Sustainable Valorization of Tomato By-Products to Obtain Bioactive Compounds: Their Potential in Inflammation and Cancer Management
Abstract
:1. Introduction
2. Sustainable Valorization of Tomato Processing Industry By-Products
2.1. Tomato Industry and By-Products
2.2. Effect of Processing: Quality of the By-Products
2.2.1. Effect of Processing on Vitamin C Content
2.2.2. Effect of Processing on Lycopene Content
2.2.3. Effect of Processing on β-Carotene, Phenolic Compounds, and Vitamin E Content
2.3. Added-Value of Tomato By-Products
Tomato Pomace (Peel and Seeds) and Oleoresins
3. Biological Properties of Tomato Bioactives
3.1. Anti-Inflammatory and Anti-Cancer Activity of Lycopene
3.1.1. Anti-Inflammatory Activity
3.1.2. Anti-Cancer Activity—Inhibition of Skin Cancer
4. Challenges and Opportunities
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tomato|Description, Cultivation, & History|Britannica. Available online: https://www.britannica.com/plant/tomato (accessed on 5 March 2020).
- Perveen, R.; Suleria, H.A.R.; Anjum, F.M.; Butt, M.S.; Pasha, I.; Ahmad, S. Tomato (Solanum Lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims—A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Meena, M.; Meena, D.; Meena, J.K.; Kishor, S.; Kishor, S.; Kishor, S. Performance of Tomato Germplasms for Growth, Yield and Quality under Lucknow Conditions. J. Pharmacogn. Phytochem. 2017, 6, 1560–1562. [Google Scholar]
- FAOSTAT. Production Quantities (Crops) of Tomatoes, World + (Total). Available online: https://www.fao.org/faostat/en/#data/QC (accessed on 25 March 2020).
- FAOSTAT. Production Quantities of Tomatoes by Country (Average-1994–2018). Available online: https://www.fao.org/faostat/en/#data/QC/visualize (accessed on 31 October 2020).
- Shahbandeh, M. U.S. Fresh Vegetables Consumption per Capita by Type. 2018. Available online: https://www.statista.com/statistics/257345/per-capita-consumption-of-fresh-vegetables-in-the-us-by-type/ (accessed on 11 March 2020).
- Goyal, S.K.; Gaur, I.; Prabha; Rai, J.P.; Maurya, K.K. Processing of Agri-Products and Organized Retailing: Challenges of Indian Tomato Processing Industry. In Agri Business Marketing; Singh, A., Kushwaha, D., Mukerjee, A., Eds.; Bharti Publications: New Delhi, India, 2017; pp. 28–36. [Google Scholar]
- Løvdal, T.; Droogenbroeck, B.V.; Eroglu, E.C.; Kaniszewski, S.; Agati, G.; Verheul, M.; Skipnes, D. Valorization of Tomato Surplus and Waste Fractions: A Case Study Using Norway, Belgium, Poland, and Turkey as Examples. Foods 2019, 8, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food Waste within Food Supply Chains: Quantification and Potential for Change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Environmental Protection Agency (EPA). Sustainable Management of Food. Available online: https://www.epa.gov/sustainable-management-food (accessed on 23 April 2020).
- Langen, N.; Göbel, C.; Waskow, F. The Effectiveness of Advice and Actions in Reducing Food Waste. Proc. Inst. Civ. Eng.-Waste Resour. Manag. 2015, 168, 72–86. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA). What’s Up with All the Wasted Food? Available online:https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100O0G1.PDF (accessed on 30 April 2020).
- Carillo, P.; D’Amelia, L.; Dell’Aversana, E.; Faiella, D.; Cacace, D.; Giuliano, B.; Morrone, B. Eco-Friendly Use of Tomato Processing Residues for Lactic Acid Production in Campania. Chem. Eng. Trans. 2018, 64, 223–228. [Google Scholar] [CrossRef]
- Serratì, S.; Porcelli, L.; Guida, S.; Ferretta, A.; Iacobazzi, R.M.; Cocco, T.; Maida, I.; Tamasi, G.; Rossi, C.; Manganelli, M.; et al. Tomatine Displays Antitumor Potential in in vitro Models of Metastatic Melanoma. Int. J. Mol. Sci. 2020, 21, 5243. [Google Scholar] [CrossRef]
- Ohno, K. Secretion of Tomatine from Tomato Roots and Analysis of Tomatine in the Field. Sustain. Humanosph. 2020, 16, 55. [Google Scholar]
- Freitas, V.; Oliveira, J. Livro de Resumos do XXIV Encontro Luso-Galego de Química. Available online: http://xxivlgq.eventos.chemistry.pt/images/resumos.pdf (accessed on 31 October 2020).
- Karthika, D.B.; Kuriakose, S.P.; Krishnan, A.V.C.; Choudhary, P.; Rawson, A. Utilization of By-Product from Tomato Processing Industry for the Development of New Product. J. Food Process. Technol. 2016, 7, 608. [Google Scholar] [CrossRef]
- Naika, S.; Jeude, J.V.L.; Goffau, M.; Hilmi, M.; van Dam, B. Cultivation of Tomato Production, Processing and Marketing, 4th ed.; van Dam, B., Ed.; Agromisa Foundation and CTA: Wageningen, The Netherlands, 2005. [Google Scholar]
- Saran, S.; Jayanth, T.A.S.; Anand, S.; Pandey, V.; Sumathi, N. Tomato Processing Industry Management. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2017, VI, 124–128. [Google Scholar]
- Raiola, A.; Tenore, G.; Barone, A.; Frusciante, L.; Rigano, M. Vitamin E Content and Composition in Tomato Fruits: Beneficial Roles and Bio-Fortification. Int. J. Mol. Sci. 2015, 16, 29250–29264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.; Adyatni, I.; Reuhs, B. Effect of Processing Methods on the Quality of Tomato Products. Food Nutr. Sci. 2018, 9, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Gould, W.A. Tomato Production, Processing and Technology; Woodhead Publishing Limited: Sawston, UK, 1992. [Google Scholar] [CrossRef]
- El-Dengawy, R.; El-said, S.; El-Kadi, S.; Shalata, A. Effect the Industrial Process and the Storage Periods on the Nutritional Value of Tomato Juice. Indian J. Nutr. 2016, 3, 121. [Google Scholar]
- Raiola, A.; Rigano, M.M.; Calafiore, R.; Frusciante, L.; Barone, A. Enhancing the Health-Promoting Effects of Tomato Fruit for Biofortified Food. Mediat. Inflamm. 2014, 2014, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ntagkas, N.; Woltering, E.; Bouras, S.; de Vos, R.C.; Dieleman, J.A.; Nicole, C.C.; Labrie, C.; Marcelis, L.F. Light-Induced Vitamin C Accumulation in Tomato Fruits Is Independent of Carbohydrate Availability. Plants 2019, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Ghamande, M.; Surpaithankar, A.; Bhanse, A.; Durani, R.; Chugwani, R.; Shinde, S. The Effects of Heat on Vitamin C in Tomatoes. Int. J. Adv. Res. Sci. Eng. 2018, 7, 332–336. [Google Scholar]
- Valšíková-Frey, M.; Komár, P.; Rehuš, M. The Effect of Varieties and Degree of Ripeness to Vitamin C Content in Tomato Fruits. Acta Hortic. Regiotect. 2017, 20, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Charles, N.; Iwouno, J.O.; James, E.; Tochukwu, C. Effect of Thermal Processing on Lycopene, Beta-Carotene and Vitamin C Content of Tomato [Var.UC82B]. J. Food Nutr. Sci. 2014, 2, 87. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Boluda-Aguilar, M.; Taboada-Rodríguez, A.; Soto-Jover, S.; Marín-Iniesta, F.; López-Gómez, A. Processing, Packaging, and Storage of Tomato Products: Influence on the Lycopene Content. Food Eng. Rev. 2016, 8, 52–75. [Google Scholar] [CrossRef]
- Zdravković, J.M.; Pavlović, N.V.; Mladenović, J.D.; Bošković, N.M.V.; Zdravković, N.M. Effects of Tomato Processing on Carotenoids Antioxidant Activity and Stability during One-Year Storage. Bulg. Chem. Commun. 2019, 51, 604–610. [Google Scholar] [CrossRef]
- Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention. Cancers 2016, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Bogacz-Radomska, L.; Harasym, J. β-Carotene—Properties and Production Methods. Food Qual. Saf. 2018, 2, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Minatel, I.O.; Borges, C.V.; Ferreira, M.I.; Gomez, H.A.G.; Chen, C.-Y.O.; Lima, G.P.P. Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability. In Phenolic Compounds-Biological Activity, 1st ed.; Soto-Hernández, M., Palma-Tenango, M., García-Mateos, R., Eds.; InTech: London, UK, 2017; pp. 1–15. [Google Scholar] [CrossRef] [Green Version]
- National Institutes of Health-Office of Dietary Supplements (NIH). Vitamin E-Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/VitaminE-HealthProfessional/ (accessed on 14 April 2020).
- Camarena-Martínez, S.; Martínez-Martínez, J.H.; Saldaña-Robles, A.; Nuñez-Palenius, H.G.; Costilla-Salazar, R.; Valdez-Vazquez, I.; Lovanh, N.; Ruiz-Aguilar, G.M.L. Effects of Experimental Parameters on Methane Production and Volatile Solids Removal from Tomato and Pepper Plant Wastes. BioResources 2020, 15, 4763–4780. [Google Scholar] [CrossRef]
- Aybek, A.; Üçok, S. Determination and Evaluation of Biogas and Methane Productions of Vegetable and Fruit Wastes with Hohenheim Batch Test Method. Int. J. Agric. Biol. Eng. 2017, 10, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Borycka, B. Tomato Fibre as Potential Functional Food Ingredients. Pol. J. Nat. Sci. 2017, 32, 121–130. [Google Scholar]
- Yuangklang, C.; Vasupen, K.; Wongnen, C.; Wongsuthavas, S.; Beynen, A. Digestibility of Sundried Tomato Pomace in Dogs. J. Appl. Anim. Sci. 2015, 8, 35–42. [Google Scholar]
- Özbek, Z.A.; Çelik, K.; Ergönül, P.G.; Hepçimen, A.Z. A Promising Food Waste for Food Fortification: Characterization of Dried Tomato Pomace and Its Cold Pressed Oil. J. Food Chem. Nanotechnol. 2020, 6, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Gullón, P.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Lorenzo, J.M. Tomato as Potential Source of Natural Additives for Meat Industry. A Review. Antioxidants 2020, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.O.; Komarek, A.R. Dietary Fibre Basics: Health, Nutrition, Analysis, and Applications. Food Qual. Saf. 2017, 1, 47–59. [Google Scholar] [CrossRef]
- Longo, C.; Leo, L.; Leone, A. Carotenoids, Fatty Acid Composition and Heat Stability of Supercritical Carbon Dioxide-Extracted-Oleoresins. Int. J. Mol. Sci. 2012, 13, 4233–4254. [Google Scholar] [CrossRef] [Green Version]
- Berke, T.G.; Shieh, S.C. Capsicum Cultivars. In Handbook of Herbs and Spices, 2nd ed.; Peter, K.V., Ed.; Woodhead Publishing: Cambridge, UK, 2012; Volume 1, pp. 116–130. [Google Scholar] [CrossRef]
- Hackett, M.M.; Lee, J.H.; Francis, D.; Schwartz, S.J. Thermal Stability and Isomerization of Lycopene in Tomato Oleoresins from Different Varieties. J. Food Sci. 2006, 69, 536–541. [Google Scholar] [CrossRef]
- Rizk, E.M.; El-Kady, A.T.; El-Bialy, A.R. Charactrization of Carotenoids (Lyco-Red) Extracted from Tomato Peels and Its Uses as Natural Colorants and Antioxidants of Ice Cream. Ann. Agric. Sci. 2014, 59, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Zuorro, A.; Lavecchia, R.; Medici, F.; Piga, L. Use of Cell Wall Degrading Enzymes for the Production of High-Quality Functional Products from Tomato Processing Waste. Chem. Eng. Trans. 2014, 38, 355–360. [Google Scholar] [CrossRef]
- Vallecilla-Yepez, L.; Ciftci, O.N. Increasing Cis-Lycopene Content of the Oleoresin from Tomato Processing Byproducts Using Supercritical Carbon Dioxide. LWT 2018, 95, 354–360. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Kehili, M.; Choura, S.; Zammel, A.; Allouche, N.; Sayadi, S. Oxidative Stability of Refined Olive and Sunflower Oils Supplemented with Lycopene-Rich Oleoresin from Tomato Peels Industrial by-Product, during Accelerated Shelf-Life Storage. Food Chem. 2018, 246, 295–304. [Google Scholar] [CrossRef]
- Basu, A.; Imrhan, V. Tomatoes versus Lycopene in Oxidative Stress and Carcinogenesis: Conclusions from Clinical Trials. Eur. J. Clin. Nutr. 2007, 61, 295–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MEDLINE-National Library of Medicine® (NLM). Fluid and Electrolyte Balance: MedlinePlus. Available online: https://medlineplus.gov/fluidandelectrolytebalance.html (accessed on 17 May 2020).
- Center for Disease Control and Prevention-CDC. The Role of Potassium and Sodium in Your Diet. Available online: https://www.cdc.gov/salt/potassium.htm (accessed on 7 May 2020).
- American Heart Association. How Much Sodium Should I Eat per Day? Available online: https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/sodium/how-much-sodium-should-i-eat-per-day (accessed on 7 May 2020).
- Raman, R. What Does Potassium Do for Your Body? A Detailed Review. Available online: https://www.healthline.com/nutrition/what-does-potassium-do (accessed on 24 May 2020).
- MEDLINE-National Library of Medicine® (NLM). Potassium: MedlinePlus. Available online: https://medlineplus.gov/potassium.html (accessed on 24 May 2020).
- WHO (World Health Organization). The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 8 May 2020).
- Al Alawi, A.M.; Majoni, S.W.; Falhammar, H. Magnesium and Human Health: Perspectives and Research Directions. Int. J. Endocrinol. 2018, 2018, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pravina, P.; Sayaji, D.; Avinash, M. Calcium and Its Role in Human Body. Int. J. Res. Pharm. Biomed. Sci. 2013, 4, 659–668. [Google Scholar]
- Beto, J.A. The Role of Calcium in Human Aging. Clin. Nutr. Res. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- MEDLINE-National Library of Medicine® (NLM). Calcium in Diet: MedlinePlus Medical Encyclopedia. Available online: https://medlineplus.gov/ency/article/002412.htm (accessed on 28 May 2020).
- Pravst, I. Oleic Acid and Its Potential Health Effects. In Oleic Acid: Production, Uses and Potential Health Effects; Whelan, L., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2014; pp. 35–54. [Google Scholar]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front. Physiol. 2017, 8, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puah, B.-P.; Jalil, J.; Attiq, A.; Kamisah, Y. New Insights into Molecular Mechanism behind Anti-Cancer Activities of Lycopene. Molecules 2021, 26, 3888. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Yan, Z.; Kong, X.; Liu, J.; Lin, Z.; Qi, W.; Wu, Y.; Lin, J.; Pan, X.; Xue, X. Lycopene Inhibits IL-1β-induced Inflammation in Mouse Chondrocytes and Mediates Murine Osteoarthritis. J. Cell. Mol. Med. 2021, 25, 3573–3584. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.H.; Kim, W.K.; Ha, A.W.; Kim, M.H.; Chang, M.J. Anti-Inflammatory Effect of Lycopene in SW480 Human Colorectal Cancer Cells. Nutr. Res. Pract. 2017, 11, 90. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lim, J.W.; Kim, H. Lycopene Inhibits Oxidative Stress-Mediated Inflammatory Responses in Ethanol/Palmitoleic Acid-Stimulated Pancreatic Acinar AR42J Cells. Int. J. Mol. Sci. 2021, 22, 2101. [Google Scholar] [CrossRef]
- Zheng, Z.; Yin, Y.; Lu, R.; Jiang, Z. Lycopene Ameliorated Oxidative Stress and Inflammation in Type 2 Diabetic Rats. J. Food Sci. 2019, 84, 1194–1200. [Google Scholar] [CrossRef]
- Feng, D.; Ling, W.-H.; Duan, R.-D. Lycopene Suppresses LPS-Induced NO and IL-6 Production by Inhibiting the Activation of ERK, P38MAPK, and NF-ΚB in Macrophages. Inflamm. Res. 2010, 59, 115–121. [Google Scholar] [CrossRef]
- Stahl, W.; Heinrich, U.; Wiseman, S.; Eichler, O.; Sies, H.; Tronnier, H. Dietary Tomato Paste Protects against Ultraviolet Light–Induced Erythema in Humans. J. Nutr. 2001, 131, 1449–1451. [Google Scholar] [CrossRef]
- Heinrich, U.; Gärtner, C.; Wiebusch, M.; Eichler, O.; Sies, H.; Tronnier, H.; Stahl, W. Supplementation with β-Carotene or a Similar Amount of Mixed Carotenoids Protects Humans from UV-Induced Erythema. J. Nutr. 2003, 133, 98–101. [Google Scholar] [CrossRef]
- Rizwan, M.; Rodriguez-Blanco, I.; Harbottle, A.; Birch-Machin, M.A.; Watson, R.E.B.; Rhodes, L.E. Tomato Paste Rich in Lycopene Protects against Cutaneous Photodamage in Humans in Vivo: A Randomized Controlled Trial. Br. J. Dermatol. 2011, 164, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Upritchard, J.E.; Sutherland, W.H.; Mann, J.I. Effect of Supplementation with Tomato Juice, Vitamin E, and Vitamin C on LDL Oxidation and Products of Inflammatory Activity in Type 2 Diabetes. Diabetes Care 2000, 23, 733–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eita, A.A.B.; Zaki, A.M.; Mahmoud, S.A. Serum 8-Isoprostane Levels in Patients with Resistant Oral Lichen Planus before and after Treatment with Lycopene: A Randomized Clinical Trial. BMC Oral Health 2021, 21, 343. [Google Scholar] [CrossRef] [PubMed]
- Prasad Kushwaha, R.; Prasad Rauniar, G.; Rimal, J. Clinical Assessment of the Effects of Lycopene in the Management of Oral Lichen Planus. Int. Dent. Med. J. Adv. Res.-Vol. 2019, 5, 1–5. [Google Scholar] [CrossRef]
- Petyaev, I.M.; Dovgalevsky, P.Y.; Klochkov, V.A.; Chalyk, N.E.; Pristensky, D.V.; Chernyshova, M.P.; Udumyan, R.; Kocharyan, T.; Kyle, N.H.; Lozbiakova, M.V.; et al. Effect of Lycopene Supplementation on Cardiovascular Parameters and Markers of Inflammation and Oxidation in Patients with Coronary Vascular Disease. Food Sci. Nutr. 2018, 6, 1770–1777. [Google Scholar] [CrossRef] [Green Version]
- Nieman, D.C.; Capps, C.L.; Capps, C.R.; Shue, Z.L.; McBride, J.E. Effect of 4-Week Ingestion of Tomato-Based Carotenoids on Exercise-Induced Inflammation, Muscle Damage, and Oxidative Stress in Endurance Runners. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 266–273. [Google Scholar] [CrossRef]
- van Steenwijk, H.P.; Bast, A.; de Boer, A. The Role of Circulating Lycopene in Low-Grade Chronic Inflammation: A Systematic Review of the Literature. Molecules 2020, 25, 4378. [Google Scholar] [CrossRef]
- Grether-Beck, S.; Marini, A.; Jaenicke, T.; Stahl, W.; Krutmann, J. Molecular Evidence That Oral Supplementation with Lycopene or Lutein Protects Human Skin against Ultraviolet Radiation: Results from a Double-Blinded, Placebo-Controlled, Crossover Study. Br. J. Dermatol. 2017, 176, 1231–1240. [Google Scholar] [CrossRef]
- Luo, C.; Wu, X.-G. Lycopene Enhances Antioxidant Enzyme Activities and Immunity Function in N-Methyl-N′-Nitro-N-Nitrosoguanidine–Induced Gastric Cancer Rats. Int. J. Mol. Sci. 2011, 12, 3340–3351. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Ghorat, F.; Ul-Haq, I.; Ur-Rehman, H.; Aslam, F.; Heydari, M.; Shariati, M.A.; Okuskhanova, E.; Yessimbekov, Z.; Thiruvengadam, M.; et al. Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants 2020, 9, 706. [Google Scholar] [CrossRef]
- Jiang, L.-N.; Liu, Y.-B.; Li, B.-H. Lycopene Exerts Anti-Inflammatory Effect to Inhibit Prostate Cancer Progression. Asian J. Androl. 2019, 21, 80. [Google Scholar] [CrossRef]
- Fletcher, N.M.; Awonuga, A.O.; Saed, M.G.; Abu-Soud, H.M.; Diamond, M.P.; Saed, G.M. Lycopene, a Powerful Antioxidant, Significantly Reduces the Development of the Adhesion Phenotype. Syst. Biol. Reprod. Med. 2014, 60, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koul, A.; Bansal, M.P.; Aniqa, A.; Chaudhary, H.; Chugh, N.A. Lycopene Enriched Tomato Extract Suppresses Chemically Induced Skin Tumorigenesis in Mice. Int. J. Vitam. Nutr. Res. 2020, 90, 493–513. [Google Scholar] [CrossRef] [PubMed]
- Ip, B.C.; Liu, C.; Ausman, L.M.; von Lintig, J.; Wang, X.-D. Lycopene Attenuated Hepatic Tumorigenesis via Differential Mechanisms Depending on Carotenoid Cleavage Enzyme in Mice. Cancer Prev. Res. 2014, 7, 1219–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, F.-Y.; Pai, M.-H.; Wang, X.-D. Consumption of Lycopene Inhibits the Growth and Progression of Colon Cancer in a Mouse Xenograft Model. J. Agric. Food Chem. 2011, 59, 9011–9021. [Google Scholar] [CrossRef]
- Tang, L.; Jin, T.; Zeng, X.; Wang, J.-S. Lycopene Inhibits the Growth of Human Androgen-Independent Prostate Cancer Cells In Vitro and in BALB/c Nude Mice. J. Nutr. 2005, 135, 287–290. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer-World Health Organization. GLOBOCAN (Global Cancer Statistics) 2020-Colorectal Cancer Fact Sheet. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/10_8_9-Colorectum-fact-sheet.pdf (accessed on 31 October 2020).
- Walfisch, S.; Walfisch, Y.; Kirilov, E.; Linde, N.; Mnitentag, H.; Agbaria, R.; Sharoni, Y.; Levy, J. Tomato Lycopene Extract Supplementation Decreases Insulin-like Growth Factor-I Levels in Colon Cancer Patients. Eur. J. Cancer Prev. 2007, 16, 298–303. [Google Scholar] [CrossRef]
- Vrieling, A.; Voskuil, D.W.; Bonfrer, J.M.; Korse, C.M.; van Doorn, J.; Cats, A.; Depla, A.C.; Timmer, R.; Witteman, B.J.; van Leeuwen, F.E.; et al. Lycopene Supplementation Elevates Circulating Insulin-like Growth Factor–Binding Protein-1 and -2 Concentrations in Persons at Greater Risk of Colorectal Cancer. Am. J. Clin. Nutr. 2007, 86, 1456–1462. [Google Scholar] [CrossRef] [Green Version]
- Moroni, M.; Pirovano, M.; Brugnatelli, S.; Zucca, M.; Morreale, M.; Rizzo, V.; Ferrari, A.; Tinelli, C.; De Silvestri, A.; Meregalli, M.; et al. Lycopene Minimizes Skin Toxicity and Oxidative Stress in Patients Treated with Panitumumab-Containing Therapy for Metastatic Colorectal Cancer. J. Funct. Foods 2021, 83, 104533. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Kucuk, O.; Sarkar, F.H.; Sakr, W.; Djuric, Z.; Pollak, M.N.; Khachik, F.; Li, Y.W.; Banerjee, M.; Grignon, D.; Bertram, J.S.; et al. Phase II Randomized Clinical Trial of Lycopene Supplementation before Radical Prostatectomy. Cancer Epidemiol. Biomark. Prev. 2001, 10, 861–868. [Google Scholar]
- Paur, I.; Lilleby, W.; Bøhn, S.K.; Hulander, E.; Klein, W.; Vlatkovic, L.; Axcrona, K.; Bolstad, N.; Bjøro, T.; Laake, P.; et al. Tomato-Based Randomized Controlled Trial in Prostate Cancer Patients: Effect on PSA. Clin. Nutr. 2017, 36, 672–679. [Google Scholar] [CrossRef] [Green Version]
- Bowen, P.; Chen, L.; Stacewicz-Sapuntzakis, M.; Duncan, C.; Sharifi, R.; Ghosh, L.; Kim, H.-S.; Christov-Tzelkov, K.; Breemen, R. Van. Tomato Sauce Supplementation and Prostate Cancer: Lycopene Accumulation and Modulation of Biomarkers of Carcinogenesis. Exp. Biol. Med. 2002, 227, 886–893. [Google Scholar] [CrossRef] [PubMed]
- Voskuil, D.W.; Vrieling, A.; Korse, C.M.; Beijnen, J.H.; Bonfrer, J.M.G.; van Doorn, J.; Kaas, R.; Oldenburg, H.S.A.; Russell, N.S.; Rutgers, E.J.T.; et al. Effects of Lycopene on the Insulin-Like Growth Factor (IGF) System in Premenopausal Breast Cancer Survivors and Women at High Familial Breast Cancer Risk. Nutr. Cancer 2008, 60, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Schadendorf, D.; van Akkooi, A.C.J.; Berking, C.; Griewank, K.G.; Gutzmer, R.; Hauschild, A.; Stang, A.; Roesch, A.; Ugurel, S. Melanoma. Lancet 2018, 392, 971–984. [Google Scholar] [CrossRef]
- Guy, G.P.; Thomas, C.C.; Thompson, T.; Watson, M.; Massetti, G.M.; Richardson, L.C.; Centers for Disease Control and Prevention (CDC). Vital Signs: Melanoma Incidence and Mortality Trends and Projections-United States, 1982–2030. MMWR. Morb. Mortal. Wkly. Rep. 2015, 64, 591–596. [Google Scholar]
- Kim, J.; Park, M.K.; Li, W.-Q.; Qureshi, A.A.; Cho, E. Association of Vitamin A Intake With Cutaneous Squamous Cell Carcinoma Risk in the United States. JAMA Dermatol. 2019, 155, 1260. [Google Scholar] [CrossRef]
- Kumar, K.; Yadav, A.N.; Kumar, V.; Vyas, P.; Dhaliwal, H.S. Food Waste: A Potential Bioresource for Extraction of Nutraceuticals and Bioactive Compounds. Bioresour. Bioprocess. 2017, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Pandya, D.; Akbari, S.; Bhatt, H.; DC, J. Standardization of Solvent Extraction Process for Lycopene Extraction from Tomato Pomace. J. Appl. Biotechnol. Bioeng. 2017, 2, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Pellicanò, T.M.; Sicari, V.; Loizzo, M.R.; Leporini, M.; Falco, T.; Poiana, M. Optimizing the Supercritical Fluid Extraction Process of Bioactive Compounds from Processed Tomato Skin By-Products. Food Sci. Technol. 2020, 40, 692–697. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, T.; Kumcuoglu, S.; Tavman, S. Ultrasound-Assisted Extraction of Lycopene and β-Carotene from Tomato-Processing Wastes. Ital. J. Food Sci. 2017, 29, 186–194. [Google Scholar] [CrossRef]
- Neagu, D.; Leopold, L.; Thonart, P.; Destain, J.; Socaciu, C. Enzyme-Assisted Extraction of Carotenoids and Phenolic Derivatives from Tomatoes. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Anim. Sci. Biotechnol. 2014, 71, 20–26. [Google Scholar] [CrossRef]
- Tranfić Bakić, M.; Pedisić, S.; Zorić, Z.; Dragović-Uzelac, V.; Ninčević Grassino, A. Effect of Microwave-Assisted Extraction on Polyphenols Recovery from Tomato Peel Waste. Acta Chim. Slov. 2019, 66, 367–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha-Santos, E.C.E.; Viganó, J.; Neves, D.A.; Martínez, J.; Godoy, H.T. Vitamin C in Camu-Camu [Myrciaria Dubia (H.B.K.) McVaugh]: Evaluation of Extraction and Analytical Methods. Food Res. Int. 2019, 115, 160–166. [Google Scholar] [CrossRef] [PubMed]
- 107. Muhammad, S.; Naveed, A.; Rouf, A.; Gulfishan; Khan, H.M.S.; Khan, H. An Approach to Enhanced Stability: Formulation and Characterization of Solanum Lycopersicum Derived Lycopene Based Topical Emulgel. Saudi Pharm. J. 2018, 26, 1170–1177. [Google Scholar] [CrossRef]
- da Silva, T.L.; Aguiar-Oliveira, E.; Mazalli, M.R.; Kamimura, E.S.; Maldonado, R.R. Comparison between Titrimetric and Spectrophotometric Methods for Quantification of Vitamin C. Food Chem. 2017, 224, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N. Lycopene Quantification of Tomato by SPE and HPLC. Bulg. J. Agric. Sci. 2016, 22, 84–90. [Google Scholar]
- Nour, V.; Panaite, T.D.; Ropota, M.; Turcu, R.; Trandafir, I.; Corbu, A.R. Nutritional and Bioactive Compounds in Dried Tomato Processing Waste. CyTA-J. Food 2018, 16, 222–229. [Google Scholar] [CrossRef]
- Faria-Silva, C.; Ascenso, A.; Costa, A.M.; Marto, J.; Carvalheiro, M.; Ribeiro, H.M.; Simões, S. Feeding the Skin: A New Trend in Food and Cosmetics Convergence. Trends Food Sci. Technol. 2020, 95, 21–32. [Google Scholar] [CrossRef]
- Telang, P. Vitamin C in Dermatology. Indian Dermatol. Online J. 2013, 4, 143. [Google Scholar] [CrossRef]
- Schagen, S.K.; Zampeli, V.A.; Makrantonaki, E.; Zouboulis, C.C. Discovering the Link between Nutrition and Skin Aging. Dermatoendocrinology 2012, 4, 298–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pullar, J.M.; Carr, A.C.; Vissers, M.C.M. The Roles of Vitamin C in Skin Health. Nutrients 2017, 9, 866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute of Health (NIH). Vitamin C-Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/#en1 (accessed on 13 August 2020).
- Bayerl, C. Beta-Carotene in Dermatology: Does It Help? Acta Dermatovenerol. Alp. Pannonica Adriat. 2008, 17, 161. [Google Scholar]
- Kim, J.K. An Update on the Potential Health Benefits of Carotenes. EXCLI J. 2016, 15, 1–4. [Google Scholar] [CrossRef]
- Gajendragadkar, P.R.; Hubsch, A.; Mäki-Petäjä, K.M.; Serg, M.; Wilkinson, I.B.; Cheriyan, J. Effects of Oral Lycopene Supplementation on Vascular Function in Patients with Cardiovascular Disease and Healthy Volunteers: A Randomised Controlled Trial. PLoS ONE 2014, 9, e99070. [Google Scholar] [CrossRef]
- Petyaev, I.M.; Pristensky, D.V.; Morgunova, E.Y.; Zigangirova, N.A.; Tsibezov, V.V.; Chalyk, N.E.; Klochkov, V.A.; Blinova, V.V.; Bogdanova, T.M.; Iljin, A.A.; et al. Lycopene Presence in Facial Skin Corneocytes and Sebum and Its Association with Circulating Lycopene Isomer Profile: Effects of Age and Dietary Supplementation. Food Sci. Nutr. 2019, 7, 1157–1165. [Google Scholar] [CrossRef]
- Mieremet, A.; Helder, R.; Nadaban, A.; Gooris, G.; Boiten, W.; El Ghalbzouri, A.; Bouwstra, J.A. Contribution of Palmitic Acid to Epidermal Morphogenesis and Lipid Barrier Formation in Human Skin Equivalents. Int. J. Mol. Sci. 2019, 20, 6069. [Google Scholar] [CrossRef] [Green Version]
- Moore, E.M.; Wagner, C.; Komarnytsky, S. The Enigma of Bioactivity and Toxicity of Botanical Oils for Skin Care. Front. Pharmacol. 2020, 11, 785. [Google Scholar] [CrossRef]
- Miller, B.D.D.; Welch, R.M. Food System Strategies for Preventing Micronutrient Malnutrition. Food Policy 2013, 42, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, Y.; Kinoshita, M.; Shimada, S.; Kawamura, T. Zinc and Skin Disorders. Nutrients 2018, 10, 199. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Mahajan, V.K.; Mehta, K.S.; Chauhan, P.S. Zinc Therapy in Dermatology: A Review. Dermatol. Res. Pract. 2014, 2014, 709152. [Google Scholar] [CrossRef] [PubMed]
- Pichai, E.; Lakshmanan, M. Drug Elimination. In Introduction to Basics of Pharmacology and Toxicology; Raj, G., Raveendran, R., Eds.; Springer: Singapore, 2019; pp. 117–129. [Google Scholar] [CrossRef]
- Sotler, R.; Poljšak, B.; Dahmane, R.; Jukić, T.; Pavan Jukić, D.; Rotim, C.; Trebše, P.; Starc, A. Prooxidant Activities of Antioxidants and Their Impact on Health. Acta Clin. Croat. 2019, 58, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Linder, J. Novel Delivery Systems in Cosmeceuticals. Available online: https://practicaldermatology.com/articles/2014-oct/novel-delivery-systems-in-cosmeceuticals (accessed on 1 September 2020).
Advantages | Disadvantages |
---|---|
Extended food lifespan and storage period | Not fresh and with preservatives |
Consumption out of season and a more diversified diet | More caloric than fresh tomatoes |
Facilitated food storage | Decreased specific bioactive content (e.g., thermolabile molecules as vitamins) unlike others (e.g., cis-lycopene) |
Higher stability | More expensive to consumers |
Decreased tomato losses | |
Increased market value of tomatoes |
Supplements/Diet | Dose | Study | Outcomes/Observed Effect | Reference |
---|---|---|---|---|
Lycopene in soft gel capsules | 10 mg lycopene/day, 8 weeks | Patients with erosive oral lichen planus recalcitrant to topical steroids | Higher reduction of the 8-isoprostane levels (biomarker of lipid peroxidation and oxidative stress) in the group treated with lycopene | [74] |
Lycopene supplements | 4 mg lycopene/day, 8 weeks | 13 patients with symptomatic oral lichen planus | 11 patients showed a partial remission of the lesion; a complete remission was observed in 2 patients. | [75] |
Tomato paste | 16 mg lycopene/day, 10 weeks | 22 participants, type II skin, UV light at dorsal skin | Significant reduction of erythema. | [70] |
Lycopene softgel capsule | 8 mg lycopene/day, 12 weeks | 24 participants, type II skin, UV light at dorsal skin | Significant reduction of erythema. | [71] |
Tomato paste | 16 mg lycopene/day, 12 weeks | 20 participants, type I or II skin, UV light at upper buttock skin | Significant increase in the minimal UV dose required to cause erythema; inhibition of MMP-1 expression induced by UV. | [72] |
Lycopene softgel capsule | 20 mg lycopene/day, 12 weeks | 33 participants, UV light at upper buttock skin | Inhibition of HO-1, MMP-1 and ICAM-1 expression induced by UV. | [79] |
Supplements of tomato extract | 11 mg lycopene, phytoene, and phytofluene, 4 weeks | 20 participants (endurance runners) | No significant differences were observed in the oxidative stress and inflammation after exercise. | [77] |
Lycopene supplements (form of lactolycopene and lycosome-formulated GA lycopene) | 7 mg lycopene/day, 30 days | 69 patients with coronary vascular disease supplemented with a daily dose of lycopene in the form of lactolycopene;74 patients supplemented with the form of lycosome-formulated GA lycopene | Reduction of Chlamydia pneumoniae IgG and the markers related with oxidation (inflammatory oxidative damage, oxidized LDL) in the lycosome-formulated GA lycopene. | [76] |
Tomato juice | tomato juice (500 mL/day), 4 weeks | 57 patients with type 2 diabetes | Consumption of tomato juice increased the resistance of LDL to oxidation. | [73] |
Supplements/Diet | Dose | Study | Outcomes/Observed Effect | Reference |
---|---|---|---|---|
Tomato lycopene extract | 30 mg lycopene/day, 10 ± 2 days | Colon cancer patients | Reduction in 25% of insulin-like growth factor (IGF)-1 in plasma of the patients. | [89] |
Tomato-derived lycopene | 30 mg lycopene/day, 8 weeks | 40 men and 31 postmenopausal women with: a personal history of colorectal adenoma; a family history of colorectal cancer; and both situations | The concentration of IGFBP-1 increased in women after lycopene supplementation;The level of IGFBP-2 at serum increased in women and men after lycopene supplementation. | [90] |
Lycopene from tomato oleoresin embedded in whey protein matrix | 20 mg/day, duration of the treatment | 28 patients with metastatic colorectal cancer (13 also treated with lycopene) | Reduction of skin toxicity induced by treatment; decrease of the mean malondialdehyde index | [91] |
Lycopene supplementation | 15 mg lycopene twice daily, 3 weeks | Phase II clinical trial:26 men with newly diagnosed prostate cancer | The levels of plasma PSA decreased by 18% in the group treated with lycopene supplementation, but increased in 14% for the control group; the expression of Cx43 was 0.63 and 0.25 in supplementation and control group, respectively. | [93] |
Lycopene as tomato sauce-based pasta dishes | 30 mg lycopene/day, 3 weeks | 60 men with adenocarcinoma of the prostate | After the consumption of tomato sauce, the level of PSA and leukocyte DNA 8-OH-deoxyguanosine/deoxyguanosine (marker of DNA damage) decreased in 17.5% and 21.3% in comparison with control group, respectively; the apoptotic index increased in the hyperplastic and neoplastic of the resected tissue | [95] |
Tomato products and tomato products combined with other nutritional substances (selenium, omega-3 fatty acids, soy isoflavones, grape/pomegranate juice, and green/black tea) | 30 mg lycopene/day, 3 weeks | 79 patients with prostate cancer | Median PSA decreased in 2.9% in the tomato group as compared with control diet; the largest reduction in PSA was observed in patients who had the highest increase of lycopene, selenium and C20:5 n-3 fatty acid in the plasma. | [94] |
Tomato-derived lycopene supplementation | 30 mg lycopene/day, 2 months | Premenopausal women: 24 with history of breast cancer and 36 with family history of breast cancer | Lycopene supplementation did not change the level of total serum IGF-1 in both populations of the study; in breast cancer survivors, the levels of IGF-1 and IGFBP-3 increased; for the population with high-risk of breast cancer, the levels of free IGF-1 decreased after supplementation. | [96] |
Tomato juice | 160 g juice/day, 6 months | 23 patients with breast cancer subjected to radiotherapy | Serum lycopene concentrations significantly increased from end of radiotherapy to final period of consumption of tomato juice (~0.3 to 0.8 µmol/L); skin moisture increased; no change in urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels was observed; however, there was negative correlation between lycopene and 8-OHdG levels. | [79] |
Various food products (questionnaire, epidemiological study) | variable | 123,570 participants, 3978 cases of squamous cell carcinoma. | Higher intakes of lycopene were significantly associated with decreased risk of squamous cell carcinoma. | [99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laranjeira, T.; Costa, A.; Faria-Silva, C.; Ribeiro, D.; de Oliveira, J.M.P.F.; Simões, S.; Ascenso, A. Sustainable Valorization of Tomato By-Products to Obtain Bioactive Compounds: Their Potential in Inflammation and Cancer Management. Molecules 2022, 27, 1701. https://doi.org/10.3390/molecules27051701
Laranjeira T, Costa A, Faria-Silva C, Ribeiro D, de Oliveira JMPF, Simões S, Ascenso A. Sustainable Valorization of Tomato By-Products to Obtain Bioactive Compounds: Their Potential in Inflammation and Cancer Management. Molecules. 2022; 27(5):1701. https://doi.org/10.3390/molecules27051701
Chicago/Turabian StyleLaranjeira, Tânia, Ana Costa, Catarina Faria-Silva, Daniela Ribeiro, José Miguel P. Ferreira de Oliveira, Sandra Simões, and Andreia Ascenso. 2022. "Sustainable Valorization of Tomato By-Products to Obtain Bioactive Compounds: Their Potential in Inflammation and Cancer Management" Molecules 27, no. 5: 1701. https://doi.org/10.3390/molecules27051701
APA StyleLaranjeira, T., Costa, A., Faria-Silva, C., Ribeiro, D., de Oliveira, J. M. P. F., Simões, S., & Ascenso, A. (2022). Sustainable Valorization of Tomato By-Products to Obtain Bioactive Compounds: Their Potential in Inflammation and Cancer Management. Molecules, 27(5), 1701. https://doi.org/10.3390/molecules27051701