Optical Dynamic Nuclear Polarization of 13C Spins in Diamond at a Low Field with Multi-Tone Microwave Irradiation
Abstract
:1. Introduction
2. Experimental Methods
3. Experimental Results
3.1. C Polarization Spectrum
3.2. Optimal Microwave Power and Laser Power
3.3. C Hyperpolarization by Multi-Tone MW Frequencies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Appendix A. Diamond Sample
Appendix B. Estimation of 13C Nuclear Polarization and Enhancement Factor
Appendix C. Experimental Setup
Appendix C.1. Superconducting Magnet and NMR Hardware
Appendix C.2. MW Hardware
Appendix C.3. Optical Configuration
Appendix D. Experimental Procedure
References
- Ardenkjær-Larsen, J.H.; Fridlund, B.; Gram, A.; Hansson, G.; Hansson, L.; Lerche, M.H.; Servin, R.; Thaning, M.; Golman, K. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. USA 2003, 100, 10158–10163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, C.G.; Hu, K.N.; Bryant, J.A.; Griffin, R.G. In Situ Temperature Jump High-Frequency Dynamic Nuclear Polarization Experiments: Enhanced Sensitivity in Liquid-State NMR Spectroscopy. J. Am. Chem. Soc. 2006, 128, 9428–9432. [Google Scholar] [CrossRef] [PubMed]
- Thankamony, A.S.L.; Wittmann, J.J.; Kaushik, M.; Corzilius, B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 102–103, 120–195. [Google Scholar] [CrossRef]
- Rankin, A.G.M.; Trébosc, J.; Pourpoint, F.; Amoureux, J.P.; Lafon, O. Recent developments in MAS DNP-NMR of materials. Solid State Nucl. Magn. Res. 2019, 101, 116–143. [Google Scholar] [CrossRef]
- Bucher, D.B.; Glenn, D.R.; Park, H.; Lukin, M.D.; Walsworth, R.L. Hyperpolarization-Enhanced NMR Spectroscopy with Femtomole Sensitivity Using Quantum Defects in Diamond. Phys. Rev. X 2020, 10, 021053–021061. [Google Scholar] [CrossRef]
- Krummenacker, J.G.; Denysenkov, V.P.; Terekhov, M.; Schreiber, L.M.; Prisner, T.F. DNP in MRI: An in-bore approach at 1.5 T. J. Magn. Reson. 2012, 215, 94–99. [Google Scholar] [CrossRef]
- Denysenkov, V.; Terekhov, M.; Maeder, R.; Fischer, S.; Zangos, S.; Vogl, T.; Prisner, T.F. Continuous-flow DNP polarizer for MRI applications at 1.5 T. Sci. Rep. 2017, 7, 44010–44019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golman, K.; Zandt, R.I.T.; Thaning, M. Real-time metabolic imaging. Proc. Natl. Acad. Sci. USA 2006, 103, 11270–11275. [Google Scholar] [CrossRef] [Green Version]
- Barnes, A.B.; Paëpe, G.D.; van der Wel, P.C.A.; Hu, K.N.; Joo, C.G.; Bajaj, V.S.; Mak-Jurkauskas, M.L.; Sirigiri, J.R.; Herzfeld, J.; Temkin, R.J.; et al. High-Field Dynamic Nuclear Polarization for Solid and Solution Biological NMR. App. Magn. Res. 2008, 34, 237–263. [Google Scholar] [CrossRef] [Green Version]
- Rossini, A.J.; Zagdoun, A.; Hegner, F.; Schwarzwälder, M.; Gajan, D.; Coperet, C.; Lesage, A.; Emsley, L. Dynamic Nuclear Polarization NMR Spectroscopy of Microcrystalline Solids. J. Am. Chem. Soc. 2012, 134, 16899–16908. [Google Scholar] [CrossRef]
- Puebla, J.; Chekhovich, E.A.; Hopkinson, M.; Senellart, P.; Lemaitre, A.; Skolnick, M.S.; Tartakovskii, A.I. Dynamic nuclear polarization in InGaAs/GaAs and GaAs/AlGaAs quantum dots under nonresonant ultralow-power optical excitation. Phys. Rev. B 2013, 88, 045306–045314. [Google Scholar] [CrossRef] [Green Version]
- Masion, A.; Alexandre, A.; Ziarelli, F.; Viel, S.; Santos, G.M. Dynamic Nuclear Polarization NMR as a new tool to investigate the nature of organic compounds occluded in plant silica particles. Sci. Rep. 2017, 7, 3430–3436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flori, A.; Giovannetti, G.; Santarelli, M.F.; Aquaro, G.D.; Marchi, D.D.; Burchielli, S.; Frijia, F.; Positano, V.; Landini, L.; Menichetti, L. Biomolecular imaging of 13C-butyrate with dissolution-DNP: Polarization enhancement and formulation for in vivo studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 199, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Morze, C.V.; Merritt, M.E. Cancer in the crosshairs: Targeting cancer metabolism with hyperpolarized carbon-13 MRI technology. NMR Biomed. 2019, 32, e3937. [Google Scholar] [CrossRef]
- Park, S.; Rintaro, H.; Kim, S.K.; Park, I. Characterization of Distinctive In Vivo Metabolism between Enhancing and Non-Enhancing Gliomas Using Hyperpolarized Carbon-13 MRI. Metabolites 2021, 11, 504. [Google Scholar] [CrossRef]
- Abhyankar, N.; Szalai, V. Challenges and Advances in the Application of Dynamic Nuclear Polarization to Liquid-State NMR Spectroscopy. J. Phys. Chem. B 2021, 125, 5171–5190. [Google Scholar] [CrossRef]
- Fischer, R.; Bretschneider, C.O.; London, P.; Budker, D.; Gershoni, D.; Frydman, L. Bulk Nuclear Polarization Enhanced at Room Temperature by Optical Pumping. Phys. Rev. Lett. 2013, 111, 057601–057605. [Google Scholar] [CrossRef]
- Wang, H.J.; Shin, C.S.; Avalos, C.E.; Seltzer, S.J.; Budker, D.; Pines, A.; Bajaj, V.S. Sensitive magnetic control of ensemble nuclear spin hyperpolarization in diamond. Nat. Commun. 2013, 4, 1940–1946. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, G.A.; Bretschneider, C.O.; Fisher, R.; London, P.; Kanda, H.; Onoda, S.; Isoya, J.; Gershoni, D.; Frydman, L. Local and bulk 13C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations. Nat. Commun. 2015, 6, 8456–8463. [Google Scholar]
- King, J.P.; Jeong, K.; Vassiliou, C.C.; Shin, C.S.; Page, R.H.; Avalos, C.E.; Wang, H.J.; Pines, A. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond. Nat. Commun. 2013, 6, 8965–8969. [Google Scholar] [CrossRef]
- Ajoy, A.; Liu, K.; Nazaryan, R.; Lv, X.; Zangara, P.R.; Safvati, B.; Wang, G.; Arnold, D.; Li, G.; Lin, A.; et al. Orientation-independent room temperature optical 13C hyperpolarization in powdered diamond. Sci. Adv. 2018, 4, eaar5492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajoy, A.; Nazaryan, R.; Liu, K.; Lv, X.; Safvati, B.; Wang, G.; Druga, E.; Reimer, J.A.; Suter, D.; Ramanathan, C.; et al. Enhanced dynamic nuclear polarization via swept microwave frequency combs. Proc. Natl. Acad. Sci. USA 2018, 115, 10576–10581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajoy, A.; Nazaryan, R.; Druga, E.; Liu, K.; Aguilar, A.; Han, B.; Gierth, M.; Oon, J.T.; Safvati, B.; Tsang, R.; et al. Room temperature “optical nanodiamond hyperpolarizer”: Physics, design, and operation. Rev. Sci. Instrum. 2020, 91, 023106–023119. [Google Scholar] [CrossRef] [Green Version]
- Ajoy, A.; Sarkar, A.; Druga, E.; Zangara, P.; Pagliero, D.; Meriles, C.A.; Reimer, J.A. Low-field microwave-mediated optical hyperpolarization in optically pumped diamond. J. Magn. Reson. 2021, 331, 107021. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.J.; Jeong, K.; Avalos, C.E.; Hausmann, B.J.M.; Vassiliou, C.C.; Pines, A.; King, J.P. Optically pumped dynamic nuclear hyperpolarization in 13C-enriched diamond. Phys. Rev. B 2019, 100, 041203. [Google Scholar] [CrossRef] [Green Version]
- Scheuer, J.; Schwartz, I.; Chen, Q.; Schulze-Sünninghausen, D.; Carl, P.; Hofer, P.; Retzker, A.; Sumiya, H.; Isoya, J.; Luy, B.; et al. Optically induced dynamic nuclear spin polarisation in diamond. New J. Phys. 2016, 18, 013040. [Google Scholar] [CrossRef]
- Suefke, M.; Lehmkuhl, S.; Liebisch, A.; Blümich, B.; Appelt, S. Para-hydrogen raser delivers sub-millihertz resolution in nuclear magnetic resonance. Nat. Phys. 2017, 13, 568–572. [Google Scholar] [CrossRef]
- Sahin, O.; de Leon Sanchez, E.; Conti, S.; Akkiraju, A.; Reshetikhin, P.; Druga, E.; Aggarwal, A.; Gilbert, B.; Bhave, S.; Ajoy, A. High-Field Magnetometry with Hyperpolarized Nuclear Spins. arXiv 2021, arXiv:2112.11612v1. [Google Scholar]
- Jarmola, A.; Lourette, S.; Acosta, V.M.; Birdwell, A.G.; Blümler, P.; Budker, D.; Ivanov, T.; Malinovsky, V.S. Demonstration of diamond nuclear spin gyroscope. Sci. Adv. 2021, 7, 43. [Google Scholar] [CrossRef]
- Cassidy, M.C.; Chan, H.R.; Ross, B.D.; Bhattacharya, P.K.; Marcus, C.M. In vivo magnetic resonance imaging of hyperpolarized silicon particles. Nat. Nanotechnol. 2013, 8, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Rej, E.; Gaebel, T.; Boele, T.; Waddington, D.E.J.; Reilly, D.J. Hyperpolarized nanodiamond with long spin-relaxation times. Nat. Commun. 2015, 6, 8459. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, G.; Jähnig, F.; Steinhauser, J.; Wespi, P.; Ernst, M.; Kozerke, S. Nanometer size silicon particles for hyperpolarized MRI. Sci. Rep. 2017, 7, 7946. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Whiting, N.; Bhattacharya, P. Hyperpolarization of Silicon Nanoparticles with TEMPO Radicals. J. Phys. Chem. C 2018, 122, 10575–10581. [Google Scholar] [CrossRef]
- Seo, H.; Choi, I.; Whiting, N.; Hu, J.; Luu, Q.S.; Pudakalakatti, S.; McCowan, C.; Kim, Y.; Zacharias, N.; Lee, S.; et al. Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material for 29Si Magnetic Resonance Imaging. ChemPhysChem 2018, 19, 2143–2147. [Google Scholar] [CrossRef] [PubMed]
- Ajoy, A.; Safvati, B.; Nazaryan, R.; Oon, J.T.; Han, B.; Raghavan, P.; Nirodi, R.; Aguilar, A.; Liu, K.; Cai, X.; et al. Hyperpolarized relaxometry based nuclear T1 noise spectroscopy in diamond. Nat. Commun. 2019, 10, 5160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenckebach, T. Essentials of Dynamic Nuclear Polarization; Spindrift Publications: Petten, The Netherlands, 2016. [Google Scholar]
- Acosta, V.M.; Bauch, E.; Ledbetter, M.P.; Waxman, A.; Bouchard, L.S.; Budker, D. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond. Phys. Rev. Lett. 2010, 104, 070801. [Google Scholar] [CrossRef] [Green Version]
- Duan, D.; Kavatamane, V.K.; Arumugam, S.R.; Rahane, G.; Du, G.X.; Tzeng, Y.K.; Chang, H.C.; Balasubramanian, G. Laser-induced heating in a high-density ensemble of nitrogen-vacancy centers in diamond and its effects on quantum sensing. Opt. Lett. 2019, 44, 2851–2854. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavtanyuk, V.V.; Lee, H.J.; Oh, S.; Jeong, K.; Shim, J.H. Optical Dynamic Nuclear Polarization of 13C Spins in Diamond at a Low Field with Multi-Tone Microwave Irradiation. Molecules 2022, 27, 1700. https://doi.org/10.3390/molecules27051700
Kavtanyuk VV, Lee HJ, Oh S, Jeong K, Shim JH. Optical Dynamic Nuclear Polarization of 13C Spins in Diamond at a Low Field with Multi-Tone Microwave Irradiation. Molecules. 2022; 27(5):1700. https://doi.org/10.3390/molecules27051700
Chicago/Turabian StyleKavtanyuk, Vladimir V., Hyun Joon Lee, Sangwon Oh, Keunhong Jeong, and Jeong Hyun Shim. 2022. "Optical Dynamic Nuclear Polarization of 13C Spins in Diamond at a Low Field with Multi-Tone Microwave Irradiation" Molecules 27, no. 5: 1700. https://doi.org/10.3390/molecules27051700
APA StyleKavtanyuk, V. V., Lee, H. J., Oh, S., Jeong, K., & Shim, J. H. (2022). Optical Dynamic Nuclear Polarization of 13C Spins in Diamond at a Low Field with Multi-Tone Microwave Irradiation. Molecules, 27(5), 1700. https://doi.org/10.3390/molecules27051700