Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review
Abstract
:1. Introduction
2. Development of Cancer and Phytochemical Pathways of Action
3. Steps Involved in the Development of Phytochemical Drugs from the Medicinal Plants
4. Major Phytochemical Constituents of the Fabaceae Family
4.1. Flavonoids
4.2. Lectins
S. No. | Species | Genus | Phytochemicals | Targeted Cancer | References |
---|---|---|---|---|---|
1 | Acacia nilotica (L.) Willd. eX Del. | Acacia | Gallic acid | Not specified | [68] |
2 | Acacia hydaspica R. parker | Acacia | Alkaloids, flavonoids, and saponin | Not specified | [69] |
3 | Acacia saligna (Labill.) H.L.Wendl. | Acacia | Flavonoids and saponin | Hep G2 cancer (liver cancer) | [70,71] |
4 | Acacia seyal Delile | Acacia | Lectin | Hepatocellular carcinoma, HEP-2 (Larynx Cancer), HCT116 (colon cancer), and MCF-7 (breast cancer) | [72] |
5 | Acacia victoriae Benth. | Acacia | Avicins and Fo35 | Breast cancer | [73] |
6 | Albizia lebbeck (L.) Benth. | Albizia | Saponins, flavonoids | Liver, larynx, breast, cervical, and colon cancer | [74,75] |
7 | Albizia chinensis (Osbeck) Merr. | Albizia | Quercetin (Flavonoid) | Myeloid leukemia | [76,77] |
8 | Albizia Julibrissin Baker | Albizia | Alkaloids, saponins, and flavonoids | Leukemia | [78,79,80] |
9 | Astragalus ovinus Boiss. | Astragalus | Phenolics, flavonoids | Breast cancer in rats | [81] |
10 | Astragalus spinosus (Forssk.) Muschl. | Astragalus | Flavonoids | Not specified | [82] |
11 | Astragalus membranaceus (Fisch.) Bunge | Astragalus | Flavonoids, saponins | Breast cancer | [83] |
12 | Bauhinia acuminata L. | Bauhinia | Alkaloids, flavonoids | Lung cancer | [84] |
13 | Bauhinia variegata (L.) Benth. | Bauhinia | Alkaloids, Kaempferol galactoside, saponins | Liver, lung, breast cancer (both in vitro and in vivo), and human ovarian cancer (in vivo) | [85,86,87] |
14 | Bauhinia purpurea L. | Bauhinia | Lectin | MCF-7 (breast cancer) | [88] |
15 | Butea monosperma (Lam.) Taub. | Butea | Butrin | Liver cancer | [51] |
16 | Caesalpinia bonduc (L.) Roxb | Caesalpinia | Alkaloids | Not specified | [89] |
17 | Caesalpinia gilliesii (Hook.) D.Dietr | Caesalpinia | Isorhamnetin, Isorhamnetin-3-O-rhamnoside (flavonoids) | MCF-7 (breast cancer) and HepG2 cancer (liver cancer) | [90] |
18 | Caesalpinia pluviosa DC. | Caesalpinia | Caesalpinioflavone | A549 (lung adenocarcinoma), MCF-7, and Hst578T (breast cancer) | [91] |
19 | Caesalpinia pulcherrima (L.) Sw. | Caesalpinia | Catechin, Gallic acid, quercetin, Rutin | Breast cancer | [92] |
20 | Cajanus cajan (L.) Millsp. | Cajanus | Flavanones | CaCo-2 (colorectal) HeLa (cervical), and MCF-7 (breast cancer) cancer | [93,94,95] |
21 | Canavalia gladiata (Jacq.) DC. | Canavalia | Lectin | Not specified | [62] |
22 | Cassia occidentalis (L.) Link | Cassia | Alkaloids, flavonoids, saponins | HCT-15, SW-620 (colon cancer), OVCAR-5 (ovarian cancer), SiHa (cervical cancer), PC-3 (prostate cancer, and MCF-7 (breast cancer) | [96,97] |
23 | Castanospermum australe A.Cunn. eX mudie | Castanospermum | Castanospermine | Not specified | [98] |
24 | Ceratonia siliqua L. (carob) | Ceratonia | Flavonoids | Not specified | [99] |
25 | Cicer arietinum L. | Cicer | Isoflavones | Breast cancer | [40] |
26 | Conyza bonariensis L. | Conyza | Lectin | Not specified | [63] |
27 | Cytisus villosus Pourr. | Cytisus | Flavonols, flavones | Breast and colon cancer | [100] |
28 | Derris scandens Roxb. (Benth.) | Derris | Glyurallin, derrubone, derriscandenon B and C (isoflavones) | HT29 (colon cancer) | [95,101] |
29 | Dioclea lasiocarpa Mart. eX Benth. | Dioclea | Lectin DLasiL | Breast, prostate, and ovarian cancer | [65] |
30 | Eriosema chinense Vogel | Eriosema | Isoflavone, flavonols | Lung cancer and oral epidermal carcinoma | [43] |
31 | Eriosema griseum Baker | Eriosema | Flavonols, flavanones | Lung cancer and oral epidermal carcinoma | [43] |
32 | Erythrina senegalensis DC | Erythrina | Alkaloids, flavonoids | Breast, cervical, colon, liver, lung cancer, and leukemia | [102] |
33 | Gleditsia triacanthos L. | Gleditsia | Flavones | Liver, breast, cervical, larynx, and colon cancer | [103] |
34 | Gleditsia caspica Desf. | Gleditsia | Saponins | MCF-7 (breast cancer) | [77] |
35 | Gleditsia sinensis Lam. | Gleditsia | Saponins | MCF-7 (breast cancer) | [104] |
36 | Glycine max (L.) Merr. | Glycine | Lectin, genistein (Isoflavones), saponins | Breast and liver cancer | [60,67] |
37 | Glycyrrhiza uralensis Fisch. eX DC. | Glycyrrhiza | Isoliquiritigenin | Human lung cancer (in vitro) | [105] |
38 | Glycyrrhiza glabra L. | Glycyrrhiza | Alkaloids, flavonoids, saponins | Breast, colon, liver, and prostate cancer | [50,106] |
39 | Griffonia simplicifolia (DC.) Baill. | Griffonia | Lectin-1 | Breast cancer | [67] |
40 | Indigofera tinctoria L. | Indigofera | Flavonoids, phenolic compounds, Saponins | Lung cancer | [107,108,109] |
41 | Indigofera cassioides Rottl. Ex. Dc. | Indigofera | Flavonoids, saponins, terpenoids | Breast and colon cancer (in vitro and in vivo) | [110] |
42 | Indigofera aspalathoides (Vahl.) | Indigofera | Alkaloids, flavonoids, saponins | Cervical cancer | [111] |
43 | Indigofera cordifolia B.Heyne eX Roth | Indigofera | Alkaloids, flavonoids, saponins | Human breast, cervical, liver, and lung cancer | [112] |
44 | Indigofera suffruticosa Mill. | Indigofera | Alkaloids, flavonoids, lectin | Not specified | [113] |
45 | Laburnum anagyroides Medik. | Laburnum | Cytisine | Lung cancer | [114] |
46 | Medicago arabica (L.) Huds. | Medicago | Saponins | HeLa (cervical cancer) | [115] |
47 | Medicago Sativa L. | Medicago | Alkaloids, millepurpan, medicarpin (flavonoids), saponins | Breast and cervical cancer | [46,116,117,118] |
48 | Medicago truncatula Gaertn. | Medicago | Tricin (flavone) | Breast cancer, intestinal carcinogenesis and prostate cancer | [48] |
49 | Melilotus officinalis (Linn.) Pall. | Melilotus | Saponins | Prostate cancer | [119] |
50 | Melilotus indicus (L.) All. | Melilotus | Flavonoids | Hepatocellular carcinoma | [120] |
51 | Parkia javanica Lam. | Parkia | Alkaloids, flavonoids, saponins | Human liver cancer | [121] |
52 | Phaseolus vulgaris L. | Phaseolus | Galic acid, lectin | Breast cancer, colon cancer, Epithelial colorectal adenocarcinoma, liver cancer, and nasopharyngeal carcinoma | [45,58] |
53 | Phaseolus Acutifolius A. Gray | Phaseolus | Lectin | Colon cancer | [64] |
54 | Physostigma venenosum Balf. | Physostigma | Physostigmine alkaloid or eserine | Not specified | [122] |
55 | Prosopis juliflora (Sw.) DC. | Prosopis | Alkaloids | Leukemia | [123,124] |
56 | Prosopis cineraria (L.) Druce | Prosopis | Alkaloids, flavonoids, phenolic aicd, saponins | Hepatocellular carcinoma | [125,126] |
57 | Pseudarthria hookeri Wight & Arn. | Pseudarthria | Flavanones, flavones, isoflavone | Epithelial colorectal adenocarcinoma (CaCo-2), Leukemia, lung adenocarcinoma (A549), and human ovarian carcinoma (Skov-2) | [127] |
58 | Psoralea corylifolia L. | Psoralea | Neobavaisoflavone (flavonoids) | Colon cancer and leukemia | [128] |
59 | Senna alexandrina Mill. | Senna | Flavonoids | Liver cancer | [129] |
60 | Sesbania grandiflora (L.) poiret | Sesbania | Alkaloids, flavonoids, and saponins | Colon cancer | [130,131] |
61 | Sophora tonkinensis Gagnep. | Sophora | Isoflavones | Breast cancer | [132] |
62 | Sophora flavescens Aiton | Sophora | Oxymatrine (Alkaloid) | Cervical, colorectal, gastric, human hepatoma carcinoma, lung, pancreatic, and laryngeal cancer | [76,133,134,135,136,137,138,139,140,141] |
63 | Spatholobus suberectus Dunn | Spatholobus | Flavonoids, phenolic acid | Not specified | [142] |
64 | Tephrosia purpurea L. | Tephrosia | Flavonoids | MCF-7 (breast cancer) | [143] |
65 | Trifolium repens L. | Trifolium | Flavonoids, alkaloids | Not specified | [144] |
66 | Trifolium spinosa L. | Trifolium | Flavonoids, alkaloids | Not specified | [144] |
67 | Trifolium pretense L. | Trifolium | Flavonoids | Breast cancer | [145] |
68 | Trigonella foenum-graecum L. | Trigonella | Apigenin, luteolin (flavone) | Breast, colon, esophageal squamous cell carcinoma, lung, and prostate cancer | [146,147] |
69 | Vicia faba L. | Vicia | Flavonoids | MCF-7 (breast cancer), HCT 116 | [23] |
70 | Wisteria sinensis (Sims) DC. | Wisteria | Flavonoids | Hepatocellular Carcinoma | [148] |
71 | Wisteria floribunda (Willd.) DC. | Wisteria | Lectin | MCF-7 (breast cancer) | [88] |
4.3. Saponins
4.4. Alkaloids
4.5. Carotenoids
4.6. Phenolic Acids
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Saini, A.; Kumar, M.; Bhatt, S.; Saini, V.; Malik, A. Cancer causes and treatments. Int. J. Pharm Sci. Res. 2020, 11, 3121–3134. [Google Scholar]
- Subramaniam, S.; Selvaduray, K.R.; Radhakrishnan, A.K. Bioactive compounds: Natural defense against cancer? Biomolecules 2019, 9, 758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gezici, S.; Sekeroglu, N. Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents. Anti-Cancer Agen. Med. Chem. 2019, 19, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
- Mattiuzzi, C.; Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health 2019, 9, 217. [Google Scholar] [CrossRef] [Green Version]
- Cid-Gallegos, M.S.; Sánchez-Chino, X.M.; Juárez Chairez, M.F.; Álvarez González, I.; Madrigal-Bujaidar, E.; Jiménez-Martínez, C. Anticarcinogenic activity of phenolic compounds from sprouted legumes. Food Rev. Int. 2020, 2020, 1184058. [Google Scholar] [CrossRef]
- Rizeq, B.; Gupta, I.; Ilesanmi, J.; AlSafran, M.; Rahman, M.M.; Ouhtit, A. The power of phytochemicals combination in cancer chemoprevention. J. Cancer 2020, 11, 4521. [Google Scholar] [CrossRef]
- Harvey, A.L. Natural products in drug discovery. Drug Discov. 2008, 13, 894–901. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, K.; Di, L.; Wang, P.; Liu, Z.; Zhang, J.; Yue, P.; Song, W.; Zhang, J.; Chen, T.; et al. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv. Drug Deliv. Rev. 2021, 178, 113964. [Google Scholar] [CrossRef]
- Usman, M.; Ditta, A.; Ibrahim, F.H.; Murtaza, G.; Rajpar, M.N.; Mehmood, S.; Saleh, M.N.B.; Imtiaz, M.; Akram, S.; Khan, W.R. Quantitative ethnobotanical analysis of medicinal plants of high-temperature areas of Southern Punjab, Pakistan. Plants 2021, 10, 1974. [Google Scholar] [CrossRef]
- Thakore, P.; Mani, R.K.; Kavitha, S.J. A brief review of plants having anti-cancer property. Int. J. Pharm. Res. Dev. 2012, 3, 129–136. [Google Scholar]
- Tariq, A.; Sadia, S.; Pan, K.; Ullah, I.; Mussarat, S.; Sun, F.; Abiodun, O.O.; Batbaatar, A.; Li, Z.; Song, D.; et al. A systematic review on ethnomedicines of anti-cancer plants. Phytother. Res. 2017, 31, 202–264. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, R.; Jaykar, B.; Gomathi, V. Current status of anticancer research in Fabaceae family. Pathways 2020, 6, 7. [Google Scholar]
- Samec, M.; Liskova, A.; Koklesova, L.; Samuel, S.M.; Murin, R.; Zubor, P.; Bujnak, J.; Kwon, T.K.; Büsselberg, D.; Prosecky, R.; et al. The role of plant-derived natural substances as immunomodulatory agents in carcinogenesis. J. Cancer Res. Clin. Oncol. 2020, 146, 3137–3154. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Butler, E.; Macchi, F.; Williams, M. Phytochemicals in cancer prevention and management. Br. J. Med. Pract. 2015, 8, 1–8. [Google Scholar]
- Martinez-Millan, M. Fossil record and age of the Asteridae. Bot. Rev. 2010, 76, 83–135. [Google Scholar] [CrossRef]
- Sharma, A.; Kaur, R.; Katnoria, J.K.; Kaur, R.; Nagpal, A.K. Family Fabaceae: A boon for cancer therapy. In Biotechnology and Production of Anti-Cancer Compounds; Malik, S., Ed.; Springer: Cham, Switzerland, 2017; pp. 157–175. [Google Scholar] [CrossRef]
- Schrire, B. A review of tribe Indigofereae (Leguminosae–Papilionoideae) in Southern Africa (including South Africa, Lesotho, Swaziland & Namibia; excluding Botswana). S. Afr. J. Bot. 2013, 89, 281–283. [Google Scholar]
- Messina, M.J. Legumes and soybeans: Overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 1999, 70, 439s–450s. [Google Scholar] [CrossRef] [Green Version]
- Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M.B.P. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother. Res. 2018, 32, 2323–2339. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.S.; Beshbishy, A.M.; El-Mleeh, A.; Abdel-Daim, M.M.; Devkota, H.P. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020, 10, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Feky, A.M.; Elbatanony, M.M.; Mounier, M.M. Anti-cancer potential of the lipoidal and flavonoidal compounds from Pisum sativum and Vicia faba peels. Egypt. J. Basic Appl. Sci. 2018, 5, 258–264. [Google Scholar] [CrossRef] [Green Version]
- Sporn, M.B.; Liby, K.T. Chemoprevention of Cancer: Past, Present, and Future. In Natural Products for Cancer Chemoprevention; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–18. [Google Scholar]
- Klaunig, J.E.; Wang, Z. Oxidative stress in carcinogenesis. Curr. Opin. Toxicol. 2018, 7, 116–121. [Google Scholar] [CrossRef]
- Klaunig, J.E. Oxidative stress and cancer. Curr. Pharm. Des. 2018, 24, 4771–4778. [Google Scholar] [CrossRef]
- Dandawate, P.; Ahmad, A.; Deshpande, J.; Swamy, K.V.; Khan, E.M.; Khetmalas, M.; Padhye, S.; Sarkar, F. Anticancer phytochemical analogs 37: Synthesis, characterization, molecular docking and cytotoxicity of novel plumbagin hydrazones against breast cancer cells. Bioorganic Med. Chem. Lett. 2014, 24, 2900–2904. [Google Scholar] [CrossRef]
- Ranjan, A.; Ramachandran, S.; Gupta, N.; Kaushik, I.; Wright, S.; Srivastava, S.; Das, H.; Srivastava, S.; Prasad, S.; Srivastava, S.K. Role of phytochemicals in cancer prevention. Int. J. Mol. Sci. 2019, 20, 4981. [Google Scholar] [CrossRef] [Green Version]
- Nedeljkovic, M.; Damjanovic, A. Mechanisms of chemotherapy resistance in triple-negative breast cancer—How we can rise to the challenge. Cells 2019, 8, 957. [Google Scholar] [CrossRef] [Green Version]
- Meguid, R.A.; Hooker, C.M.; Taylor, J.T.; Kleinberg, L.R.; Cattaneo, S.M., II; Sussman, M.S.; Yang, S.C.; Heitmiller, R.F.; Forastiere, A.A.; Brock, M.V. Recurrence after neoadjuvant chemoradiation and surgery for esophageal cancer: Does the pattern of recurrence differ for patients with a complete response and those with partial or no response? J. Thorac. Cardiovasc. Surg. 2009, 138, 1309–1317. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.W.; Law, B.M.; So, W.K.; Chow, K.M.; Waye, M.M. Novel strategies on personalized medicine for breast cancer treatment: An update. Int. J. Mol. Sci. 2017, 18, 2423. [Google Scholar] [CrossRef] [Green Version]
- Koh, Y.C.; Ho, C.T.; Pan, M.H. Recent advances in cancer chemoprevention with phytochemicals. J. Food Drug Anal. 2020, 28, 14–37. [Google Scholar] [CrossRef] [PubMed]
- Dewanjee, S.; Das, S.; Joardar, S.; Bhattacharjee, S.; Chakraborty, P. Carotenoids as Anticancer Agents. In Carotenoids: Structure and Function in the Human Body; Springer: Berlin/Heidelberg, Germany, 2021; p. 475. [Google Scholar]
- Iqbal, J.; Abbasi, B.A.; Ahmad, R.; Batool, R.; Mahmood, T.; Ali, B.; Khalil, A.T.; Kanwal, S.; Shah, S.A.; Alam, M.M.; et al. Potential phytochemicals in the fight against skin cancer: Current landscape and future perspectives. Biomed. Pharmacother. 2019, 109, 1381–1393. [Google Scholar] [CrossRef] [PubMed]
- Steward, W.P.; Brown, K. Cancer chemoprevention: A rapidly evolving field. Br. J. Cancer 2013, 109, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hassan, L.E.A.; Ahamed, M.B.K.; Majid, A.S.A.; Baharetha, H.M.; Muslim, N.S.; Nassar, Z.D.; Majid, A.M.A. Correlation of antiangiogenic, antioxidant, and cytotoxic activities of some Sudanese medicinal plants with phenolic and flavonoid contents. BMC Complement. Med. Ther. 2014, 14, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agbo, M.O.; Uzor, P.F.; Nneji, U.N.A.; Odurukwe, C.U.E.; Ogbatue, U.B.; Mbaoji, E.C. Antioxidant, total phenolic and flavonoid content of selected Nigerian medicinal plants. Dhaka Univ. J. Pharm. Sci. 2015, 14, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Krishna, P.M.; KNV, R.; Banji, D. A review on phytochemical, ethnomedical, and pharmacological studies on genus Sophora, Fabaceae. Rev. Bras. Farmacogn. 2012, 22, 1145–1154. [Google Scholar] [CrossRef] [Green Version]
- Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, S.; van Erk, M.J.; Wielinga, P.Y.; Kooistra, T. Anti-inflammatory, anti-proliferative, and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 2011, 218, 44–52. [Google Scholar] [CrossRef]
- Wang, J.; Yu, H.; Yili, A.; Gao, Y.; Hao, L.; Aisa, H.A.; Liu, S. Identification of hub genes and potential molecular mechanisms of chickpea isoflavones on MCF-7 breast cancer cells by integrated bioinformatics analysis. Ann. Transl. Med. 2020, 8, 86. [Google Scholar] [CrossRef]
- Sarkar, F.H.; Li, Y. Soy isoflavones and cancer prevention: Clinical science review. Cancer Invest. 2003, 21, 744–757. [Google Scholar] [CrossRef]
- Cornwell, T.; Cohick, W.; Raskin, I. Dietary phytoestrogens and health. Phytochemistry 2004, 65, 995–1016. [Google Scholar] [CrossRef]
- Ateba, S.B.; Njamen, D.; Krenn, L. The genus Eriosema (Fabaceae): From the ethnopharmacology to an evidence-based phytotherapeutic perspective? Front. Pharmacol. 2021, 12, 641225. [Google Scholar] [CrossRef] [PubMed]
- Aregueta-Robles, U.; Fajardo-Ramírez, O.R.; Villela, L.; Gutiérrez-Uribe, J.A.; Hernández-Hernández, J.; del Carmen López-Sánchez, R.; Scott, S.P.; Serna-Saldívar, S. Cytotoxic activity of a black bean (Phaseolus vulgaris L.) extract and its flavonoid fraction in both in vitro and in vivo models of lymphoma. Rev. Investig. Clin. 2018, 70, 32–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ombra, M.N.; d’Acierno, A.; Nazzaro, F.; Riccardi, R.; Spigno, P.; Zaccardelli, M.; Pane, C.; Maione, M.; Fratianni, F. Phenolic composition and antioxidant and antiproliferative activities of the extracts of twelve common bean (Phaseolus vulgaris L.) endemic ecotypes of Southern Italy before and after cooking. Oxid. Med. Cell Longev. 2016, 2016, 1398298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatouillat, G.; Magid, A.A.; Bertin, E.; Morjani, H.; Lavaud, C.; Madoulet, C. Medicarpin and millepurpan, two flavonoids isolated from Medicago sativa, induce apoptosis and overcome multidrug resistance in leukemia P388 cells. Phytomedicine 2015, 22, 1186–1194. [Google Scholar] [CrossRef]
- Bora, K.S.; Sharma, A. Phytochemical and pharmacological potential of Medicago sativa: A review. Pharm. Biol. 2011, 49, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Stochmal, A.; Kowalska, I.; Oleszek, W. Medicago sativa and Medicago truncatula as plant sources of the chemopreventive flavone tricin. Planta Med. 2007, 73, 304. [Google Scholar] [CrossRef]
- Custodio, L.; Fernandes, E.; Escapa, A.L.; López-Avilés, S.; Fajardo, A.; Aligué, R.; Alberício, F.; Romano, A. Antioxidant activity and in vitro inhibition of tumor cell growth by leaf extracts from the carob tree (Ceratonia siliqua). Pharm. Biol. 2009, 47, 721–728. [Google Scholar] [CrossRef]
- Fu, Y.; Hsieh, T.C.; Guo, J.; Kunicki, J.; Lee, M.Y.; Darzynkiewicz, Z.; Wu, J.M. Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells. Biochem. Biophys. Res. Commun. 2004, 322, 263–270. [Google Scholar] [CrossRef]
- Choedon, T.; Shukla, S.K.; Kumar, V. Chemopreventive and anti-cancer properties of the aqueous extract of flowers of Butea monosperma. J. Ethnopharmacol. 2010, 129, 208–213. [Google Scholar] [CrossRef]
- Fu, L.L.; Zhou, C.C.; Yao, S.; Yu, J.Y.; Liu, B.; Bao, J.K. Plant lectins: Targeting programmed cell death pathways as antitumor agents. Int. J. Biochem. Cell Biol. 2011, 43, 1442–1449. [Google Scholar] [CrossRef]
- Yau, T.; Dan, X.; Ng, C.C.W.; Ng, T.B. Lectins with potential for anti-cancer therapy. Molecules 2015, 20, 3791–3810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautam, A.K.; Shrivastava, N.; Sharma, B.; Bhagyawant, S.S. Current scenario of legume lectins and their practical applications. J. Crop. Sci. Biotechnol. 2018, 21, 217–227. [Google Scholar] [CrossRef]
- Bhutia, S.K.; Panda, P.K.; Sinha, N.; Praharaj, P.P.; Bhol, C.S.; Panigrahi, D.P.; Mahapatra, K.K.; Saha, S.; Patra, S.; Mishra, S.R.; et al. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol. Res. 2019, 144, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Majeed, M.; Hakeem, K.R.; Rehman, R.U. Mistletoe Lectins: From interconnecting proteins to potential tumor inhibiting agents. Phytomed. Plus 2021, 1, 100039. [Google Scholar] [CrossRef]
- De Mejia, E.G.; Prisecaru, V.I. Lectins as bioactive plant proteins: A potential in cancer treatment. Crit. Rev. Food Sci. Nutr. 2005, 45, 425–445. [Google Scholar] [CrossRef] [PubMed]
- Fang, E.F.; Lin, P.; Wong, J.H.; Tsao, S.W.; Ng, T.B. A lectin with anti-HIV-1 reverse transcriptase, antitumor, and nitric oxide inducing activities from seeds of Phaseolus vulgaris cv. extralong autumn purple bean. J. Agric. Food Chem. 2010, 58, 2221–2229. [Google Scholar] [CrossRef]
- Lam, S.K.; Ng, T.B. Isolation and characterization of a French bean hemagglutinin with antitumor, antifungal, and anti-HIV-1 reverse transcriptase activities and an exceptionally high yield. Phytomedicine 2010, 17, 457–462. [Google Scholar] [CrossRef]
- Ye, X.J.; Ng, T.B. Antitumor and HIV-1 reverse transcriptase inhibitory activities of hemagglutinin and a protease inhibitor from mini-black soybean. Evid.-Based Complement Altern. Med. 2011, 2011, 12. [Google Scholar] [CrossRef] [Green Version]
- Gautam, A.K.; Gupta, N.; Narvekar, D.T.; Bhadkariya, R.; Bhagyawant, S.S. Characterization of chickpea (Cicer arietinum L.) lectin for biological activity. Physiol. Mol. Biol. Plants 2018, 24, 389–397. [Google Scholar] [CrossRef]
- Une, S.; Nonaka, K.; Akiyama, J. Lectin isolated from Japanese red sword beans (Canavalia gladiata) as a potential cancer chemopreventive agent. J. Food Sci. 2018, 83, 837–843. [Google Scholar] [CrossRef]
- Cavada, B.S.; Silva, M.T.L.; Osterne, V.J.S.; Pinto-Junior, V.R.; Nascimento, A.P.M.; Wolin, I.A.V.; Heinrich, I.A.; Nobre, C.A.S.; Moreira, C.G.; Lossio, C.F.; et al. Canavalia bonariensis lectin: Molecular bases of glycoconjugates interaction and antiglioma potential. Int. J. Biol. Macromol. 2017, 106, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, I.T.; Guillen, J.C.; Olaya, E.M.; Gasca, T.G.; Zaragoza, M.V.Á.; García-Santoyo, V.; Castillo, J.T.; Aguirre, C.; Phinney, B.; Blanco-Labra, A. Characterization of two non-fetuin-binding lectins from Tepary bean (Phaseolus acutifolius) seeds with differential cytotoxicity on colon cancer cells. J. Glycobiol. 2016, 5, 1–7. [Google Scholar]
- Gondim, A.C.; Romero-Canelon, I.; Sousa, E.H.; Blindauer, C.A.; Butler, J.S.; Romero, M.J.; Sanchez-Cano, C.; Sousa, B.L.; Chaves, R.P.; Nagano, C.S.; et al. The potent anti-cancer activity of Dioclea lasiocarpa lectin. J. Inorg. Biochem. 2017, 175, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Lagarda-Diaz, I.; Guzman-Partida, A.M.; Vazquez-Moreno, L. Legume lectins: Proteins with diverse applications. Int. J. Mol. Sci. 2017, 18, 1242. [Google Scholar] [CrossRef] [Green Version]
- Korourian, S.; Siegel, E.; Kieber-Emmons, T.; Monzavi-Karbassi, B. Expression analysis of carbohydrate antigens in ductal carcinoma in situ of the breast by lectin histochemistry. BMC Cancer 2008, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Salem, M.M.; Davidorf, F.H.; Abdel-Rahman, M.H. In vitro anti-uveal melanoma activity of phenolic compounds from the Egyptian medicinal plant Acacia nilotica. Fitoterapia 2011, 82, 1279–1284. [Google Scholar] [CrossRef]
- Afsar, T.; Razak, S.; Khan, M.R.; Mawash, S.; Almajwal, A.; Shabir, M.; Haq, I.U. Evaluation of antioxidant, anti-hemolytic and anticancer activity of various solvent extracts of Acacia hydaspica R. Parker aerial parts. BMC Complement. Altern. Med. 2016, 16, 258. [Google Scholar]
- Gedara, S.R.; Galala, A.A. New cytotoxic spirostane saponin and biflavonoid glycoside from the leaves of Acacia saligna (Labill.) HL Wendl. Nat. Prod. Res. 2014, 28, 324–329. [Google Scholar] [CrossRef]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Al-Mana, F.A.; Al-Yafrsi, M.A. Antioxidant and biological activities of Acacia saligna and Lawsonia inermis natural populations. Plants 2020, 9, 908. [Google Scholar] [CrossRef]
- Patel, A.; Hafez, E.; Elsaid, F.; Amanullah, M. Anti-cancer action of a new recombinant lectin produced from Acacia species. Int. J. Med. Sci. 2014, 5, 1–11. [Google Scholar]
- Mujoo, K.; Haridas, V.; Hoffmann, J.J.; Wächter, G.A.; Hutter, L.K.; Lu, Y.; Blake, M.E.; Jayatilake, G.S.; Bailey, D.; Mills, G.B.; et al. Triterpenoid saponins from Acacia victoriae (Bentham) decrease tumor cell proliferation and induce apoptosis. Cancer Res. 2001, 61, 5486–5490. [Google Scholar] [PubMed]
- Desai, T.H.; Joshi, S.V. Anticancer activity of saponin isolated from Albizia lebbeck using various in vitro models. J. Ethnopharmacol. 2019, 231, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, C.N.; Raja, K.D.; Rao, S.K. Antitumor activity of Albizia lebbeck L. against Ehrlich ascites carcinoma in vivo and HeLa and A549 cell lines in vitro. J. Cancer Res. Ther. 2021, 17, 491. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Su, B.S.; Chang, L.H.; Gao, Q.; Chen, K.L.; An, P.; Huang, C.; Yang, J.; Li, Z.F. Oxymatrine induces apoptosis in human cervical cancer cells through guanine nucleotide depletion. Anti-Cancer Drugs 2014, 25, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Melek, F.R.; Aly, F.A.; Kassem, I.A.; Abo-Zeid, M.A.; Farghaly, A.A.; Hassan, Z.M. Three further triterpenoid saponins from Gleditsia caspica fruits and protective effect of the total saponin fraction on cyclophosphamide-induced genotoxicity in mice. Z. Naturforsch. C 2015, 70, 31–37. [Google Scholar] [CrossRef]
- Kanadaswami, C.; Lee, L.T.; Lee, P.P.H.; Hwang, J.J.; Ke, F.C.; Huang, Y.T.; Lee, M.T. The antitumor activities of flavonoids. In Vivo 2005, 19, 895–909. [Google Scholar]
- Majewska-Wierzbicka, M.; Czeczot, H. Anticancer activity of flavonoids. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2012, 33, 364–369. [Google Scholar]
- Kokila, K.; Priyadharshini, S.D.; Sujatha, V. Phytopharmacological properties of Albizia species: A review. Int. J. Pharm. Pharm. Sci. 2013, 5, 70–73. [Google Scholar]
- Mehraban, F.; Mostafazadeh, M.; Sadeghi, H.; Azizi, A.; Toori, M.A.; Gramizadeh, B.; Barati, V.; Sadeghi, H. Anticancer activity of Astragalus ovinus against 7, 12 dimethyl Benz (a) anthracene (DMBA)-induced breast cancer in rats. Avic. J. Phytomed. 2020, 10, 533. [Google Scholar]
- Nayeem, N.; Imran, M.; Asdaq, S.M.B.; Rabbani, S.I.; Alanazi, F.A.; Alamri, A.S.; Sampaio, M.U.; Jochum, M.; Oliva, M.L.V. Total phenolic, flavonoid contents, and biological activities of stem extracts of Astragalus spinosus (Forssk.) Muschl. grown in Northern Border Province, Saudi Arabia. Saudi Sci. J. Biol. Sci. 2022, 29, 1277–1282. [Google Scholar] [CrossRef]
- Zhou, R.; Chen, H.; Chen, J.; Chen, X.; Wen, Y.; Xu, L. Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway. BMC Complement Altern. Med. 2018, 18, 83. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, D.; Shankar, K.G.; Ignacimuthu, S.; Sophy, A.R.; Vidhya, R.; Anusha, J.R. Bauhinia acuminata L. attenuates lung cancer cell proliferation: In vitro, in vivo, and in silico approaches. Phytomed. Plus 2022, 2, 100173. [Google Scholar] [CrossRef]
- Tu, L.Y.; Pi, J.; Jin, H.; Cai, J.Y.; Deng, S.P. Synthesis, characterization, and anticancer activity of kaempferol-zinc (II) complex. Bioorganic Med. Chem. Lett. 2016, 26, 2730–2734. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Yano, T.; Sadzuka, Y.; Sugiyama, T.; Seki, T.; Asano, R. Restoration of connexin 43 by Bowman-Birk protease inhibitor in M5076 bearing mice. Oncol. Rep. 2005, 13, 1247–1250. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Agrawal, S.B.; Gupta, N.; Bhagyawant, S.S.; Gaikwad, S.M. Anticancer activity of lectins from Bauhinia purpurea and Wisteria floribunda on breast cancer MCF-7 cell lines. Protein Pept. Lett. 2020, 27, 870–877. [Google Scholar] [CrossRef]
- Iheagwam, F.N.; Ogunlana, O.O.; Ogunlana, O.E.; Isewon, I.; Oyelade, J. Potential anti-cancer flavonoids isolated from Caesalpinia bonduc young twigs and leaves: Molecular docking and in silico studies. Bioinform. Biol. Insights 2019, 13, 1177932218821371. [Google Scholar] [CrossRef] [Green Version]
- Osman, S.M.; Khalek, S.M.A.; Koheil, M.A.; El-Haddad, A.E.; Wink, M. A new steroidal compound (β-sitosterol-3-O-butyl) isolated from Caesalpinia gilliesii flowers. Int. J. Appl. Res. Nat. Prod 2015, 8, 14–19. [Google Scholar]
- Zanin, J.L.; Massoni, M.; Santos, M.H.D.; Freitas, G.C.D.; Niero, E.L.; Schefer, R.R.; Lago, J.H.; Ionta, M.; Soares, M.G. Caesalpinioflavone, a new cytotoxic biflavonoid isolated from Caesalpinia pluviosa var. peltophoroides. J. Braz. Chem. Soc. 2015, 26, 804–809. [Google Scholar]
- Sakle, N.S.; More, S.A.; Mokale, S.N. A network pharmacology-based approach to explore potential targets of Caesalpinia pulcherima: An updated prototype in drug discovery. Sci. Rep. 2020, 10, 17217. [Google Scholar] [CrossRef]
- Pal, D.; Mishra, P.; Sachan, N.; Ghosh, A.K. Biological activities and medicinal properties of Cajanus cajan (L) Millsp. J. Adv. Pharm. Technol. Res. 2011, 2, 207. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Tian, R.H.; Cai, J.Z.; Wu, J.H.; Shen, X.L.; Hu, Y.J. Acute and sub-chronic toxicity of Cajanus cajan leaf extracts. Pharm. Biol. 2017, 55, 1740–1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohiagu, F.O.; Chikezie, P.C.; Chikezie, C.M.; Enyoh, C.E. Anticancer activity of Nigerian medicinal plants: A review. Future J. Pharm. Sci. 2021, 7, 70. [Google Scholar] [CrossRef]
- Bhagat, M.; Saxena, A.K. Evaluation of Cassia occidentalis for in vitro cytotoxicity against human cancer cell lines and antibacterial activity. Indian J. Pharmacol. 2010, 42, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taiwo, F.O.; Akinpelu, D.A.; Aiyegoro, O.A.; Olabiyi, S.; Adegboye, M.F. The biocidal and phytochemical properties of leaf extract of Cassia occidentalis Linn. Afr. J. Microbiol. Res. 2013, 7, 3435–3441. [Google Scholar]
- Kato, A.; Hirokami, Y.; Kinami, K.; Tsuji, Y.; Miyawaki, S.; Adachi, I.; Hollinshead, J.; Nash, R.J.; Kiappes, J.L.; Zitzmann, N.; et al. Isolation and SAR studies of bicyclic iminosugars from Castanospermum australe as glycosidase inhibitors. Phytochemistry 2015, 111, 124–131. [Google Scholar] [CrossRef]
- Gregoriou, G.; Neophytou, C.M.; Vasincu, A.; Gregoriou, Y.; Hadjipakkou, H.; Pinakoulaki, E.; Christodoulou, M.C.; Ioannou, G.D.; Stavrou, I.J.; Christou, A.; et al. Anti-cancer activity and phenolic content of extracts derived from Cypriot carob (Ceratonia siliqua L.) pods using different solvents. Molecules 2021, 26, 5017. [Google Scholar] [CrossRef]
- Bouziane, A.; Bakchiche, B.; Dias, M.I.; Barros, L.; Ferreira, I.C.; AlSalamat, H.A.; Bardaweel, S.K. Phenolic Compounds and Bioactivity of Cytisus villosus Pourr. Molecules 2018, 23, 1994. [Google Scholar] [CrossRef] [Green Version]
- Ito, C.; Matsui, T.; Miyabe, K.; Hasan, C.M.; Rashid, M.A.; Tokuda, H.; Itoigawa, M. Three isoflavones from Derris scandens (Roxb.) Benth and their cancer chemopreventive activity and in vitro antiproliferative effects. Phytochemistry 2020, 175, 112376. [Google Scholar] [CrossRef]
- Fofana, S.; Ouédraogo, M.; Esposito, R.C.; Ouedraogo, W.P.; Delporte, C.; Van Antwerpen, P.; Mathieu, V.; Guissou, I.P. Systematic Review of Potential Anticancerous Activities of Erythrina senegalensis DC (Fabaceae). Plants 2021, 11, 19. [Google Scholar] [CrossRef]
- Mohammed, R.S.; Abou Zeid, A.H.; El Hawary, S.S.; Sleem, A.A.; Ashour, W.E. Flavonoid constituents, cytotoxic and antioxidant activities of Gleditsia triacanthos L. leaves. Saudi J. Biol. Sci. 2014, 21, 547–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Zhang, C.; Zhan, L.; Cheng, L.; Lu, D.; Wang, X.; Xu, H.; Wang, S.; Wu, D.; Ruan, L. Anticancer effects of Gleditsia sinensis extract in rats transplanted with hepatocellular carcinoma cells. Oncol. Res. 2019, 27, 889. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.K.; Lee, M.H.; Kim, J.E.; Singh, P.; Lee, S.Y.; Jeong, C.H.; Lim, T.G.; Chen, H.; Chi, Y.I.; Kundu, J.K.; et al. Isoliquiritigenin induces apoptosis and inhibits xenograft tumor growth of human lung cancer cells by targeting both wild type and L858R/T790M mutant EGFR. J. Biol. Chem. 2014, 289, 35839–35848. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, K.M.; Salwa, B.E.M.; Nadia, T.S.; Eshak, M.E.H.; Heba, A.B. Study of antioxidants and anticancer activity of licorice [Glycyrrhiza glabra] extracts. Egypt. J. Nutri. 2008, 23, 177–203. [Google Scholar]
- Renukadevi, K.P.; Sultana, S.S. Determination of antibacterial, antioxidant and cytotoxicity effect of Indigofera tinctoria on lung cancer cell line NCI-h69. Int. J. Pharmacol. 2011, 7, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.A.; Wankhar, W.A.; Rathinasamy, S.H.; Rajan, R.A. Larvicidal potential of Indigofera tinctoria (Fabaceae) on dengue vector (Aedes aegypti) and its antimicrobial activity against clinical isolates. Asian J. Pharm. Clin. Res. 2015, 8, 316–319. [Google Scholar]
- Vijayan, R.; Joseph, S.; Mathew, B. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant, and catalytic properties. Artif. Cells Nanomed. Biotechnol. 2018, 46, 861–871. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.S.; Rajkapoor, B.; Perumal, P. In vitro and in vivo anticancer activity of Indigofera cassioides Rottl. Ex. DC. Asian Pac. J. Trop. Med. 2011, 4, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Ramya, V.; Madhu-Bala, V.; Prakash-Shyam, K.; Gowdhami, B.; Sathiya-Priya, K.; Vignesh, K.; Vani, B.; Kadalmani, B. Cytotoxic activity of Indigofera aspalathoides (Vahl.) extracts in cervical cancer (HeLa) cells: Ascorbic acid adjuvant treatment enhances the activity. Phytomed. Plus 2021, 1, 100142. [Google Scholar] [CrossRef]
- Thangavel, D.; Govindasamy, J.; Kumar, R.S. In vitro antioxidant and anticancer activities of various extracts of Indigofera cordifolia Roth. J. Pharm. Biol. 2014, 4, 85–93. [Google Scholar]
- Leite, S.P.; Silva, L.L.S.; Catanho, M.T.J.A.; Lima, E.O.; Lima, V.L.M. Anti-inflammatory activity of Indigofera suffruticosa extract. Rebrasa 2003, 7, 47–52. [Google Scholar]
- Xu, W.T.; Li, T.Z.; Li, S.M.; Wang, C.; Wang, H.; Luo, Y.H.; Piao, X.J.; Wang, J.R.; Zhang, Y.; Zhang, T.; et al. Cytisine exerts anti-tumor effects on lung cancer cells by modulating reactive oxygen species-mediated signaling pathways. Artif. Cells Nanomed. Biotechnol. 2020, 48, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Avato, P.; Migoni, D.; Argentieri, M.; Fanizzi, F.P.; Tava, A. Activity of saponins from Medicago species against HeLa and MCF-7 cell lines and their capacity to potentiate cisplatin effect. Anti-Cancer Agents Med. Chem. 2017, 17, 1508–1518. [Google Scholar] [CrossRef] [PubMed]
- Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: Perspectives on cancer treatment. Int. J. Mol. Sci. 2015, 16, 9236–9282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagorska-Dziok, M.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Bujak, T. Antioxidant activity and cytotoxicity of Medicago sativa L. seeds and herb extract on skin cells. BioRes. Open Access 2020, 9, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, J.; Liu, W.; Nisar, M.F.; El-Esawi, M.A.; Wan, C. Biological Activities and Chemistry of Triterpene Saponins from Medicago Species: An Update Review. Evid.-Based Complement Altern. Med. 2021, 2021, 6617916. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.T.; Gong, P.H.; Xiao, F.Q.; Shao, S.; Zhao, D.Q.; Yan, M.M.; Yang, X.W. Chemical constituents and antioxidant, anti-inflammatory and anti-tumor activities of Melilotus officinalis (Linn.) Pall. Molecules 2018, 23, 271. [Google Scholar] [CrossRef] [Green Version]
- El-Hafeez, A.; Ali, A.; Khalifa, H.O.; Elgawish, R.A.; Shouman, S.A.; El-Twab, A.; Hussein, M.; Kawamoto, S. Melilotus indicus extract induces apoptosis in hepatocellular carcinoma cells via a mechanism involving mitochondria-mediated pathways. Cytotechnology 2018, 70, 831–842. [Google Scholar] [CrossRef]
- Chanu, K.V.; Leishangthem, G.D.; Srivastava, S.K.; Thakuria, D.; Kataria, M.; Telang, A.G. Phytochemical analysis and evaluation of the anticancer activity of Parkia javanica seeds. Pharm. Innov. 2018, 7, 305. [Google Scholar]
- Pfitzinger, P.L.; Fangmann, L.; Wang, K.; Demir, E.; Gürlevik, E.; Fleischmann-Mundt, B.; Brooks, J.; D’Haese, J.G.; Teller, S.; Hecker, A.; et al. Indirect cholinergic activation slows down pancreatic cancer growth and tumor-associated inflammation. J. Exp. Clin. Cancer Res. 2020, 39, 289. [Google Scholar] [CrossRef]
- Raghavendra, M.P.; Satish, S.; Raveesha, K.A. Alkaloids isolated from leaves of Prosopis juliflora against Xanthomonas pathovars. Arch. Phytopathol. Plant. Prot. 2009, 42, 1033–1041. [Google Scholar] [CrossRef]
- Henciya, S.; Seturaman, P.; James, A.R.; Tsai, Y.H.; Nikam, R.; Wu, Y.C.; Dahms, H.U.; Chang, F.R. Biopharmaceutical potentials of Prosopis spp. (Mimosaceae, Leguminosa). J. Food Drug Anal. 2017, 25, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.; Narayanan, N.; Raj Kapoor, B. Antitumor activity of Prosopis cineraria (L.) Druce against Ehrlich ascites carcinoma-induced mice. Nat. Prod. Res. 2011, 25, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Asati, V.; Srivastava, A.; Mukherjee, S.; Sharma, P.K. Comparative analysis of antioxidant and antiproliferative activities of crude and purified flavonoid enriched fractions of pods/seeds of two desert legumes Prosopis cineraria and Cyamopsis tetragonoloba. Heliyon 2021, 7, e07304. [Google Scholar] [CrossRef]
- Dzoyem, J.P.; Tchamgoue, J.; Tchouankeu, J.C.; Kouam, S.F.; Choudhary, M.I.; Bakowsky, U. Antibacterial activity, and cytotoxicity of flavonoids compounds isolated from Pseudarthria hookeri Wight & Arn. (Fabaceae). S. Afr. J. Bot. 2018, 114, 100–103. [Google Scholar]
- Wang, Y.; Hong, C.; Zhou, C.; Xu, D.; Qu, H.B. Screening antitumor compounds psoralen and isopsoralen from Psoralea corylifolia L. seeds. Evid.-Based Complement Altern. Med. 2011, 2011, 363052. [Google Scholar] [CrossRef] [Green Version]
- Al-Dabbagh, B.; Elhaty, I.A.; Al Hrout, A.; Al Sakkaf, R.; El-Awady, R.; Ashraf, S.S.; Amin, A. Antioxidant and anticancer activities of Trigonella foenum-graecum, Cassia acutifolia and Rhazya stricta. BMC Complement Altern. Med. 2018, 18, 240. [Google Scholar] [CrossRef]
- Sreelatha, S.; Padma, P.R.; Umasankari, E. Evaluation of anticancer activity of ethanol extract of Sesbania grandiflora (Agati Sesban) against Ehrlich ascites carcinoma in Swiss albino mice. J. Ethnopharmacol. 2011, 134, 984–987. [Google Scholar] [CrossRef]
- Ponnanikajamideen, M.; Nagalingam, M.; Vanaja, M.; Malarkodi, C.; Rajeshkumar, S. Anticancer activity of different solvent extracts of Sesbania grandiflora against neuroblastoma (imr-32) and colon (ht-29) cell lines. Eur. J. Biomed. Pharm. Sci. 2015, 2, 509–517. [Google Scholar]
- Cai, Y.Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78, 2872–2888. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, J.; Luo, J.; Lai, F.; Wang, Z.; Tong, H.; Lu, D.; Bu, H.; Zhang, R.; Lin, S. Antiangiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF-κB-mediated VEGF signaling pathway. Oncol. Rep. 2013, 30, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, B.; Zhang, T.; Su, J.; Wang, K.; Li, X. Oxymatrine targets EGFRp-Tyr845 and inhibits EGFR-related signaling pathways to suppress the proliferation and invasion of gastric cancer cells. Cancer Chemother. Pharmacol. 2015, 75, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Huang, W.; Guo, Y.; Xia, P.; Sun, X.; Pan, X.; Hu, W. Oxymatrine inhibits the proliferation of prostate cancer cells in vitro and in vivo. Mol. Med. Rep. 2015, 11, 4129–4134. [Google Scholar] [CrossRef] [Green Version]
- Ying, X.J.; Jin, B.; Chen, X.W.; Xie, J.; Xu, H.M.; Dong, P. Oxymatrine downregulates HPV16E7 expression and inhibits cell proliferation in laryngeal squamous cell carcinoma Hep-2 cells in vitro. Biomed Res. Int. 2015, 2015, 150390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, L.; Huang, J. Oxymatrine inhibits epithelial-mesenchymal transition through regulation of NF-κB signaling in colorectal cancer cells. Oncol. Rep 2016, 36, 1333–1338. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Li, D.; Zhang, L. Oxymatrine mediates Bax and Bcl-2 expression in human breast cancer MCF-7 cells. Die Pharm. Int. J. Pharm. Sci. 2016, 71, 154–157. [Google Scholar]
- Liu, Y.; Bi, T.; Dai, W.; Wang, G.; Qian, L.; Gao, Q.; Shen, G. RETRACTED: Effects of oxymatrine on the proliferation and apoptosis of human hepatoma carcinoma cells. Technol. Cancer Res. Treat. 2016, 15, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Pei, Z.; Zeng, J.; Gao, Y.; Li, F.; Li, W.; Zhou, H.; Yang, Y.; Wu, R.; Chen, Y.; Liu, J. Oxymatrine inhibits the proliferation of CaSki cells via downregulating HPV16E7 expression. Oncol. Rep. 2016, 36, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Zou, M.M.; Li, P.; Lin, X.J.; Jiang, Q.W.; Yang, Y.; Huang, J.R.; Yuan, M.L.; Xing, Z.H.; Wei, M.N.; et al. Oxymatrine and cisplatin synergistically enhance the anti-tumor immunity of CD8+ T cells in non-small cell lung cancer. Front. Oncol. 2018, 8, 631. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Khoo, C.; Koyyalamudi, S.R.; Pedro, N.D.; Reddy, N. Antioxidant, anti-inflammatory, and anticancer activities of ethanol-soluble organics from water extracts of selected medicinal herbs and their relation with flavonoid and phenolic contents. Pharmacologia 2017, 8, 59–72. [Google Scholar]
- Gulecha, V.; Sivakuma, T. Anticancer activity of Tephrosia purpurea and Ficus religiosa using MCF 7 cell lines. Asian Pac. J. Trop. Med. 2011, 4, 526–529. [Google Scholar] [CrossRef] [Green Version]
- Lellau, T.F.; Liebezeit, G. Cytotoxic and antitumor activities of ethanolic extracts of salt Marsh plants from the Lower Saxonian Wadden Sea, Southern North Sea. Pharm. Biol. 2003, 41, 293–300. [Google Scholar] [CrossRef]
- Khazaei, M.; Pazhouhi, M. Antiproliferative effect of Trifolium pratens L. extracts in human breast cancer cells. Nutr. Cancer 2019, 71, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Dong, A.; Gao, C.; Tan, C.; Xie, Z.; Zu, X.; Qu, L.; Jiang, Y. New synthetic flavone derivatives induce apoptosis of hepatocarcinoma cells. Bioorganic Med. Chem. 2010, 18, 6322–6328. [Google Scholar] [CrossRef]
- Khan, A.U.; Dagur, H.S.; Khan, M.; Malik, N.; Alam, M.; Mushtaque, M. Therapeutic role of flavonoids and flavones in cancer prevention: Current trends and future perspectives. Eur. J. Med. Chem. Rep. 2021, 3, 100010. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Hamed, M.M.; Abdou, A.M.; Ahmed, W.S.; Saad, A.M. Antioxidant and cytotoxic constituents from Wisteria sinensis. Molecules 2011, 16, 4020–4030. [Google Scholar] [CrossRef] [Green Version]
- Elekofehinti, O.O.; Iwaloye, O.; Olawale, F.; Ariyo, E.O. Saponins in Cancer Treatment: Current Progress and Future Prospects. Pathophysiology 2021, 28, 250–272. [Google Scholar] [CrossRef]
- Rochfort, S.; Panozzo, J. Phytochemicals for health, the role of pulses. J. Agric. Food Chem. 2007, 55, 7981–7994. [Google Scholar] [CrossRef]
- Mudryj, A.N.; Yu, N.; Aukema, H.M. Nutritional and health benefits of pulses. Appl. Physiol. Nutr. Metab. 2014, 39, 1197–1204. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Singh, N.; Kaur, A. Saponins in pulses and their health-promoting activities: A review. Food Chem. 2017, 233, 540–549. [Google Scholar] [CrossRef]
- Gurfinkel, D.M.; Rao, A.V. Soyasaponins: The relationship between chemical structure and colon anticarcinogenic activity. Nutr. Cancer 2003, 47, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Franke, A.A.; Jin, F.; Shu, X.O.; Hebert, J.R.; Custer, L.J.; Cheng, J.; Gao, Y.T.; Zheng, W. Urinary excretion of phytoestrogens and risk of breast cancer among Chinese women in Shanghai. Cancer Epidemiol. Biomark. Prev. 2002, 11, 815–821. [Google Scholar]
- Najjaa, H.; Abdelkarim, B.A.; Doria, E.; Boubakri, A.; Trabelsi, N.; Falleh, H.; Tlili, H.; Neffati, M. Phenolic composition of some Tunisian medicinal plants associated with an anti-proliferative effect on human breast cancer MCF-7 cells. Eurobiotech J. 2020, 4, 104–112. [Google Scholar] [CrossRef]
- Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A.G.; Bishayee, A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharmacol. 2019, 858, 172472. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Kundu, A.; Chakraborty, H.J.; Kar, B.; Choi, W.S.; Lee, B.M.; Bhakta, T.; Atanasov, A.G.; Kim, H.S. Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives. Int. J. Cancer 2019, 145, 1731–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhang, H.; Yu, P.; Liu, Q.; Liu, K.; Duan, H.; Luan, G.; Yagasaki, K.; Zhang, G. Effects of matrine against the growth of human lung cancer and hepatoma cells as well as lung cancer cell migration. Cytotechnology 2009, 59, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.M.; Du, L.D.; Du, G.H. Cytisine. In Natural Small Molecule Drugs from Plants; Springer: Berlin/Heidelberg, Germany, 2018; pp. 685–689. [Google Scholar]
- Wojtowicz, K.; Januchowski, R.; Sosińska, P.; Nowicki, M.; Zabel, M. Effect of brefeldin A and castanospermine on resistant cell lines as supplements in anticancer therapy. Oncol. Rep. 2016, 35, 2896–2906. [Google Scholar] [CrossRef] [Green Version]
- Sri, K.S.; Erdman, J.W., Jr. Legume carotenoids. Crit. Rev. Food Sci. Nutr. 1987, 26, 137. [Google Scholar]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [Green Version]
- Nishino, H.; Tokuda, H.; Murakoshi, M.; Satomi, Y.; Masuda, M.; Onozuka, M.; Yamaguchi, S.; Takayasu, J.; Tsuruta, J.; Okuda, M.; et al. Cancer prevention by natural carotenoids. Biofactors 2000, 13, 89–94. [Google Scholar] [CrossRef]
- Horvath, G.; Csikós, E.; Andres, E.V.; Bencsik, T.; Takátsy, A.; Gulyás-Fekete, G.; Turcsi, E.; Deli, J.; Szőke, É.; Kemény, Á.; et al. Analyzing the Carotenoid Composition of Melilot (Melilotus officinalis (L.) Pall.) Extracts and the Effects of Isolated (All-E)-lutein-5, 6-epoxide on Primary Sensory Neurons and Macrophages. Molecules 2021, 26, 503. [Google Scholar] [CrossRef] [PubMed]
- Krinsky, N.I.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Asp. Med. 2005, 26, 459–516. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L. Anti-inflammatory agents, and antioxidants as a possible “third great wave” in cardiovascular secondary prevention. Am. J. Cardiol. 2008, 101, S4–S13. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, Y.; Li, Q.; Yang, L.; Zhang, N.; Ma, S.; Zhang, K.; Song, J.; Guan, F. β-Carotene Induces Apoptosis in Human Esophageal Squamous Cell Carcinoma Cell Lines via the Cav-1/AKT/NF-κB Signaling Pathway. J. Biochem. Mol. Toxicol. 2016, 30, 148–157. [Google Scholar] [CrossRef] [PubMed]
- El Gaafary, M.; Büchele, B.; Syrovets, T.; Agnolet, S.; Schneider, B.; Schmidt, C.Q.; Simmet, T. An α-acetoxy-tirucallic acid isomer inhibits Akt/mTOR signaling and induces oxidative stress in prostate cancer cells. J. Pharmacol. Exp. Ther. 2015, 352, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Matus, M.F.; Jorquera-Román, M.; Zúñiga-Hernández, J. Anti-proliferative effect of terpenes on human prostate cancer cells: Natural sources and their potential role as chemopreventive agents. Rev. Chil. Nutr. 2017, 44, 371–382. [Google Scholar] [CrossRef] [Green Version]
- Satia, J.A.; Littman, A.; Slatore, C.G.; Galanko, J.A.; White, E. Long-term use of β-carotene, retinol, lycopene, and lutein supplements and lung cancer risk: Results from the Vitamins and Lifestyle (VITAL) study. Am. J. Epidemiol. 2009, 169, 815–828. [Google Scholar] [CrossRef]
- Gong, X.; Smith, J.R.; Swanson, H.M.; Rubin, L.P. Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ROS-mediated mechanisms. Molecules 2018, 23, 905. [Google Scholar] [CrossRef] [Green Version]
- Rafi, M.M.; Kanakasabai, S.; Gokarn, S.V.; Krueger, E.G.; Bright, J.J. Dietary lutein modulates growth and survival genes in prostate cancer cells. J. Med. Food 2015, 18, 173–181. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Oh, J.H.; Chang, H.J.; Sohn, D.K.; Kwon, O.; Shin, A.; Kim, J. Dietary lutein plus zeaxanthin intake and DICER1 rs3742330 A > G polymorphism relative to colorectal cancer risk. Sci. Rep. 2019, 9, 3406. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Behbahani, M.; Abolhasani, J.; Amini, M.M.; Sadeghi, O.; Omidi, F.; Bagheri, A.; Salarian, M. Application of mercapto ordered carbohydrate-derived porous carbons for trace detection of cadmium and copper ions in agricultural products. Food Chem. 2015, 173, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, H.B.; Negi, P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int. 2020, 136, 109298. [Google Scholar] [CrossRef]
- Al Jitan, S.; Alkhoori, S.A.; Yousef, L.F. Phenolic acids from plants: Extraction and application to human health. Stud. Nat. Prod. Chem. 2018, 58, 389–417. [Google Scholar]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palko-Labuz, A.; Gliszczyńska, A.; Skonieczna, M.; Poła, A.; Wesołowska, O.; Środa-Pomianek, K. Conjugation with phospholipids as a modification increasing anticancer activity of phenolic acids in metastatic melanoma–In vitro and in silico studies. Int. J. Mol. Sci. 2021, 22, 8397. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usman, M.; Khan, W.R.; Yousaf, N.; Akram, S.; Murtaza, G.; Kudus, K.A.; Ditta, A.; Rosli, Z.; Rajpar, M.N.; Nazre, M. Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review. Molecules 2022, 27, 3863. https://doi.org/10.3390/molecules27123863
Usman M, Khan WR, Yousaf N, Akram S, Murtaza G, Kudus KA, Ditta A, Rosli Z, Rajpar MN, Nazre M. Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review. Molecules. 2022; 27(12):3863. https://doi.org/10.3390/molecules27123863
Chicago/Turabian StyleUsman, Muhammad, Waseem Razzaq Khan, Nousheen Yousaf, Seemab Akram, Ghulam Murtaza, Kamziah Abdul Kudus, Allah Ditta, Zamri Rosli, Muhammad Nawaz Rajpar, and Mohd Nazre. 2022. "Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review" Molecules 27, no. 12: 3863. https://doi.org/10.3390/molecules27123863
APA StyleUsman, M., Khan, W. R., Yousaf, N., Akram, S., Murtaza, G., Kudus, K. A., Ditta, A., Rosli, Z., Rajpar, M. N., & Nazre, M. (2022). Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review. Molecules, 27(12), 3863. https://doi.org/10.3390/molecules27123863