco, D.; Arciuli, M.; Arena, M.P.; Benvenuti, S.; Gallone, A. Chemical composition and the anti-melanogenic potential of different essential oils. Flavour Fragr. J. 2016, 31, 255–261. [Google Scholar] [CrossRef]
- Yang, S.-K.; Tan, N.-P.; Chong, C.-W.; Abushelaibi, A.; Lim, S.-H.-E.; Lai, K.-S. The missing piece: Recent approaches investigating the antimicrobial mode of action of assential oils. Evol. Bioinf. 2021, 17, 1176934320938391. [Google Scholar] [CrossRef] [PubMed]
- De Lavor, É.M.; Fernandes, A.W.C.; de Andrade Teles, R.B.; Leal, A.E.B.P.; de Oliveira Júnior, R.G.; Gama e Silva, M.; De Oliveira, A.P.; Silva, J.C.; de Moura Fontes Araujo, M.T.; Coutinho, H.D.M. Essential oils and their major compounds in the treatment of chronic inflammation: A review of antioxidant potential in preclinical studies and molecular mechanisms. Oxid. Med. Cell. Longev. 2018, 2018, 6468593. [Google Scholar] [CrossRef] [Green Version]
- Saad, N.Y.; Muller, C.D.; Lobstein, A. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragr. J. 2013, 28, 269–279. [Google Scholar] [CrossRef]
- Wani, A.R.; Yadav, K.; Khursheed, A.; Rather, M.A. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb. Path. 2021, 152, 104620. [Google Scholar] [CrossRef]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid.-Based Complement. Altern. 2016, 2016, 3012462. [Google Scholar] [CrossRef]
- Mottaghipisheh, J.; Kiss, T.; Tóth, B.; Csupor, D. The Prangos genus: A comprehensive review on traditional use, phytochemistry, and pharmacological activities. Phytochem. Rev. 2020, 19, 1449–1470. [Google Scholar] [CrossRef]
- Baser, K.H.C. Essential oils of Anatolian Apiaceae—A profile. Nat. Volatiles Essent. Oils 2014, 1, 1–50. [Google Scholar]
- Ulubelen, A.; Topcu, G.; Tan, N.; Ölçal, S.; Johansson, C.; Üçer, M.; Birman, H.; Tamer, Ş. Biological activities of a Turkish medicinal plant Prangos Platychlaena. J. Ethnopharmacol. 1995, 45, 193–197. [Google Scholar] [CrossRef]
- Albayrak, G.; Demir, S.; Kose, F.A.; Baykan, S. New coumarin glycosides from endemic Prangos heyniae H. Duman & MF Watson. Nat. Prod. Res. 2021, 13, 1–13. [Google Scholar]
- Numonov, S.; Bobakulov, K.; Numonova, M.; Sharopov, F.; Setzer, W.N.; Khalilov, Q.; Begmatov, N.; Habasi, M.; Aisa, H.A. New coumarin from the roots of Prangos pabularia. Nat. Prod. Res. 2018, 32, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Sevin, G.; Alan, E.; Demir, S.; Albayrak, G.; Demiroz, T.; Yetik-Anacak, G.; Baykan, S. Comparative evaluation of relaxant effects of three Prangos species on mouse corpus cavernosum: Chemical characterization and the relaxant mechanisms of action of P. pabularia and (+)-oxypeucedanin. J. Ethnopharmacol. 2022, 284, 114823. [Google Scholar] [CrossRef] [PubMed]
- Karahisar, E.; Kose, Y.B.; Iscan, G.; Kurkcuoglu, M.; Tugay, O. Chemical composition and anticandidal activity of essential oils obtained from different parts of Prangos heyniae H. Duman & M. F. Watson. Rec. Nat. Prod. 2022, 16, 74–83. [Google Scholar]
- Mohebi, Z.; Sefidkon, F.; Heshmati, G.A. Investigation of increasing essential oil and maintaining forage quality and digestibility of the Prangos ferulacea using an optimizer apparatus design. J. Med. Plants By-Prod. 2021, 10, 227–235. [Google Scholar]
- Bazdar, M.; Sadeghi, H.; Hosseini, S. Evaluation of oil profiles, total phenols and phenolic compounds in Prangos ferulacea leaves and flowers and their effects on antioxidant activities. Biocatal. Agric. Biotechnol. 2018, 14, 418–423. [Google Scholar] [CrossRef]
- Bruno, M.; Ilardi, V.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Fiorini, D.; Venditti, A.; Maggi, F. The nonvolatile and volatile metabolites of Prangos ferulacea and their biological properties. Plant. Med. 2019, 85, 815–824. [Google Scholar] [CrossRef] [Green Version]
- Delnavazi, M.R.; Soleimani, M.; Hadjiakhoondi, A.; Yassa, N. Isolation of phenolic derivatives and essential oil analysis of Prangos ferulacea (L.) Lindl. aerial parts. Iran. J. Pharm. Res. 2017, 16, 207–215. [Google Scholar]
- Davis, P.H. Flora of Turkey and the East Aegean Islands. In Flora of Turkey and the East Aegean Islands; Edinburgh University Press: Edinburgh, UK, 1970; Volume 4. [Google Scholar]
- Ahmed, J.; Güvenç, A.; Küçükboyaci, N.; Baldemir, A.; Coşkun, M. Total phenolic contents and antioxidant activities of Prangos Lindl.(Umbelliferae) species growing in Konya province (Turkey). Turk. J. Biol. 2011, 35, 353–360. [Google Scholar]
- Uzel, A.; Dirmenci, T.; Çelik, A.; Arabaci, T. Composition and antimicrobial activity of Prangos platychlaena and P. uechtritzii. Chem. Nat. Comp. 2006, 42, 169–171. [Google Scholar] [CrossRef]
- Oke Altuntas, F.; Aslim, B.; Duman, H. The anti-lipid peroxidative, metal chelating, and radical scavenging properties of the fruit extracts from endemic Prangos meliocarpoides Boiss var. meliocarpoides. Gazi Univ. J. Sci. 2016, 29, 537–542. [Google Scholar]
- Duman, H.; Watson, M. Ekimia, a new genus of Umhelliferae, and two new taxa of Prangos Lindl.(Umbelliferae) from southern Turkey. Edin. J. Bot. 1999, 56, 199–209. [Google Scholar] [CrossRef]
- Kafash-Farkhad, N.; Asadi-Samani, M.; Rafieian-Kopaei, M. A review on phytochemistry and pharmacological effects of Prangos ferulacea (L.) Lindl. Life Sci. J. 2013, 10, 360–367. [Google Scholar]
- Tan, N.; Bilgin, M.; Tan, E.; Miski, M. Antibacterial activities of pyrenylated coumarins from the roots of Prangos hulusii. Molecules 2017, 22, 1098. [Google Scholar] [CrossRef] [PubMed]
- AzarKish, P.; Moghadam, M.; Khakdan, F.; Ghasemi Pirbaloti, A. Variability in morphological traits, total phenolic contents and antioxidant activity in different populations from three species of Prangos from Fars, Kohklouye and Boyerahmad provinces. Eco-Phytochem. J. Med. Plants 2018, 6, 1–20. [Google Scholar]
- Baer, K.H.; Demirci, B.; Demirci, F.; Bedir, E.; Weyerstahl, P.; Marschall, H.; Duman, H.; Aytaç, Z.; Hamann, M.T. A new bisabolene derivative from the essential oil of Prangos uechtritzii fruits. Plant. Med. 2000, 66, 674–677. [Google Scholar]
- Özek, G.; Bedir, E.; Tabanca, N.; Ali, A.; Khan, I.A.; Duran, A.; Başer, K.H.; Özek, T. Isolation of eudesmane type sesquiterpene ketone from Prangos heyniae H. Duman & MF Watson essential oil and mosquitocidal activity of the essential oils. Open Chem. 2018, 16, 453–467. [Google Scholar]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Kiliç, Ö.; Özdemir, F.A. Essential oil composition of two Prangos Lindl.(Apiaceae) species from Turkey. Prog. Nutr. 2017, 19, 69–74. [Google Scholar]
- Numonov, S.; Sharopov, F.S.; Atolikhshoeva, S.; Safomuddin, A.; Bakri, M.; Setzer, W.N.; Musoev, A.; Sharofova, M.; Habasi, M.; Aisa, H.A. Volatile secondary metabolites with potent antidiabetic activity from the roots of Prangos pabularia Lindl.—Computational and experimental investigations. Appl. Sci. 2019, 9, 2362. [Google Scholar] [CrossRef] [Green Version]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreca, D. Mechanisms of Plant Antioxidants Action; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2021; Volume 10, p. 35. [Google Scholar]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Kusumawati, I.; Indrayanto, G. Natural antioxidants in cosmetics. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2013; Volume 40, pp. 485–505. [Google Scholar]
- Nirmala, C.; Bisht, M.S.; Bajwa, H.K.; Santosh, O. Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends Food Sci. Technol. 2018, 77, 91–99. [Google Scholar] [CrossRef]
- Diniz do Nascimento, L.; Moraes, A.A.B.D.; Costa, K.S.D.; Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Cruz, J.N.; Andrade, E.H.d.A.; Faria, L.J.G.d. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef]
- Cardoso-Ugarte, G.A.; Sosa-Morales, M.E. Essential oils from herbs and spices as natural antioxidants: Diversity of promising food applications in the past decade. Food Rev. Int. 2021, 1–31. [Google Scholar] [CrossRef]
- Zengin, G.; Sinan, K.I.; Ak, G.; Mahomoodally, M.F.; Paksoy, M.Y.; Picot-Allain, C.; Glamocilja, J.; Sokovic, M.; Jekő, J.; Cziáky, Z. Chemical profile, antioxidant, antimicrobial, enzyme inhibitory, and cytotoxicity of seven Apiaceae species from Turkey: A comparative study. Ind. Crop. Prod. 2020, 153, 112572. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Zengin, G.; Bahadori, S.; Maggi, F.; Dinparast, L. Chemical composition of essential oil, antioxidant, antidiabetic, anti-obesity, and neuroprotective properties of Prangos gaubae. Nat. Prod. Commun. 2017, 12, 1934578X1701201233. [Google Scholar] [CrossRef] [Green Version]
- Ata, A. Novel plant-derived biomedical agents and their biosynthetic origin. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2012; Volume 38, pp. 225–245. [Google Scholar]
- Li, S.; Li, A.J.; Travers, J.; Xu, T.; Sakamuru, S.; Klumpp-Thomas, C.; Huang, R.; Xia, M. Identification of compounds for butyrylcholinesterase inhibition. Adv. Sci. Drug Discov. 2021, 26, 1355–1364. [Google Scholar] [CrossRef]
- Pohanka, M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2011, 155, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Tundis, R.; Loizzo, M.; Menichini, F. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev. Med. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Q.; Xu, C.-Y.; Liang, F.-Y.; Jin, P.-C.; Qian, Z.-Y.; Luo, Z.-S.; Qin, R.-G. Selecting and characterizing tyrosinase inhibitors from Atractylodis macrocephalae rhizoma based on spectrum-activity relationship and molecular docking. J. Anal. Method. Chem. 2021, 2021, 5596463. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, T.M.; de Carvalho, R.B.; da Costa, I.H.; de Oliveira, G.A.; de Souza, A.A.; de Lima, S.G.; de Freitas, R.M. Evaluation of p-cymene, a natural antioxidant. Pharm. Biol. 2015, 53, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Quintans-Júnior, L.; Moreira, J.C.F.; Pasquali, M.A.B.; Rabie, S.M.S.; Pires, A.S.; Schröder, R.; Rabelo, T.K.; Santos, J.P.A.; Lima, P.S.S.; Cavalcanti, S.C.H.; et al. Antinociceptive activity and redox profile of the monoterpenes (+)-camphene, p -cymene, and geranyl acetate in experimental models. ISRN Toxicol. 2013, 2013, 459530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, K.A.; Ze, H.; Chen, J.; Khan, F.U.; Xuezhuo, C.; Xu, J.; Qilong, D. The protective effects of a novel synthetic β-elemene derivative on human umbilical vein endothelial cells against oxidative stress-induced injury: Involvement of antioxidation and PI3k/Akt/eNOS/NO signaling pathways. Biomed. Pharmacother. 2018, 106, 1734–1741. [Google Scholar] [CrossRef]
- Khan, S.U.; Ahemad, N.; Chuah, L.-H.; Naidu, R.; Htar, T.T. Illustrated step by step protocol to perform molecular docking: Human estrogen receptor complex with 4-hydroxytamoxifen as a case study. Prog. Drug Discov. Biomed. Sci. 2020, 3, 1–21. [Google Scholar] [CrossRef]
- Khan, S.U.; Ahemad, N.; Chuah, L.-H.; Naidu, R.; Htar, T.T. Sequential ligand-and structure-based virtual screening approach for the identification of potential G protein-coupled estrogen receptor-1 (GPER-1) modulators. RSC Adv. 2019, 9, 2525–2538. [Google Scholar] [CrossRef] [Green Version]
- Ak, G.; Zengin, G.; Sinan, K.I.; Mahomoodally, M.F.; Picot-Allain, M.C.N.; Cakır, O.; Bensari, S.; Yılmaz, M.A.; Gallo, M.; Montesano, D. A comparative bio-evaluation and chemical profiles of Calendula officinalis L. extracts prepared via different extraction techniques. Appl. Sci. 2020, 10, 5920. [Google Scholar] [CrossRef]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. 2017, 8, 290. [Google Scholar] [CrossRef]
- Mamadalieva, N.Z.; Youssef, F.S.; Hussain, H.; Zengin, G.; Mollica, A.; Al Musayeib, N.M.; Ashour, M.L.; Westermann, B.; Wessjohann, L.A. Validation of the antioxidant and enzyme inhibitory potential of selected triterpenes using in vitro and in silico studies, and the evaluation of their ADMET properties. Molecules 2021, 26, 6331. [Google Scholar] [CrossRef] [PubMed]
No. | Compounds | RRI a | PH (%) | PM (%) | PU (%) |
---|---|---|---|---|---|
1 | α-Pinene | 1023 | 1.6 | 6.2 | 0.4 |
2 | α-Thujene | 1026 | - | 0.3 | - |
3 | Camphene | 1068 | 0.3 | 1.4 | - |
4 | Hexanal | 1086 | - | 0.1 | - |
5 | β-Pinene | 1111 | 0.1 | 1.0 | 0.6 |
6 | Sabinene | 1124 | 0.1 | 16.7 | 0.8 |
7 | δ-3-Carene | 1157 | - | 0.4 | - |
8 | Myrcene | 1165 | 0.1 | 0.7 | 0.1 |
9 | Heptanal | 1189 | 0.1 | - | - |
10 | Dehydro 1,8-cineole | 1190 | 1.5 | - | - |
11 | Limonene | 1201 | 0.7 | 3.7 | 3.2 |
12 | β-Phellandrene | 1210 | - | - | 0.8 |
13 | 1,8-Cineole | 1211 | 0.1 | 0.1 | - |
14 | 2-Pentylfuran | 1234 | 0.2 | 0.1 | |
15 | 6-Methyl, 2-heptanone | 1239 | 0.1 | - | - |
16 | p-Cymene | 1276 | 0.2 | 13.2 | 24.6 |
17 | α, p-dimethylstyrene | 1447 | - | 0.2 | - |
18 | α-Cubebene | 1465 | 0.2 | - | - |
19 | trans-Sabinene hydrate | 1469 | - | 1.0 | - |
20 | α-Copaene | 1501 | 1.4 | 0.4 | 2.0 |
21 | β-Bourbonene | 1531 | 1.1 | - | - |
22 | Camphor | 1535 | 0.2 | 1.5 | - |
23 | β-Cubebene | 1549 | 0.7 | - | - |
24 | cis-Sabinene hydrate | 1554 | - | 0.7 | - |
25 | trans-Chrysanthenyl acetate | 1581 | - | 0.4 | - |
26 | Pinocarvone | 1588 | - | 0.4 | - |
27 | Bornyl acetate | 1593 | 0.5 | 11.8 | - |
28 | β-Elemene | 1601 | 2.9 | 5.5 | - |
29 | Terpinen-4-ol | 1612 | - | 3.1 | - |
30 | β-Caryophyllene | 1614 | 3.8 | - | 0.8 |
31 | γ-Elemene | 1650 | 4.1 | - | - |
32 | Myrtenal | 1651 | - | 0.4 | - |
33 | Sabina ketone | 1655 | - | 0.9 | - |
34 | trans-Pinocarveol | 1670 | - | 0.9 | - |
35 | α-Humulene | 1689 | 6.7 | - | - |
36 | trans-Verbenol | 1690 | - | 4.2 | - |
37 | Cryptone | 1695 | - | - | 2.6 |
38 | γ-Muurolene | 1704 | 0.8 | 0.9 | 1.4 |
39 | Germacrene D | 1729 | 7.8 | - | - |
40 | 7-epi-1,2-Dehydrosesquicineole | 1730 | - | - | 12.6 |
41 | Verbonene | 1732 | 1.4 | - | |
42 | β-Bisabolone | 1738 | 5.7 | 0.1 | - |
43 | Valencene | 1740 | - | - | 0.5 |
44 | β-Selinene | 1743 | - | 0.9 | 0.4 |
45 | Phellandral | 1745 | - | - | 0.3 |
46 | α-selinene | 1747 | - | 0.2 | - |
47 | Bicyclogermacrene | 1754 | 0.3 | - | - |
48 | Carvone | 1757 | 1.0 | - | |
49 | δ-Cadinene | 1773 | 2.0 | - | 0.7 |
50 | γ-Cadinene | 1779 | 0.7 | - | 0.1 |
51 | Kessane | 1785 | - | 2.5 | - |
52 | ar-Curcumene | 1787 | - | - | 0.5 |
53 | p-Methylacetophenone | 1800 | - | - | 0.3 |
54 | Cumin aldehyde | 1807 | - | 1.0 | - |
55 | trans-Carveol | 1846 | - | 0.9 | - |
56 | Germacrene B | 1856 | 3.3 | - | - |
57 | p-Cymen-8-ol | 1861 | - | 6.1 | 0.7 |
58 | α-Calacorene | 1943 | - | - | 0.3 |
59 | 1,5-Epoxysalvial-4(14)-ene | 1947 | 1.8 | - | - |
60 | 4-Hydroxy-2-methylacetophenone | 1950 | - | 2.8 | 15.1 |
61 | Isocaryophyllene oxide | 2002 | - | - | 1.7 |
62 | Caryophyllene oxide | 2017 | 7.9 | 3.5 | 19.6 |
63 | Salvial-4(14)-en 1-one | 2043 | 1.3 | - | - |
64 | Humulene epoxide II | 2074 | 4.0 | - | - |
65 | Elemol | 2095 | 7.4 | - | - |
66 | p-Cresol | 2101 | - | - | 0.5 |
67 | Cumin alchol | 2121 | - | 1.3 | 0.2 |
68 | Spathulenol | 2147 | 3.6 | 1.6 | 1.7 |
69 | γ-Eudesmol | 2187 | 2.7 | - | - |
70 | T-Cadinol | 2193 | - | - | 0.3 |
71 | T-Muurolol | 2208 | 2.3 | - | - |
72 | α-Bisabolol | 2232 | - | - | 3.2 |
73 | α-Eudesmol | 2246 | 1.0 | - | - |
74 | α-Cadinol | 2254 | 4.0 | - | 1.4 |
75 | β-Eudesmol | 2256 | 0.4 | - | - |
76 | β-Bisabolenal | 2377 | 12.2 | - | - |
Total identified (%) | 95.9 | 99.5 | 97.4 |
No. | Compounds | RRI a | PH (%) | PM (%) | PU (%) |
---|---|---|---|---|---|
1 | α-Pinene | 1023 | 1.6 | 6.2 | 0.4 |
6 | Sabinene | 1124 | 0.1 | 16.7 | 0.8 |
11 | Limonene | 1201 | 0.7 | 3.7 | 3.2 |
16 | p-Cymene | 1276 | 0.2 | 13.2 | 24.6 |
27 | Bornyl acetate | 1593 | 0.5 | 11.8 | - |
35 | α-Humulene | 1689 | 6.7 | - | - |
39 | Germacrene D | 1729 | 7.8 | - | - |
40 | 7-epi-1,2-Dehydrosesquicineole | 1730 | - | - | 12.6 |
57 | p-Cymen-8-ol | 1861 | - | 6.1 | 0.7 |
62 | Caryophyllene oxide | 2017 | 7.9 | 3.5 | 19.6 |
65 | Elemol | 2095 | 7.4 | - | - |
72 | α-Bisabolol | 2232 | - | - | 3.2 |
76 | β-Bisabolenal | 2377 | 12.2 | - | - |
Essentail Oils | DPPH (mg TE/g) | ABTS (mg TE/g) | CUPRAC (mg TE/g) | FRAP (mg TE/g) | MCA (mg EDTAE/g) | PBD (mmol TE/g) |
---|---|---|---|---|---|---|
P. heyniae | 0.43 ± 0.01 c | 92.99 ± 1.29 a | 103.15 ± 3.69 b | 61.20 ± 0.73 a | 30.00 ± 5.82 a | 20.33 ± 0.48 b |
P. meliocarpoides var. meliocarpoides | 1.01 ± 0.06 b | 24.18 ± 1.10 c | 113.43 ± 3.37 a | 47.98 ± 0.89 c | 28.66 ± 0.46 a | 24.37 ± 1.23 a |
P. uechtritzii | 1.74 ± 0.10 a | 58.17 ± 1.46 b | 109.14 ± 1.00 a,b | 56.49 ± 0.64 b | 30.94 ± 0.20 a | 15.64 ± 0.28 c |
Essential Oil | AChE (mg GALAE/g) | BChE (mg GALAE/g) | Tyrosinase (mg KAE/g) | Amylase (mmol ACAE/g) | Glucosidase (mmol ACAE/g) |
---|---|---|---|---|---|
P. heyniae | na | 9.85 ± 0.20 | 53.91 ± 2.11 b | 0.09 ± 0.01 c | na |
P. meliocarpoides var. meliocarpoides | na | na | 69.56 ± 4.80 a | 0.41 ± 0.01 b | na |
P. uechtritzii | na | na | 46.34 ± 6.51 b | 0.61 ± 0.01 a | na |
Compound Name | Binding Affinity Based on ChemGauss 4 Scores | |
---|---|---|
Tyrosinase | Amylase | |
7-epi-1,2-Dehydrosesquicineole | −7.29 | −7.38 |
Bornyl acetate | −6.95 | −6.67 |
Caryophyllene oxide | −8.36 | −7.45 |
Elemol | −7.33 | −8.10 |
Germacrene D | −8.41 | −7.23 |
Limonene | −8.68 | −5.73 |
Sabinene | −7.64 | −5.71 |
Pinene | −6.65 | −5.39 |
p-Cymene | −7.79 | −5.56 |
p-Cymen-8-ol | −7.18 | −5.78 |
α-Bisabolol | −8.94 | −8.03 |
α-Humulene | −7.78 | −7.19 |
Reference (kojic acid) | −7.58 | - |
Reference (ascorbic acid) | - | −8.67 |
Interacting Amino Acid Residue of Tyrosinase and α-Bisabolol | Distance between Interacting Residue | Type of Bond |
---|---|---|
A:VAL283 | 4.7077 | Alkyl |
A:ALA286 | 5.3675 | Alkyl |
A:ALA286 | 4.4797 | Alkyl |
A:VAL283 | 4.2341 | Alkyl |
A:HIS61 | 4.7969 | Pi-Alkyl |
A:HIS85 | 4.9317 | Pi-Alkyl |
A:HIS85 | 5.0019 | Pi-Alkyl |
A:HIS244 | 4.3551 | Pi-Alkyl |
A:HIS244 | 4.6949 | Pi-Alkyl |
A:HIS259 | 5.2737 | Pi-Alkyl |
A:HIS263 | 3.8345 | Pi-Alkyl |
A:HIS263 | 3.7349 | Pi-Alkyl |
A:0TR410 | 4.3467 | Pi-Alkyl |
Interacting Amino Acid residue of Amylase and Elemol | Distance between Interacting Residue | Type of Bond |
A:GLN63:NE2 | 2.9536 | Conventional Hydrogen Bond |
A:TRP59:O | 2.123 | Pi-Alkyl |
A:TRP58 | 5.4757 | Pi-Alkyl |
A:TRP58 | 4.4585 | Pi-Alkyl |
A:TRP58 | 5.2415 | Pi-Alkyl |
A:TRP59 | 4.7261 | Pi-Alkyl |
A:TYR62 | 3.4596 | Pi-Alkyl |
A:HIS299 | 5.2942 | Pi-Alkyl |
A:HIS305 | 4.5785 | Pi-Alkyl |
Prangos Species | Locations | Voucher Numbers |
---|---|---|
P. meliocarpoides Boiss. var. meliocarpoides | Yavşan Location (Tuzgölü), Konya/Turkey, 905 m | EY-2998 |
P. uechtritzii Boiss & Hausskn | Between Hadim and Taşkent (2 km), Konya/Turkey, 1490 m | EY-3023 |
P. heyniae H. Duman & M.F. Watson | Between Hadim—Bozkır, Korualan location, Konya/Turkey, 1545 m | EY-3039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zengin, G.; Mahomoodally, M.F.; Yıldıztugay, E.; Jugreet, S.; Khan, S.U.; Dall’Acqua, S.; Mollica, A.; Bouyahya, A.; Montesano, D. Chemical Composition, Biological Activities and In Silico Analysis of Essential Oils of Three Endemic Prangos Species from Turkey. Molecules 2022, 27, 1676. https://doi.org/10.3390/molecules27051676
Zengin G, Mahomoodally MF, Yıldıztugay E, Jugreet S, Khan SU, Dall’Acqua S, Mollica A, Bouyahya A, Montesano D. Chemical Composition, Biological Activities and In Silico Analysis of Essential Oils of Three Endemic Prangos Species from Turkey. Molecules. 2022; 27(5):1676. https://doi.org/10.3390/molecules27051676
Chicago/Turabian StyleZengin, Gokhan, Mohamad Fawzi Mahomoodally, Evren Yıldıztugay, Sharmeen Jugreet, Shafi Ullah Khan, Stefano Dall’Acqua, Adriano Mollica, Abdelhakim Bouyahya, and Domenico Montesano. 2022. "Chemical Composition, Biological Activities and In Silico Analysis of Essential Oils of Three Endemic Prangos Species from Turkey" Molecules 27, no. 5: 1676. https://doi.org/10.3390/molecules27051676
APA StyleZengin, G., Mahomoodally, M. F., Yıldıztugay, E., Jugreet, S., Khan, S. U., Dall’Acqua, S., Mollica, A., Bouyahya, A., & Montesano, D. (2022). Chemical Composition, Biological Activities and In Silico Analysis of Essential Oils of Three Endemic Prangos Species from Turkey. Molecules, 27(5), 1676. https://doi.org/10.3390/molecules27051676