Revolution of Current Dental Zirconia: A Comprehensive Review
Abstract
:1. Introduction
2. Search Strategy
3. Historical Background
4. Types of Dental Zir
5. Fabrication of Zir
6. Ceramic Infrastructure for Dental Restorations
6.1. The Technique of Ceramic Infiltration (Slip-Casting)
6.2. Compaction Technique—CAD/CAM
6.3. Machining Technique—CAD/CAM
7. Properties of Zirconia
7.1. Strength of Monolithic Zir
7.2. Transformation Toughening
7.3. Aging of Zir
7.4. Coloring Effect
7.5. Wear Properties of Zir
7.6. Optical Properties
7.7. Survival of Zir Restorations
8. Applications in Dentistry
8.1. Zir-Based Dental Posts
8.2. Zir-Based Crown and Bridge
8.3. Zir-Based Implant Abutments
8.4. Zir Bar-Retained Implant Overdenture
8.5. Single-Retainer Zir Resin-Bonded Bridge (RBB)
8.6. Zir Esthetic Orthodontic Brackets
8.7. Veneer
8.8. Inlay-Retained Zir Fixed Dental Prosthesis
9. Cementation of Zir Restorations
10. Future and Challenges of Dental Zir
11. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhang, Y.; Kelly, J.R. Dental Ceramics for Restoration and Metal Veneering. Dent. Clin. 2017, 61, 797–819. [Google Scholar] [CrossRef]
- Denry, I.; Kelly, J.R. State of the Art of Zirconia for Dental Applications. Dental materials. Dent. Mater. 2008, 24, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Denry, I.; Kelly, J.R. Emerging Ceramic-Based Materials for Dentistry. J. Dent. Res. 2014, 93, 1235–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piconi, C.; Maccauro, G. Zirconia as a Ceramic Biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef]
- Garvie, R.C.; Hannink, R.H.; Pascoe, R.T. Ceramic Steel? Nature 1975, 258, 703–704. [Google Scholar] [CrossRef]
- Alqutaibi, A.Y.; Alnazzawi, A.A.; Algabri, R.; Aboalrejal, A.N.; AbdElaziz, M.H. Clinical Performance of Single Implant-Supported Ceramic and Metal-Ceramic Crowns: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Prosthet. Dent. 2021, 126, 369–376. [Google Scholar] [CrossRef]
- Alqutaibi, A.Y. Limited Evidence Supports Polished Monolithic Zirconia as Less Likely to Cause Antagonist Enamel Wear Compared to Other Prosthetic Materials. J. Evid. Based Dent. Pract. 2020, 20, 101413. [Google Scholar] [CrossRef] [PubMed]
- Alqutaibi, A.Y. Ceramic and Metal-Ceramic Restorations for Implant-Supported Prostheses Showed Similar Complications and Failure Rate. J. Evid. Based Dent. Pract. 2019, 19, 200–202. [Google Scholar] [CrossRef]
- Makhija, S.K.; Lawson, N.C.; Gilbert, G.H.; Litaker, M.S.; McClelland, J.A.; Louis, D.R.; Gordan, V.V.; Pihlstrom, D.J.; Meyerowitz, C.; Mungia, R.; et al. Dentist Material Selection for Single-Unit Crowns: Findings from the National Dental Practice-Based Research Network. J. Dent. 2016, 55, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lawn, B.R. Novel Zirconia Materials in Dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef]
- Mizrahi, B. The Anterior All-Ceramic Crown: A Rationale for the Choice of Ceramic and Cement. Br. Dent. J. 2008, 205, 251–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höland, W.; Schweiger, M.; Watzke, R.; Peschke, A.; Kappert, H. Ceramics as Biomaterials for Dental Restoration. Expert Rev. Med. Devices 2008, 5, 729–745. [Google Scholar] [CrossRef]
- Raigrodski, A.J. Contemporary Materials and Technologies for All-Ceramic Fixed Partial Dentures: A Review of the Literature. J. Prosthet. Dent. 2004, 92, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Baldissara, P.; Llukacej, A.; Ciocca, L.; Valandro, F.L.; Scotti, R. Translucency of Zirconia Copings Made with Different CAD/CAM Systems. J. Prosthet. Dent. 2010, 104, 6–12. [Google Scholar] [CrossRef]
- Blatz, M.B.; Vonderheide, M.; Conejo, J. The Effect of Resin Bonding on Long-Term Success of High-Strength Ceramics. J. Dent. Res. 2018, 97, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Kosmac, T.; Oblak, C.; Jevnikar, P.; Funduk, N.; Marion, L. The Effect of Surface Grinding and Sandblasting on Flexural Strength and Reliability of Y-TZP Zirconia Ceramic. Dental materials. Dent. Mater. 1999, 15, 426–433. [Google Scholar] [CrossRef]
- D’Addazio, G.; Santilli, M.; Rollo, M.L.; Cardelli, P.; Rexhepi, I.; Murmura, G.; Husain, N.A.-H.; Sinjari, B.; Traini, T.; Özcan, M.; et al. Fracture Resistance of Zirconia-Reinforced Lithium Silicate Ceramic Crowns Cemented with Conventional or Adhesive Systems: An In Vitro Study. Materials 2020, 13, 2012. [Google Scholar] [CrossRef]
- Mavriqi, L.; Valente, F.; Murmura, G.; Sinjari, B.; Macrì, M.; Trubiani, O.; Caputi, S.; Traini, T. Lithium Disilicate and zirconia reinforced lithium silicate glass-ceramics for CAD/CAM Dental Restorations. Biocompatibility, Mechanical and Microstructural Properties after Crystallizations. J. Dent. 2022, 119, 104054. [Google Scholar] [CrossRef]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics; CRC Press: New York, NY, USA, 2007; Volume 42. [Google Scholar]
- Helmer, J.C.; Driskell, T.D. Research on Bioceramics, Symposium on Use of Ceramics as Surgical Implants; Clemson University: Clemson, SC, USA, 1969. [Google Scholar]
- Qualtrough, A.J.; Piddock, V. Ceramics Update. J. Dent. 1997, 25, 91–95. [Google Scholar] [CrossRef]
- McLean, J.W. Evolution of Dental Ceramics in the Twentieth Century. J. Prosthet. Dent. 2001, 85, 61–66. [Google Scholar] [CrossRef]
- Witkowski, S. CAD-CAM in Dental Technology. Quintessence J. Dent. Technol. 2005, 28, 169–184. [Google Scholar]
- Komine, F.; Blatz, M.B.; Matsumura, H. Current Status of Zirconia-Based Fixed Restorations. J. Oral Sci. 2010, 52, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. Strength, Toughness and Aging Stability of Highly-Translucent Y-TZP Ceramics for Dental Restorations. Dental materials. Dent. Mater. 2016, 32, e327–e337. [Google Scholar] [CrossRef]
- Volpato, C.A.M.; Garbelotto, L.G.D.A.; Celso, M.; Bondioli, F. Application of Zirconia in Dentistry: Biological, Mechanical and Optical Considerations. In Advances in Ceramics—Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment; IntechOpen: London, UK, 2011. [Google Scholar]
- Miyazaki, T.; Hotta, Y.; Kunii, J.; Kuriyama, S.; Tamaki, Y. A Review of Dental CAD/CAM: Current Status and Future Perspectives from 20 Years of Experience. Dent. Mater. J. 2009, 28, 44–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heffernan, M.J.; Aquilino, S.A.; Diaz-Arnold, A.M.; Haselton, D.R.; Stanford, C.M.; Vargas, M.A. Relative Translucency of Six All-Ceramic Systems. Part I: Core Materials. J. Prosthet. Dent. 2002, 88, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, M.J.; Aquilino, S.A.; Diaz-Arnold, A.M.; Haselton, D.R.; Stanford, C.M.; Vargas, M.A. Relative Translucency of Six All-Ceramic Systems. Part II: Core and Veneer Materials. J. Prosthet. Dent. 2002, 88, 10–15. [Google Scholar] [CrossRef]
- Andersson, M.; Odén, A. A New All-Ceramic Crown: A Dense-Sintered, High-Purity Alumina Coping with Porcelain. Acta Odontol. Scand. 1993, 51, 59–64. [Google Scholar] [CrossRef]
- Odén, A.; Andersson, M.; Krystek-Ondracek, I.; Magnusson, D. Five-Year Clinical Evaluation of Procera AllCeram Crowns. J. Prosthet. Dent. 1998, 80, 450–456. [Google Scholar] [CrossRef]
- Albashaireh, Z.S.M.; Ghazal, M.; Kern, M. Two-Body Wear of Different Ceramic Materials Opposed to Zirconia Ceramic. J. Prosthet. Dent. 2010, 104, 105–113. [Google Scholar] [CrossRef]
- Griffin, J.D.J. Combining Monolithic Zirconia Crowns, Digital Impressioning, and Regenerative Cement for a Predictable Restorative Alternative to PFM. Compendium 2013, 34, 212–222. [Google Scholar]
- Christensen, G.J. BruxZir and e.MaxCAD: Superior Clinical Performance at 3+ Years BruxZir Full-Zirconia e.MaxCAD Lithium Disilicate. Clin. Rep. 2014, 7, 1–3. [Google Scholar]
- Vagkopoulou, T.; Koutayas, S.O.; Koidis, P.; Strub, J.R. Zirconia in Dentistry: Part 1. Discovering the Nature of an Upcoming Bioceramic. Eur. J. Esthet. Dent. 2009, 4, 130–151. [Google Scholar] [PubMed]
- Guazzato, M.; Albakry, M.; Ringer, S.P.; Swain, M.V. Strength, Fracture Toughness and Microstructure of a Selection of All-Ceramic Materials. Part II. Zirconia-Based Dental Ceramics. Dent. Mater. 2004, 20, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Johansson, C.; Kmet, G.; Rivera, J.; Larsson, C.; Vult Von Steyern, P. Fracture Strength of Monolithic All-Ceramic Crowns Made of High Translucent Yttrium Oxide-Stabilized Zirconium Dioxide Compared to Porcelain-Veneered Crowns and Lithium Disilicate Crowns. Acta Odontol. Scand. 2014, 72, 145–153. [Google Scholar] [CrossRef]
- Beuer, F.; Stimmelmayr, M.; Gueth, J.-F.; Edelhoff, D.; Naumann, M. In Vitro Performance of Full-Contour Zirconia Single Crowns. Dent. Mater. 2012, 28, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.J.; Lawson, N.C.; McLaren, E.E.; Nejat, A.H.; Burgess, J.O. Comparison of the Mechanical Properties of Translucent Zirconia and Lithium Disilicate. J. Prosthet. Dent. 2018, 120, 132–137. [Google Scholar] [CrossRef]
- Zesewitz, T.F.; Knauber, A.W.; Nothdurft, F.P. Fracture Resistance of a Selection of Full-Contour All-Ceramic Crowns: An in Vitro Study. Int. J. Prosthodont. 2014, 27, 264–266. [Google Scholar] [CrossRef] [Green Version]
- Shahmiri, R.; Standard, O.C.; Hart, J.N.; Sorrell, C.C. Optical Properties of Zirconia Ceramics for Esthetic Dental Restorations: A Systematic Review. J. Prosthet. Dent. 2018, 119, 36–46. [Google Scholar] [CrossRef]
- Matsuzaki, F.; Sekine, H.; Honma, S.; Takanashi, T.; Furuya, K.; Yajima, Y.; Yoshinari, M. Translucency and Flexural Strength of Monolithic Translucent Zirconia and Porcelain-Layered Zirconia. Dent. Mater. J. 2015, 34, 910–917. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.R.; Denry, I. Stabilized Zirconia as a Structural Ceramic: An Overview. Dent. Mater. 2008, 24, 289–298. [Google Scholar] [CrossRef]
- Bergler, M.; Blatz, M.B.; Mante, F.K. Translucency of Full-Contour Zirconia Ceramic. J. Dent. Res. 2015, 94, 3534. [Google Scholar]
- Chevalier, J.; Gremillard, L.; Deville, S. Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants. Annu. Rev. Mater. Res. 2007, 37, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, J.; Calès, B.; Drouin, J. Low Temperature Aging of Y-TZP Ceramics. J. Am. Ceram. Soc. 2004, 82, 2150–2154. [Google Scholar] [CrossRef]
- Lawson, S. Environmental Degradation of Zirconia Ceramics. J. Eur. Ceram. Soc. 1995, 15, 485–502. [Google Scholar] [CrossRef]
- Chevalier, J. What Future for Zirconia as a Biomaterial? Biomaterials 2006, 27, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Deville, S.; Chevalier, J.; Gremillard, L. Influence of Surface Finish and Residual Stresses on the Ageing Sensitivity of Biomedical Grade Zirconia. Biomaterials 2006, 27, 2186–2192. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Harada, A.; Ono, M.; Shibasaki, H.; Kanno, T.; Niwano, Y.; Adolfsson, E.; Milleding, P.; Örtengren, U. Effect of Low-Temperature Degradation on the Mechanical and Microstructural Properties of Tooth-Colored 3Y-TZP Ceramics. J. Mech. Behav. Biomed. Mater. 2016, 53, 301–311. [Google Scholar] [CrossRef]
- Masaki, T. Mechanical Properties of Y-PSZ after Aging at Low Temperature. Int. J. High Technol. Ceram. 1986, 2, 85–98. [Google Scholar] [CrossRef]
- Roy, M.E.; Whiteside, L.A.; Katerberg, B.J.; Steiger, J.A. Phase Transformation, Roughness, and Microhardness of Artificially Aged Yttria- and Magnesia-Stabilized Zirconia Femoral Heads. J. Biomed. Mater. Res. Part A 2007, 83, 1096–1102. [Google Scholar] [CrossRef]
- Muñoz-Tabares, J.A.; Jiménez-Piqué, E.; Anglada, M. Subsurface Evaluation of Hydrothermal Degradation of Zirconia. Acta Mater. 2011, 59, 473–484. [Google Scholar] [CrossRef]
- Nakamura, K.; Harada, A.; Kanno, T.; Inagaki, R.; Niwano, Y.; Milleding, P.; Örtengren, U. The Influence of Low-Temperature Degradation and Cyclic Loading on the Fracture Resistance of Monolithic Zirconia Molar Crowns. J. Mech. Behav. Biomed. Mater. 2015, 47, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Inokoshi, M.; Zhang, F.; De Munck, J.; Minakuchi, S.; Naert, I.; Vleugels, J.; Van Meerbeek, B.; Vanmeensel, K. Influence of Sintering Conditions on Low-Temperature Degradation of Dental Zirconia. Dent. Mater. 2014, 30, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, L.; Mehl, A.; Ulmer, P.; Reusser, E.; Stadler, J.; Zenobi, R.; Stawarczyk, B.; Özcan, M.; Hämmerle, C.H.F. The Influence of Grain Size on Low-Temperature Degradation of Dental Zirconia. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, J.; Deville, S.; Münch, E.; Jullian, R.; Lair, F. Critical Effect of Cubic Phase on Aging in 3mol% Yttria-Stabilized Zirconia Ceramics for Hip Replacement Prosthesis. Biomaterials 2004, 25, 5539–5545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samodurova, A.; Kocjan, A.; Swain, M.V.; Kosmač, T. The Combined Effect of Alumina and Silica Co-Doping on the Ageing Resistance of 3Y-TZP Bioceramics. Acta Biomater. 2015, 11, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Vanmeensel, K.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Naert, I.; Vleugels, J. Critical Influence of Alumina Content on the Low Temperature Degradation of 2–3 mol% Yttria-Stabilized TZP for Dental Restorations. J. Eur. Ceram. Soc. 2015, 35, 741–750. [Google Scholar] [CrossRef]
- Zhang, F.; Vanmeensel, K.; Batuk, M.; Hadermann, J.; Inokoshi, M.; Van Meerbeek, B.; Naert, I.; Vleugels, J. Highly-Translucent, Strong and Aging-Resistant 3Y-TZP Ceramics for Dental Restoration by Grain Boundary Segregation. Acta Biomater. 2015, 16, 215–222. [Google Scholar] [CrossRef]
- Attia, A.; Kern, M. Influence of Cyclic Loading and Luting Agents on the Fracture Load of Two All-Ceramic Crown Systems. J. Prosthet. Dent. 2004, 92, 551–556. [Google Scholar] [CrossRef]
- Fathy, S.M.; El-Fallal, A.A.; El-Negoly, S.A.; El Bedawy, A.B. Translucency of Monolithic and Core Zirconia after Hydrothermal Aging. Acta Biomater. Odontol. Scand. 2015, 1, 86–92. [Google Scholar] [CrossRef]
- Flinn, B.D.; Raigrodski, A.J.; Mancl, L.A.; Toivola, R.; Kuykendall, T. Influence of Aging on Flexural Strength of Translucent Zirconia for Monolithic Restorations. J. Prosthet. Dent. 2017, 117, 303–309. [Google Scholar] [CrossRef]
- Wen, N.; Yi, Y.F.; Zhang, W.W.; Deng, B.; Shao, L.Q.; Dong, L.M.; Tian, J.M. The Color of Fe2O3 and Bi2O3 Pigmented Dental Zirconia Ceramic. Key Eng. Mater. 2010, 434–435, 582–585. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, F.; Sun, J.; Gao, L. Effect of three kinds of rare earth oxides on chromaticity and mechanical properties of zirconia ceramic. Chin. J. Stomatol. 2006, 41, 327–330. [Google Scholar]
- Huang, H.; Zheng, Y.; Zhang, F.; Sun, J.; Gao, L. Effect of five kinds of pigments on the chromaticity of dental zirconia ceramic. Shanghai J. Stomatol. 2007, 16, 413–417. [Google Scholar]
- Li, J.; Liu, S.M.; Lin, Y.H. Synthesis of Coloured Dental Zirconia Ceramics and Their Mechanical Behaviors. Key Eng. Mater. 2014, 602–603, 594–597. [Google Scholar] [CrossRef]
- Kao, C.-T.; Tuan, W.-H.; Liu, C.-Y.; Chen, S.-C. Effect of Iron Oxide Coloring Agent on the Sintering Behavior of Dental Yttria-Stabilized Zirconia. Ceram. Int. 2018, 44, 4689–4693. [Google Scholar] [CrossRef]
- Hjerppe, J.; Närhi, T.; Fröberg, K.; Vallittu, P.K.; Lassila, L.V.J. Effect of Shading the Zirconia Framework on Biaxial Strength and Surface Microhardness. Acta Odontol. Scand. 2008, 66, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Rinke, S.; Fischer, C. Range of Indications for Translucent Zirconia Modifications: Clinical and Technical Aspects. Quintessence Int. 2013, 44, 557–566. [Google Scholar] [CrossRef]
- McLaren, E.A.; Lawson, N.; Choi, J.; Kang, J.; Trujillo, C. New High-Translucent Cubic-Phase-Containing Zirconia: Clinical and Laboratory Considerations and the Effect of Air Abrasion on Strength. Compendium 2017, 38, e13–e16. [Google Scholar] [PubMed]
- Cattani-Lorente, M.; Durual, S.; Amez-Droz, M.; Wiskott, H.W.A.; Scherrer, S.S. Hydrothermal Degradation of a 3Y-TZP Translucent Dental Ceramic: A Comparison of Numerical Predictions with Experimental Data after 2 Years of Aging. Dent. Mater. 2016, 32, 394–402. [Google Scholar] [CrossRef]
- Turssi, C.P.; De Moraes Purquerio, B.; Serra, M.C. Wear of Dental Resin Composites: Insights into Underlying Processes and Assessment Methods—A Review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003, 65, 280–285. [Google Scholar] [CrossRef]
- Oh, W.-S.; Delong, R.; Anusavice, K.J. Factors Affecting Enamel and Ceramic Wear: A Literature Review. J. Prosthet. Dent. 2002, 87, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Alghazzawi, T.F.; Lemons, J.; Liu, P.-R.; Essig, M.E.; Bartolucci, A.A.; Janowski, G.M. Influence of Low-Temperature Environmental Exposure on the Mechanical Properties and Structural Stability of Dental Zirconia. J. Prosthodont. Implant. Esthet. Reconstr. Dent. 2012, 21, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Mörmann, W.H.; Stawarczyk, B.; Ender, A.; Sener, B.; Attin, T.; Mehl, A. Wear Characteristics of Current Aesthetic Dental Restorative CAD/CAM Materials: Two-Body Wear, Gloss Retention, Roughness and Martens Hardness. J. Mech. Behav. Biomed. Mater. 2013, 20, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Hmaidouch, R.; Müller, W.-D.; Lauer, H.-C.; Weigl, P. Surface Roughness of Zirconia for Full-Contour Crowns after Clinically Simulated Grinding and Polishing. Int. J. Oral Sci. 2014, 6, 241–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preis, V.; Schmalzbauer, M.; Bougeard, D.; Schneider-Feyrer, S.; Rosentritt, M. Surface Properties of Monolithic Zirconia after Dental Adjustment Treatments and in Vitro Wear Simulation. J. Dent. 2015, 43, 133–139. [Google Scholar] [CrossRef]
- Kaizer, M.R.; Bano, S.; Borba, M.; Garg, V.; Dos Santos, M.B.F.; Zhang, Y. Wear Behavior of Graded Glass/Zirconia Crowns and Their Antagonists. J. Dent. Res. 2019, 98, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Gundugollu, Y.; Yalavarthy, R.S.; Krishna, M.H.; Kalluri, S.; Pydi, S.K.; Tedlapu, S.K. Comparison of the Effect of Monolithic and Layered Zirconia on Natural Teeth Wear: An in Vitro Study. J. Indian Prosthodont. Soc. 2018, 18, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Kaizer, M.R.; Moraes, R.R.; Cava, S.S.; Zhang, Y. The Progressive Wear and Abrasiveness of Novel Graded Glass/Zirconia Materials Relative to Their Dental Ceramic Counterparts. Dent. Mater. 2019, 35, 763–771. [Google Scholar] [CrossRef]
- Kanbara, T.; Sekine, H.; Homma, S.; Yajima, Y.; Yoshinari, M. Wear Behavior between Zirconia and Titanium as an Antagonist on Fixed Dental Prostheses. Biomed. Mater. 2014, 9, 25005. [Google Scholar] [CrossRef] [Green Version]
- Lambrechts, P.; Braem, M.; Vuylsteke-Wauters, M.; Vanherle, G. Quantitative in Vivo Wear of Human Enamel. J. Dent. Res. 1989, 68, 1752–1754. [Google Scholar] [CrossRef]
- Stober, T.; Bermejo, J.L.; Rammelsberg, P.; Schmitter, M. Enamel Wear Caused by Monolithic Zirconia Crowns after 6 Months of Clinical Use. J. Oral Rehabil. 2014, 41, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Özcan, M.; Schmutz, F.; Trottmann, A.; Roos, M.; Hämmerle, C.H.F. Two-Body Wear of Monolithic, Veneered and Glazed Zirconia and Their Corresponding Enamel Antagonists. Acta Odontol. Scand. 2013, 71, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Making Yttria-Stabilized Tetragonal Zirconia Translucent. Dent. Mater. 2014, 30, 1195–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, T.J.; Lawson, N.C.; Janowski, G.M.; Burgess, J.O. Effect of Grain Size on the Monoclinic Transformation, Hardness, Roughness, and Modulus of Aged Partially Stabilized Zirconia. Dent. Mater. 2015, 31, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-J.; Kim, K.-H.; Kim, Y.-K.; Kwon, T.-Y. Degree of Conversion of Two Dual-Cured Resin Cements Light-Irradiated through Zirconia Ceramic Disks. J. Adv. Prosthodont. 2013, 5, 464–470. [Google Scholar] [CrossRef]
- Ilie, N.; Stawarczyk, B. Quantification of the Amount of Light Passing through Zirconia: The Effect of Material Shade, Thickness, and Curing Conditions. J. Dent. 2014, 42, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Ozcan, M.; Hallmann, L.; Ender, A.; Mehl, A.; Hämmerlet, C.H.F. The Effect of Zirconia Sintering Temperature on Flexural Strength, Grain Size, and Contrast Ratio. Clin. Oral Investig. 2013, 17, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apetz, R.; Bruggen, M.P.B. Transparent Alumina: A Light-Scattering Model. J. Am. Ceram. Soc. 2003, 86, 480–486. [Google Scholar] [CrossRef]
- Rice, R.W. Effects of Environment and Temperature on Ceramic Tensile Strength–Grain Size Relations. J. Mater. Sci. 1997, 32, 3071–3087. [Google Scholar] [CrossRef]
- Chantikul, P.; Bennison, S.J.; Lawn, B.R. Role of Grain Size in the Strength and R-Curve Properties of Alumina. J. Am. Ceram. Soc. 1990, 73, 2419–2427. [Google Scholar] [CrossRef]
- Xiong, Y.; Fu, Z.; Pouchly, V.; Maca, K.; Shen, Z. Preparation of Transparent 3Y-TZP Nanoceramics with No Low-Temperature Degradation. J. Am. Ceram. Soc. 2014, 97, 1402–1406. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Kim, B.-N.; Morita, K.; Yoshida, H.; Hiraga, K.; Sakka, Y. Effect of Alumina Dopant on Transparency of Tetragonal Zirconia. J. Nanomater. 2012, 2012, 269064. [Google Scholar] [CrossRef] [Green Version]
- LANGE, F.F. Transformation Toughening. Pt. 3: Experimental Observations in the ZrO2-Y2O3 System. J. Mater. Sci. 1982, 17, 240–246. [Google Scholar] [CrossRef]
- Rondoni, D. Zirconia: Some practical aspects from the technologist’s point of view. Int. J. Esthet. Dent. 2016, 11, 270–274. [Google Scholar] [PubMed]
- van de Hulst, H.C. Light Scattering by Small Particles. By H. C. van de Hulst. New York (John Wiley and Sons), London (Chapman and Hall), 1957. Pp. Xiii, 470; 103 Figs.; 46 Tables. 96s. Q. J. R. Meteorol. Soc. 1958, 84, 198–199. [Google Scholar]
- Harada, K.; Raigrodski, A.J.; Chung, K.-H.; Flinn, B.D.; Dogan, S.; Mancl, L.A. A Comparative Evaluation of the Translucency of Zirconias and Lithium Disilicate for Monolithic Restorations. J. Prosthet. Dent. 2016, 116, 257–263. [Google Scholar] [CrossRef]
- Carrabba, M.; Keeling, A.J.; Aziz, A.; Vichi, A.; Fabian Fonzar, R.; Wood, D.; Ferrari, M. Translucent Zirconia in the Ceramic Scenario for Monolithic Restorations: A Flexural Strength and Translucency Comparison Test. J. Dent. 2017, 60, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Ahn, J.-S.; Lee, Y.-K. Measurement of Translucency of Tooth Enamel and Dentin. Acta Odontol. Scand. 2009, 67, 57–64. [Google Scholar] [CrossRef]
- Harianawala, H.H.; Kheur, M.G.; Apte, S.K.; Kale, B.B.; Sethi, T.S.; Kheur, S.M. Comparative Analysis of Transmittance for Different Types of Commercially Available Zirconia and Lithium Disilicate Materials. J. Adv. Prosthodont. 2014, 6, 456–461. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Donovan, T.E.; Ritter, A.V.; Lassila, L.V.; Vallittu, P.K.; Närhi, T.O. Degree of Conversion of Dual-Polymerizing Cements Light Polymerized through Monolithic Zirconia of Different Thicknesses and Types. J. Prosthet. Dent. 2015, 114, 103–108. [Google Scholar] [CrossRef]
- Sailer, I.; Fehér, A.; Filser, F.; Gauckler, L.J.; Lüthy, H.; Hämmerle, C.H.F. Five-Year Clinical Results of Zirconia Frameworks for Posterior Fixed Partial Dentures. Int. J. Prosthodont. 2007, 20, 383–388. [Google Scholar] [PubMed]
- Burke, F.J.T.; Crisp, R.J.; Cowan, A.J.; Lamb, J.; Thompson, O.; Tulloch, N. Five-Year Clinical Evaluation of Zirconia-Based Bridges in Patients in UK General Dental Practices. J. Dent. 2013, 41, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Molin, M.K.; Karlsson, S.L. Five-Year Clinical Prospective Evaluation of Zirconia-Based Denzir 3-Unit FPDs. Int. J. Prosthodont. 2008, 21, 223–227. [Google Scholar] [PubMed]
- Sax, C.; Hämmerle, C.H.F.; Sailer, I. 10-Year Clinical Outcomes of Fixed Dental Prostheses with Zirconia Frameworks. Int. J. Comput. Dent. 2011, 14, 183–202. [Google Scholar]
- Sorrentino, R.; De Simone, G.; Tetè, S.; Russo, S.; Zarone, F. Five-Year Prospective Clinical Study of Posterior Three-Unit Zirconia-Based Fixed Dental Prostheses. Clin. Oral Investig. 2012, 16, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Pjetursson, B.E.; Sailer, I.; Makarov, N.A.; Zwahlen, M.; Thoma, D.S. All-Ceramic or Metal-Ceramic Tooth-Supported Fixed Dental Prostheses (FDPs)? A Systematic Review of the Survival and Complication Rates. Part II: Multiple-Unit FDPs. Dent. Mater. 2015, 31, 624–639. [Google Scholar] [CrossRef] [Green Version]
- Thoma, D.S.; Sailer, I.; Ioannidis, A.; Zwahlen, M.; Makarov, N.; Pjetursson, B.E. A Systematic Review of the Survival and Complication Rates of Resin-Bonded Fixed Dental Prostheses after a Mean Observation Period of at Least 5 Years. Clin. Oral Implant. Res. 2017, 28, 1421–1432. [Google Scholar] [CrossRef]
- Chaar, M.S.; Kern, M. Five-Year Clinical Outcome of Posterior Zirconia Ceramic Inlay-Retained FDPs with a Modified Design. J. Dent. 2015, 43, 1411–1415. [Google Scholar] [CrossRef]
- Pihlaja, J.; Näpänkangas, R.; Raustia, A. Outcome of Zirconia Partial Fixed Dental Prostheses Made by Predoctoral Dental Students: A Clinical Retrospective Study after 3 to 7 Years of Clinical Service. J. Prosthet. Dent. 2016, 116, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Donovan, T.E.; Cooper, L.F.; Walter, R. Fracture Rate of Monolithic Zirconia Restorations up to 5 Years: A Dental Laboratory Survey. J. Prosthet. Dent. 2016, 116, 436–439. [Google Scholar] [CrossRef]
- Shahdad, S.; Cattell, M.J.; Cano-Ruiz, J.; Gamble, E.; Gambôa, A. Clinical Evaluation of All Ceramic Zirconia Framework Resin Bonded Bridges. Eur. J. Prosthodont. Restor. Dent. 2018, 26, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Levartovsky, S.; Pilo, R.; Shadur, A.; Matalon, S.; Winocur, E. Complete Rehabilitation of Patients with Bruxism by Veneered and Non-Veneered Zirconia Restorations with an Increased Vertical Dimension of Occlusion: An Observational Case-Series Study. J. Prosthodont. Res. 2019, 63, 440–446. [Google Scholar] [CrossRef]
- Cheng, C.-W.; Chien, C.-H.; Chen, C.-J.; Papaspyridakos, P. Clinical Results and Technical Complications of Posterior Implant-Supported Modified Monolithic Zirconia Single Crowns and Short-Span Fixed Dental Prostheses: A 2-Year Pilot Study. J. Prosthodont. 2018, 27, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-W.; Chien, C.-H.; Chen, C.-J.; Papaspyridakos, P. Randomized Controlled Clinical Trial to Compare Posterior Implant-Supported Modified Monolithic Zirconia and Metal-Ceramic Single Crowns: One-Year Results. J. Prosthodont. 2019, 28, 15–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worni, A.; Katsoulis, J.; Kolgeci, L.; Worni, M.; Mericske-Stern, R. Monolithic Zirconia Reconstructions Supported by Teeth and Implants: 1- to 3-Year Results of a Case Series. Quintessence Int. 2017, 48, 459–467. [Google Scholar] [CrossRef]
- Degidi, M.; Nardi, D.; Gianluca, S.; Piattelli, A. The Conometric Concept: A 5-Year Follow-up of Fixed Partial Monolithic Zirconia Restorations Supported by Cone-in-Cone Abutments. Int. J. Periodontics Restor. Dent. 2018, 38, 363–371. [Google Scholar] [CrossRef]
- Rojas Vizcaya, F. Retrospective 2- to 7-Year Follow-Up Study of 20 Double Full-Arch Implant-Supported Monolithic Zirconia Fixed Prostheses: Measurements and Recommendations for Optimal Design. J. Prosthodont. 2018, 27, 501–508. [Google Scholar] [CrossRef]
- Bidra, A.S.; Tischler, M.; Patch, C. Survival of 2039 Complete Arch Fixed Implant-Supported Zirconia Prostheses: A Retrospective Study. J. Prosthet. Dent. 2018, 119, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Mangano, F.; Margiani, B.; Admakin, O. A Novel Full-Digital Protocol (SCAN-PLAN-MAKE-DONE®) for the Design and Fabrication of Implant-Supported Monolithic Translucent Zirconia Crowns Cemented on Customized Hybrid Abutments: A Retrospective Clinical Study on 25 Patients. Int. J. Environ. Res. Public Health 2019, 16, 317. [Google Scholar] [CrossRef] [Green Version]
- Limmer, B.; Sanders, A.E.; Reside, G.; Cooper, L.F. Complications and Patient-Centered Outcomes with an Implant-Supported Monolithic Zirconia Fixed Dental Prosthesis: 1 Year Results. J. Prosthodont. 2014, 23, 267–275. [Google Scholar] [CrossRef]
- Meyenberg, K.H.; Lüthy, H.; Schärer, P. Zirconia Posts: A New All-Ceramic Concept for Nonvital Abutment Teeth. J. Esthet. Dent. 1995, 7, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Kedici, S.P.; Aksüt, A.A.; Kílíçarslan, M.A.; Bayramoğlu, G.; Gökdemir, K. Corrosion Behaviour of Dental Metals and Alloys in Different Media. J. Oral Rehabil. 1998, 25, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Kakehashi, Y.; Lüthy, H.; Naef, R.; Wohlwend, A.; Schärer, P. A New All-Ceramic Post and Core System: Clinical, Technical, and in Vitro Results. Int. J. Periodontics Restor. Dent. 1998, 18, 586–593. [Google Scholar]
- Paul, S.J.; Werder, P. Clinical Success of Zirconium Oxide Posts with Resin Composite or Glass-Ceramic Cores in Endodontically Treated Teeth: A 4-Year Retrospective Study. Int. J. Prosthodont. 2004, 17, 524–528. [Google Scholar] [PubMed]
- Asmussen, E.; Peutzfeldt, A.; Heitmann, T. Stiffness, Elastic Limit, and Strength of Newer Types of Endodontic Posts. J. Dent. 1999, 27, 275–278. [Google Scholar] [CrossRef]
- Dietschi, D.; Romelli, M.; Goretti, A. Adaptation of Adhesive Posts and Cores to Dentin after Fatigue Testing. Int. J. Prosthodont. 1997, 10, 498–507. [Google Scholar]
- Purton, D.G.; Love, R.M.; Chandler, N.P. Rigidity and Retention of Ceramic Root Canal Posts. Oper. Dent. 2000, 25, 223–227. [Google Scholar]
- Awad, M.A.; Marghalani, T.Y. Fabrication of a Custom-Made Ceramic Post and Core Using CAD-CAM Technology. J. Prosthet. Dent. 2007, 98, 161–162. [Google Scholar] [CrossRef]
- Lee, J. Fabricating a Custom Zirconia Post-and-Core without a Post-and-Core Pattern or a Scan Post. J. Prosthet. Dent. 2018, 120, 186–189. [Google Scholar] [CrossRef]
- Luthardt, R.G.; Sandkuhl, O.; Reitz, B. Zirconia-TZP and Alumina--Advanced Technologies for the Manufacturing of Single Crowns. Eur. J. Prosthodont. Restor. Dent. 1999, 7, 113–119. [Google Scholar]
- Tinschert, J.; Natt, G.; Mautsch, W.; Augthun, M.; Spiekermann, H. Fracture Resistance of Lithium Disilicate-, Alumina-, and Zirconia-Based Three-Unit Fixed Partial Dentures: A Laboratory Study. Int. J. Prosthodont. 2001, 14, 231–238. [Google Scholar] [PubMed]
- Sturzenegger, B.; Fehér, A.; Lüthy, H.; Schumacher, M.; Loeffel, O.; Filser, F.; Kocher, P.; Gauckler, L.; Schärer, P. Klinische Studie von Zirkonoxidbrücken Im Seitenzahngebiet Hergestellt Mit Dem DCM-System. Schweizer Monatsschrift Fur Zahnmedizin 2000, 5, 131–139. [Google Scholar]
- Tinschert, J.; Natt, G.; Latzke, P.; Heussen, N.; Spiekermann, H. Vollkeramische Brücken Aus DC-Zirkon—Ein Klinisches Konzept Mit Erfolg? Deutsche Zahnarztliche Zeitschrift 2005, 60, 435–445. [Google Scholar]
- Christel, P.; Meunier, A.; Dorlot, J.M.; Crolet, J.M.; Witvoet, J.; Sedel, L.; Boutin, P. Biomechanical Compatibility and Design of Ceramic Implants for Orthopedic Surgery. Ann. N. Y. Acad. Sci. 1988, 523, 234–256. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, M.; Edelhoff, D.; Hanisch, O.; Spiekermann, H. Ceramic Abutments—A New Era in Achieving Optimal Esthetics in Implant Dentistry. Int. J. Periodontics Restor. Dent. 2000, 20, 81–91. [Google Scholar]
- Scarano, A.; Di Carlo, F.; Quaranta, M.; Piattelli, A. Bone Response to Zirconia Ceramic Implants: An Experimental Study in Rabbits. J. Oral Implantol. 2003, 29, 8–12. [Google Scholar] [CrossRef]
- Yildirim, M.; Fischer, H.; Marx, R.; Edelhoff, D. In Vivo Fracture Resistance of Implant-Supported All-Ceramic Restorations. J. Prosthet. Dent. 2003, 90, 325–331. [Google Scholar] [CrossRef]
- Glauser, R.; Sailer, I.; Wohlwend, A.; Studer, S.; Schibli, M.; Schärer, P. Experimental Zirconia Abutments for Implant-Supported Single-Tooth Restorations in Esthetically Demanding Regions: 4-Year Results of a Prospective Clinical Study. Int. J. Prosthodont. 2004, 17, 285–290. [Google Scholar]
- Volz, U.; Blaschke, C. Metal-Free Reconstruction with Zirconia Implants and Zirconia Crowns. Quintessence J. Dent. Technol. 2004, 2, 324–330. [Google Scholar]
- Sailer, I.; Philipp, A.; Zembic, A.; Pjetursson, B.E.; Hämmerle, C.H.F.; Zwahlen, M. A Systematic Review of the Performance of Ceramic and Metal Implant Abutments Supporting Fixed Implant Reconstructions. Clin. Oral Implant. Res. 2009, 20, 4–31. [Google Scholar] [CrossRef] [Green Version]
- Larsson, C.; Vult von Steyern, P.; Sunzel, B.; Nilner, K. All-Ceramic Two- to Five-Unit Implant-Supported Reconstructions. A Randomized, Prospective Clinical Trial. Swed. Dent. J. 2006, 30, 45–53. [Google Scholar] [PubMed]
- Guess, P.C.; Att, W.; Strub, J.R. Zirconia in Fixed Implant Prosthodontics. Clin. Implant. Dent. Relat. Res. 2012, 14, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Cionca, N.; Hashim, D.; Mombelli, A. Zirconia Dental Implants: Where Are We Now, and Where Are We Heading? Periodontology 2000 2017, 73, 241–258. [Google Scholar] [CrossRef]
- Pieralli, S.; Kohal, R.J.; Jung, R.E.; Vach, K.; Spies, B.C. Clinical Outcomes of Zirconia Dental Implants: A Systematic Review. J. Dent. Res. 2017, 96, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Freitag, D. Case Report—A Tried and Trusted Concept in a New Formula. Funktionelle und Ästhetische Zahntechnik 2014, 6, 19–22. [Google Scholar]
- Goo, C.L.; Tan, K.B.C. Fabricating CAD/CAM Implant-Retained Mandibular Bar Overdentures: A Clinical and Technical Overview. Case Rep. Dent. 2017, 2017, 9373818. [Google Scholar] [CrossRef]
- Sasse, M.; Kern, M. CAD/CAM Single Retainer Zirconia-Ceramic Resin-Bonded Fixed Dental Prostheses: Clinical Outcome after 5 Years. Int. J. Comput. Dent. 2013, 16, 109–118. [Google Scholar]
- Sasse, M.; Kern, M. Survival of Anterior Cantilevered All-Ceramic Resin-Bonded Fixed Dental Prostheses Made from Zirconia Ceramic. J. Dent. 2014, 42, 660–663. [Google Scholar] [CrossRef]
- Keith, O.; Kusy, R.P.; Whitley, J.Q. Zirconia Brackets: An Evaluation of Morphology and Coefficients of Friction. Am. J. Orthod. Dentofac. Orthop. 1994, 106, 605–614. [Google Scholar] [CrossRef]
- Kusy, R.P. Orthodontic Biomaterials: From the Past to the Present. Angle Orthod. 2002, 72, 501–512. [Google Scholar] [CrossRef]
- Springate, S.D.; Winchester, L.J. An Evaluation of Zirconium Oxide Brackets: A Preliminary Laboratory and Clinical Report. Br. J. Orthod. 1991, 18, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Koutayas, S.O.; Vagkopoulou, T.; Pelekanos, S.; Koidis, P.; Strub, J.R. Zirconia in Dentistry: Part 2. Evidence-Based Clinical Breakthrough. Eur. J. Esthet. Dent. 2009, 4, 348–380. [Google Scholar] [PubMed]
- Thompson, J.Y.; Stoner, B.R.; Piascik, J.R.; Smith, R. Adhesion/Cementation to Zirconia and Other Non-Silicate Ceramics: Where Are We Now? Dent. Mater. 2011, 27, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Carpena, G.; Ballarin, A.; Aguiar, J. A New Ceramics Approach for Contact Lens Un Nuevo Enfoque Para Lente de Contacto Cerámico. Int. J. Dent. Sci. 2015, 17, 12–18. [Google Scholar]
- Sarmento, H.R.; Campos, F.; Sousa, R.S.; Machado, J.P.B.; Souza, R.O.A.; Bottino, M.A.; Ozcan, M. Influence of Air-Particle Deposition Protocols on the Surface Topography and Adhesion of Resin Cement to Zirconia. Acta Odontol. Scand. 2014, 72, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.; Barbosa, F.; Araújo, G.; Miyashita, E.; Bottino, M.A.; Melo, R.; Zhang, Y. Ultrathin Monolithic Zirconia Veneers: Reality or Future? Report of a Clinical Case and One-Year Follow-Up. Oper. Dent. 2018, 43, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Misch, C.E.; Misch-Dietsh, F.; Silc, J.; Barboza, E.; Cianciola, L.J.; Kazor, C. Posterior Implant Single-Tooth Replacement and Status of Adjacent Teeth during a 10-Year Period: A Retrospective Report. J. Periodontol. 2008, 79, 2378–2382. [Google Scholar] [CrossRef]
- Sailer, I.; Pjetursson, B.E.; Zwahlen, M.; Hämmerle, C.H.F. A Systematic Review of the Survival and Complication Rates of All-Ceramic and Metal-Ceramic Reconstructions after an Observation Period of at Least 3 Years. Part II: Fixed Dental Prostheses. Clin. Oral Implant. Res. 2007, 18, 86–96. [Google Scholar] [CrossRef]
- Edelhoff, D.; Spiekermann, H.; Yildirim, M. Metal-Free Inlay-Retained Fixed Partial Dentures. Quintessence Int. 2001, 32, 269–281. [Google Scholar]
- Edelhoff, D.; Sorensen, J.A. Tooth Structure Removal Associated with Various Preparation Designs for Posterior Teeth. Int. J. Periodontics Restor. Dent. 2002, 22, 241–249. [Google Scholar]
- Freilich, M.A.; Niekrash, C.E.; Katz, R.V.; Simonsen, R.J. Periodontal Effects of Fixed Partial Denture Retainer Margins: Configuration and Location. J. Prosthet. Dent. 1992, 67, 184–190. [Google Scholar] [CrossRef]
- Monaco, C.; Cardelli, P.; Ozcan, M. Inlay-Retained Zirconia Fixed Dental Prostheses: Modified Designs for a Completely Adhesive Approach. J. Can. Dent. Assoc. 2011, 77, b86. [Google Scholar] [PubMed]
- Blatz, M.B.; Sadan, A.; Kern, M. Resin-Ceramic Bonding: A Review of the Literature. J. Prosthet. Dent. 2003, 89, 268–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valandro, L.F.; Della Bona, A.; Antonio Bottino, M.; Neisser, M.P. The Effect of Ceramic Surface Treatment on Bonding to Densely Sintered Alumina Ceramic. J. Prosthet. Dent. 2005, 93, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Madfa, A.; Al-Sanabani, F.; Al-Qudami, N.; Al-Sanabani, J.; Amran, A. Use of Zirconia in Dentistry: An Overview. Open Biomater. J. 2014, 5, 1–9. [Google Scholar] [CrossRef]
- Maggio, M.P.; Bergler, M.; Kerrigan, D.; Blatz, M.B. Treatment of Maxillary Lateral Incisor Agenesis with Zirconia-Based All-Ceramic Resin-Bonded Fixed Partial Dentures: A Case Report. Am. J. Esthet. Dent. 2012, 2, 226–237. [Google Scholar]
- Kern, M.; Thompson, V.P. Bonding to Glass Infiltrated Alumina Ceramic: Adhesive Methods and Their Durability. J. Prosthet. Dent. 1995, 73, 240–249. [Google Scholar] [CrossRef]
- Wegner, S.M.; Kern, M. Long-Term Resin Bond Strength to Zirconia Ceramic. J. Adhes. Dent. 2000, 2, 139–147. [Google Scholar] [PubMed]
- Zhang, Y.; Lawn, B.R.; Malament, K.A.; Van Thompson, P.; Rekow, E.D. Damage Accumulation and Fatigue Life of Particle-Abraded Ceramics. Int. J. Prosthodont. 2006, 19, 442–448. [Google Scholar] [PubMed]
- Guess, P.C.; Zhang, Y.; Kim, J.-W.; Rekow, E.D.; Thompson, V.P. Damage and Reliability of Y-TZP after Cementation Surface Treatment. J. Dent. Res. 2010, 89, 592–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozcan, M.; Melo, R.M.; Souza, R.O.A.; Machado, J.P.B.; Felipe Valandro, L.; Botttino, M.A. Effect of Air-Particle Abrasion Protocols on the Biaxial Flexural Strength, Surface Characteristics and Phase Transformation of Zirconia after Cyclic Loading. J. Mech. Behav. Biomed. Mater. 2013, 20, 19–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherrer, S.S.; Cattani-Lorente, M.; Vittecoq, E.; de Mestral, F.; Griggs, J.A.; Wiskott, H.W.A. Fatigue Behavior in Water of Y-TZP Zirconia Ceramics after Abrasion with 30 Μm Silica-Coated Alumina Particles. Dent. Mater. 2011, 27, e28–e42. [Google Scholar] [CrossRef] [Green Version]
- Inokoshi, M.; Shimizu, H.; Nozaki, K.; Takagaki, T.; Yoshihara, K.; Nagaoka, N.; Zhang, F.; Vleugels, J.; Van Meerbeek, B.; Minakuchi, S. Crystallographic and Morphological Analysis of Sandblasted Highly Translucent Dental Zirconia. Dent. Mater. 2018, 34, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Franco-Tabares, S.; Stenport, V.F.; Hjalmarsson, L.; Johansson, C.B. Limited Effect of Cement Material on Stress Distribution of a Monolithic Translucent Zirconia Crown: A Three-Dimensional Finite Element Analysis. Int. J. Prosthodont. 2018, 31, 67–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blatz, M.B.; Alvarez, M.; Sawyer, K.; Brindis, M. How to Bond Zirconia: The APC Concept. Compend. Contin. Educ. Dent. 2016, 37, 611–617. [Google Scholar]
- Inokoshi, M.; De Munck, J.; Minakuchi, S.; Van Meerbeek, B. Meta-Analysis of Bonding Effectiveness to Zirconia Ceramics. J. Dent. Res. 2014, 93, 329–334. [Google Scholar] [CrossRef]
- Ilie, N.; Simon, A. Effect of Curing Mode on the Micro-Mechanical Properties of Dual-Cured Self-Adhesive Resin Cements. Clin. Oral Investig. 2012, 16, 505–512. [Google Scholar] [CrossRef]
- Tanoue, N.; Koishi, Y.; Atsuta, M.; Matsumura, H. Properties of Dual-Curable Luting Composites Polymerized with Single and Dual Curing Modes. J. Oral Rehabil. 2003, 30, 1015–1021. [Google Scholar] [CrossRef]
- Rasetto, F.H.; Driscoll, C.F.; Prestipino, V.; Masri, R.; von Fraunhofer, J.A. Light Transmission through All-Ceramic Dental Materials: A Pilot Study. J. Prosthet. Dent. 2004, 91, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Alaniz, J.E.; Perez-Gutierrez, F.G.; Aguilar, G.; Garay, J.E. Optical Properties of Transparent Nanocrystalline Yttria Stabilized Zirconia. Opt. Mater. 2009, 32, 62–68. [Google Scholar] [CrossRef]
- Myers, M.L.; Caughman, W.F.; Rueggeberg, F.A. Effect of Restoration Composition, Shade, and Thickness on the Cure of a Photoactivated Resin Cement. J. Prosthodont. 1994, 3, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Daneshpooy, M.; Pournaghi Azar, F.; Alizade Oskoee, P.; Bahari, M.; Asdagh, S.; Khosravani, S.R. Color Agreement between Try-in Paste and Resin Cement: Effect of Thickness and Regions of Ultra-Translucent Multilayered Zirconia Veneers. J. Dent. Res. Dent. Clin. Dent. Prospect. 2019, 13, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.C.; Boyer, D.B. Curing Light-Activated Composite Cement through Porcelain. J. Dent. Res. 1989, 68, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Lange-Jansen, H.C.; Scharnberg, M.; Wolfart, S.; Ludwig, K.; Adelung, R.; Kern, M. Influence of Saliva Contamination on Zirconia Ceramic Bonding. Dent. Mater. 2008, 24, 508–513. [Google Scholar] [CrossRef]
- Feitosa, S.A.; Patel, D.; Borges, A.L.S.; Alshehri, E.Z.; Bottino, M.A.; Özcan, M.; Valandro, L.F.; Bottino, M.C. Effect of Cleansing Methods on Saliva-Contaminated Zirconia—An Evaluation of Resin Bond Durability. Oper. Dent. 2015, 40, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaas, A.C.; Yang, B.; Kern, M. Panavia F 2.0 Bonding to Contaminated Zirconia Ceramic after Different Cleaning Procedures. Dent. Mater. 2007, 23, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Son, J.-S.; Jeong, S.-H.; Kim, Y.-K.; Kim, K.-H.; Kwon, T.-Y. Efficacy of Various Cleaning Solutions on Saliva-Contaminated Zirconia for Improved Resin Bonding. J. Adv. Prosthodont. 2015, 7, 85–92. [Google Scholar] [CrossRef]
- Ishii, R.; Tsujimoto, A.; Takamizawa, T.; Tsubota, K.; Suzuki, T.; Shimamura, Y.; Miyazaki, M. Influence of Surface Treatment of Contaminated Zirconia on Surface Free Energy and Resin Cement Bonding. Dent. Mater. J. 2015, 34, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Angkasith, P.; Burgess, J.; Bottino, M.; Lawson, N. Cleaning Methods for Zirconia Following Salivary Contamination. J. Prosthodont. 2016, 25, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Rekow, E.D.; Silva, N.R.F.A.; Coelho, P.G.; Zhang, Y.; Guess, P.; Thompson, V.P. Performance of Dental Ceramics: Challenges for Improvements. J. Dent. Res. 2011, 90, 937–952. [Google Scholar] [CrossRef] [Green Version]
- Ban, S.; Sato, H.; Suehiro, Y.; Nakanishi, H.; Nawa, M. Biaxial Flexure Strength and Low Temperature Degradation of Ce-TZP/Al2O3 Nanocomposite and Y-TZP as Dental Restoratives. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 87, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Green, D.J.; Hannink, R.H.J.; Swain, M.V. Transformation Toughening of Ceramics; CRC Press: Boca Raton, FL, USA, 2018; ISBN 1351077406. [Google Scholar]
3Y-ZP | 4Y-TZP | 5Y-TZP |
---|---|---|
IPS e.max® ZirCad LT and MO (Ivoclar Vivadent) ivoclarvivadent.com (accessed on 22 December 2021) | IPS e.max ZirCAD MT (Ivoclar Vivadent) ivoclarvivadent.com (accessed on 22 December 2021) | Cercon® XT, Dentsply Sirona, dentsplysirona.com (accessed on 22 December 2021) |
BruxZir® (Glidewell Laboratories) glidewelldental.com (accessed on 22 December 2021) | BruxZir Anterior (Glidewell Laboratories) glidewelldental.com (accessed on 22 December 2021) | |
KATANA™ HT (Kuraray Noritake) KATANAZir.com (accessed on 22 December 2021) | KATANA™ ST/STML (Kurary Noritake) KATANAZir.com (accessed on 22 December 2021) | KATANA™ UT/UTML (Kurary Noritake) KATANAZir.com (accessed on 22 December 2021) |
Lava™ Plus, 3M ESPE | Lava Esthetic, 3M ESPE | |
Zpex 3Y (Tosoh) | Zpex® 4, Kraun, (Tosoh) kraun.eu (accessed on 22 December 2021) | Zpex Smile (Tosoh) |
Zenostar MO (Wieland Dental) | Zenostar MT (Wieland Dental) | Prettue Zir (Zirconzhan) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqutaibi, A.Y.; Ghulam, O.; Krsoum, M.; Binmahmoud, S.; Taher, H.; Elmalky, W.; Zafar, M.S. Revolution of Current Dental Zirconia: A Comprehensive Review. Molecules 2022, 27, 1699. https://doi.org/10.3390/molecules27051699
Alqutaibi AY, Ghulam O, Krsoum M, Binmahmoud S, Taher H, Elmalky W, Zafar MS. Revolution of Current Dental Zirconia: A Comprehensive Review. Molecules. 2022; 27(5):1699. https://doi.org/10.3390/molecules27051699
Chicago/Turabian StyleAlqutaibi, Ahmed Yaseen, Omar Ghulam, Majid Krsoum, Suhail Binmahmoud, Hasan Taher, Wael Elmalky, and Muhammad Sohail Zafar. 2022. "Revolution of Current Dental Zirconia: A Comprehensive Review" Molecules 27, no. 5: 1699. https://doi.org/10.3390/molecules27051699
APA StyleAlqutaibi, A. Y., Ghulam, O., Krsoum, M., Binmahmoud, S., Taher, H., Elmalky, W., & Zafar, M. S. (2022). Revolution of Current Dental Zirconia: A Comprehensive Review. Molecules, 27(5), 1699. https://doi.org/10.3390/molecules27051699