Seafood Paramyosins as Sources of Anti-Angiotensin-Converting-Enzyme and Anti-Dipeptidyl-Peptidase Peptides after Gastrointestinal Digestion: A Cheminformatic Investigation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Seafood Paramyosins
2.2. In Silico GI Digestion
2.3. Screening for Anti-ACE and Anti-DPP-IV Peptides
2.4. Screening for High GI Absorption, Non-Allergenicity, and Non-Toxicity
2.5. Predicting Anti-ACE and Anti-DPP-IV Peptides with SwissTargetPrediction
2.6. Molecular Docking
2.7. Molecular Dynamics
2.7.1. Root Mean Square Deviation
2.7.2. Radius of Gyration
2.7.3. Hydrogen Bonds and Protein-Ligand Distance
2.8. SwissADME Analysis
3. Materials and Methods
3.1. Paramyosin Protein Sequences
3.2. In Silico GI Digestion of Paramyosins
3.3. Prediction of GI Absorption, Allergenicity, and Toxicity of Peptides
3.4. Ligand-Based In Silico Target Fishing
3.5. Molecular Docking Analysis
3.6. Molecular Dynamics Analysis
3.7. Prediction of Physicochemical and Pharmacokinetic Properties
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chai, T.-T.; Law, Y.-C.; Wong, F.-C.; Kim, S.-K. Enzyme-assisted discovery of antioxidant peptides from edible marine invertebrates: A review. Mar. Drugs 2017, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- Chai, T.-T.; Ee, K.-Y.; Kumar, D.T.; Manan, F.A.; Wong, F.-C. Plant bioactive peptides: Current status and prospects towards use on human health. Protein Pept. Lett. 2021, 28, 623–642. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Wang, H.; Admassu, H.; Sulieman, A.A.; Wei, F.A. Health benefits of bioactive peptides produced from muscle proteins: Antioxidant, anti-cancer, and anti-diabetic activities. Process Biochem. 2022, 116, 116–125. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A global review on short peptides: Frontiers and perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef]
- Wong, F.-C.; Xiao, J.; Wang, S.; Ee, K.-Y.; Chai, T.-T. Advances on the antioxidant peptides from edible plant sources. Trends Food Sci. Technol. 2020, 99, 44–57. [Google Scholar] [CrossRef]
- Daroit, D.J.; Brandelli, A. In vivo bioactivities of food protein-derived peptides–A current review. Curr. Opin. Food Sci. 2021, 39, 120–129. [Google Scholar] [CrossRef]
- Agyei, D.; Tsopmo, A.; Udenigwe, C.C. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal. Bioanal. Chem. 2018, 410, 3463–3472. [Google Scholar] [CrossRef]
- Kaya, A.; Tatlisu, M.A.; Kaplan Kaya, T.; Yildirimturk, O.; Gungor, B.; Karatas, B.; Yazici, S.; Keskin, M.; Avsar, S.; Murat, A. Sublingual vs. oral captopril in hypertensive crisis. J. Emerg. Med. 2016, 50, 108–115. [Google Scholar] [CrossRef]
- Majumder, K.; Wu, J. Molecular targets of antihypertensive peptides: Understanding the mechanisms of action based on the pathophysiology of hypertension. Int. J. Mol. Sci. 2014, 16, 256–283. [Google Scholar] [CrossRef] [Green Version]
- Nongonierma, A.B.; FitzGerald, R.J. Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. J. Food Biochem. 2019, 43, e12451. [Google Scholar] [CrossRef] [Green Version]
- Nishio, S.; Abe, M.; Ito, H. Anagliptin in the treatment of type 2 diabetes: Safety, efficacy, and patient acceptability. Diabetes Metab. Syndr. Obes. 2015, 8, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Boer, I.H.; Bangalore, S.; Benetos, A.; Davis, A.M.; Michos, E.D.; Muntner, P.; Rossing, P.; Zoungas, S.; Bakris, G. Diabetes and hypertension: A position statement by the American Diabetes Association. Diabetes Care 2017, 40, 1273–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venugopal, V. Marine Products for Healthcare: Functional and Bioactive Nutraceutical Compounds from the Ocean; CRC Press: Boca Raton, FL, USA, 2009; pp. 1–527. [Google Scholar]
- Gomez, H.L.R.; Peralta, J.P.; Tejano, L.A.; Chang, Y.W. In silico and in vitro assessment of portuguese oyster (Crassostrea angulata) proteins as precursor of bioactive peptides. Int. J. Mol. Sci. 2019, 20, 5191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adibi, S.A. The oligopeptide transporter (Pept-1) in human intestine: Biology and function. Gastroenterology 1997, 113, 332–340. [Google Scholar] [CrossRef]
- Cheng, H.M.; Mah, K.K.; Seluakumaran, K. Protein absorption. In Defining Physiology: Principles, Themes, Concepts. Volume 2: Neurophysiology and Gastrointestinal Systems; Cheng, H.M., Mah, K.K., Seluakumaran, K., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 71–73. [Google Scholar]
- Mathews, D.M.; Adibi, S.A. Peptide absorption. Gastroenterology 1976, 71, 151–161. [Google Scholar] [CrossRef]
- Leibach, F.H.; Ganapathy, V. Peptide transporters in the intestine and the kidney. Annu. Rev. Nutr. 1996, 16, 99–119. [Google Scholar] [CrossRef]
- Wang, B.; Xie, N.; Li, B. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review. J. Food Biochem. 2019, 43, e12571. [Google Scholar] [CrossRef] [Green Version]
- Koh, J.-A.; Ong, J.-H.; Abd Manan, F.; Ee, K.-Y.; Wong, F.-C.; Chai, T.-T. Discovery of bifunctional anti-DPP-IV and anti-ACE peptides from housefly larval proteins after in silico gastrointestinal digestion. Biointerface Res. Appl. Chem. 2022, 12, 4929–4944. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef] [Green Version]
- Khora, S.S. Seafood-associated shellfish allergy: A comprehensive review. Immunol. Investig. 2016, 45, 504–530. [Google Scholar] [CrossRef]
- Saito, Y.; Wanezaki, K.; Kawato, A.; Imayasu, S. Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees. Biosci. Biotechnol. Biochem. 1994, 58, 1767–1771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nongonierma, A.B.; Mooney, C.; Shields, D.C.; FitzGerald, R.J. Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides. Food Chem. 2013, 141, 644–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, V.T.T.; Ito, K.; Ohno, M.; Motoyama, T.; Ito, S.; Kawarasaki, Y. Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor. Food Chem. 2015, 175, 66–73. [Google Scholar] [CrossRef]
- Xue, L.; Yin, R.; Howell, K.; Zhang, P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme–inhibitory peptides. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1150–1187. [Google Scholar] [CrossRef]
- Matsufuji, H.; Matsui, T.; Seki, E.; Osajima, K.; Nakashima, M.; Osajima, Y. Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle. Biosci. Biotechnol. Biochem. 1994, 58, 2244–2245. [Google Scholar] [CrossRef]
- Ong, J.-H.; Koh, J.-A.; Siew, Y.-Q.; Manan, F.-A.; Wong, F.-C.; Chai, T.-T. In silico discovery of multifunctional bioactive peptides from silkworm cocoon proteins following proteolysis. Curr. Top. Pept. Protein Res. 2021, 22, 47–57. [Google Scholar]
- Juillerat-Jeanneret, L. Dipeptidyl peptidase IV and its inhibitors: Therapeutics for type 2 diabetes and what else? J. Med. Chem. 2014, 57, 2197–2212. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides 2013, 39, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Nagasundaram, N.; Zhu, H.; Liu, J.; Karthick, V.; George Priya Doss, C.; Chakraborty, C.; Chen, L. Analysing the effect of mutation on protein function and discovering potential inhibitors of CDK4: Molecular modelling and dynamics studies. PLoS ONE 2015, 10, e0133969. [Google Scholar] [CrossRef]
- Liu, K.; Watanabe, E.; Kokubo, H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J. Comput.-Aided Mol. Des. 2017, 31, 201–211. [Google Scholar] [CrossRef]
- Shao, Q.; Zhu, W. Exploring the ligand binding/unbinding pathway by selectively enhanced sampling of ligand in a protein–ligand complex. J. Phys. Chem. B 2019, 123, 7974–7983. [Google Scholar] [CrossRef] [PubMed]
- Lobanov, M.Y.; Bogatyreva, N.S.; Galzitskaya, O.V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 2008, 42, 623–628. [Google Scholar] [CrossRef]
- Khan, R.J.; Jha, R.K.; Amera, G.M.; Jain, M.; Singh, E.; Pathak, A.; Singh, R.P.; Muthukumaran, J.; Singh, A.K. Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. J. Biomol. Struct. Dyn. 2021, 39, 2679–2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.S.; Olson, M.A. Calculation of absolute protein-ligand binding affinity using path and endpoint approaches. Biophys. J. 2006, 90, 864–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubbard, R.E.; Haider, M.K. Hydrogen bonds in proteins: Role and strength. In Encyclopedia of Life Sciences (ELS); John Wiley & Sons, Ltd.: Chichester, UK, 2010. [Google Scholar]
- Menéndez, C.A.; Accordino, S.R.; Gerbino, D.C.; Appignanesi, G.A. Hydrogen bond dynamic propensity studies for protein binding and drug design. PLoS ONE 2016, 11, e0165767. [Google Scholar] [CrossRef] [Green Version]
- Wong, F.-C.; Ong, J.-H.; Kumar, D.T.; Chai, T.-T. In silico identification of multi-target anti-SARS-CoV-2 peptides from quinoa seed proteins. Int. J. Pept. Res. Ther. 2021, 27, 1837–1847. [Google Scholar] [CrossRef]
- Ji, D.; Xu, M.; Udenigwe, C.C.; Agyei, D. Physicochemical characterisation, molecular docking, and drug-likeness evaluation of hypotensive peptides encrypted in flaxseed proteome. Curr. Res. Food Sci. 2020, 3, 41–50. [Google Scholar] [CrossRef]
- Santos, G.B.; Ganesan, A.; Emery, F.S. Oral administration of peptide-based drugs: Beyond Lipinski’s rule. ChemMedChem 2016, 11, 2245–2251. [Google Scholar] [CrossRef]
- Finch, A.; Pillans, P. P-glycoprotein and its role in drug-drug interactions. Aust. Prescr. 2014, 37, 137–139. [Google Scholar] [CrossRef]
- Sychev, D.A.; Ashraf, G.M.; Svistunov, A.A.; Maksimov, M.L.; Tarasov, V.V.; Chubarev, V.N.; Otdelenov, V.A.; Denisenko, N.j.P.; Barreto, G.E.; Aliev, G. The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. Drug Des. Dev. Ther. 2018, 12, 1147–1156. [Google Scholar] [CrossRef] [Green Version]
- Martin, Y.C. A bioavailability score. J. Med. Chem. 2005, 48, 3164–3170. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consortium, T.U. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2—A server for in silico prediction of allergens. J. Mol. Model. 2014, 20, 2278. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Open Source Drug Discovery, C.; Raghava, G.P.S. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Jin, B.; Li, H.; Huang, S.Y. HPEPDOCK: A web server for blind peptide-protein docking based on a hierarchical algorithm. Nucleic Acids Res. 2018, 46, W443–W450. [Google Scholar] [CrossRef]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021, 49, D437–D451. [Google Scholar] [CrossRef]
- Masuyer, G.; Schwager, S.L.U.; Sturrock, E.D.; Isaac, R.E.; Acharya, K.R. Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Sci. Rep. 2012, 2, 717. [Google Scholar] [CrossRef] [Green Version]
- Hiramatsu, H.; Yamamoto, A.; Kyono, K.; Higashiyama, Y.; Fukushima, C.; Shima, H.; Sugiyama, S.; Inaka, K.; Shimizu, R. The crystal structure of human dipeptidyl peptidase IV (DPPIV) complex with diprotin A. Biol. Chem. 2004, 385, 561–564. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef] [PubMed]
- Prasasty, V.D.; Istyastono, E.P. Data of small peptides in SMILES and three-dimensional formats for virtual screening campaigns. Data Brief 2019, 27, 104607. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Modeling 2011, 51, 2778–2786. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1995, 8, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Oyewusi, H.A.; Huyop, F.; Wahab, R.A.; Hamid, A.A.A. In silico assessment of dehalogenase from Bacillus thuringiensis H2 in relation to its salinity-stability and pollutants degradation. J. Biomol. Struct. Dyn. 2021. [Google Scholar] [CrossRef]
Seafood | Accession Number | Number of Residues | Mass (Da) |
---|---|---|---|
Common octopus (CO-X1) | A0A6P7TIV8 (isoform X1) | 523 | 59,847 |
Common octopus (CO-X2) | A0A7E6FQ28 (isoform X2) | 516 | 59,026 |
Humboldt squid (HS) | A0A1Y1DCG9 | 880 | 102,476 |
Japanese abalone (JA) | A0A286QYA2 | 860 | 99,648 |
Japanese scallop (JS) | A0A210R0B2 | 934 | 107,548 |
Mediterranean mussel (MM) | O96064 | 864 | 99,573 |
Pacific oyster (PO) | K1QTC1 | 851 | 97,876 |
Sea cucumber (SC) | A0A2G8LGY5 | 727 | 83,851 |
Whiteleg shrimp (WS) | A0A3R7QCP1 | 828 | 96,537 |
Seafood | Anti-ACE Peptides | Anti-DPP-IV Peptides | ||
---|---|---|---|---|
Number | Unique Sequences a | Number | Unique Sequences a | |
CO-X1 | 5 | AY, CF, EF, VF | 6 | AY, SL, VF, VL |
SC | 5 | EF, GM, IL, VY | 4 | IL, VL, VY |
CO-X2 | 4 | AY, CF, EF, VF | 6 | AY, SL, VF, VL |
WS | 3 | IL, TF, VY | 12 | IL, SL, TF, TY, VL, VY |
JA | 3 | AY, IL, VY | 5 | AY, IL, SL, VY |
MM | 2 | TF, VY | 5 | SL, TF, TY, VY |
PO | 2 | TF, VY | 5 | SL, TF, TY, VY |
JS | 1 | TF | 6 | SL, TF, TY, VL |
HS | 1 | VF | 4 | SL, TY, VF |
Total | 26 | 53 |
Seafood | Number | Unique Sequences |
---|---|---|
JA | 12 | AK, DL, GIL, IAL |
JS | 10 | AK, DL |
PO | 9 | AK, DL |
WS | 8 | AK, DL |
MM | 8 | AK, DL |
SC | 6 | AK, IAL |
HS | 5 | AK, DL |
CO-X1 | 3 | AK, DL |
CO-X2 | 3 | AK, DL |
Total | 64 |
Peptide | Potential Target | Probability | Known Actives (3D/2D) | ChEMBL ID of Known Active Compound with Top Similarity to Peptide */IC50 |
---|---|---|---|---|
GIL | ACE | 0.5345 | 167/189 | CHEMBL128399/4200 nM |
DL | ACE | 0.0580 | 33/130 | CHEMBL358439/2400 nM |
AK | ACE | 0.0524 | 2/183 | CHEMBL430554/7 nM |
IAL | DPP-IV | 0.5776 | 167/362 | CHEMBL214381/2530 nM |
Peptide | Docking Score | Interaction with ACE b,c | |||
---|---|---|---|---|---|
Hydrogen Bond | Hydrophobic Interaction | Salt Bridge | |||
BPPb a | −376.180 | Lys118, Asp121, Gln281, Ala356(2), Tyr360, Glu403, Lys511, His513, Ser516, Ser517, Tyr520, Tyr523 | Trp59, Ile88, Lys118, Asp121, Glu123, Gln281, His353, Ala354, Ser355, Ala356, Trp357, Tyr360, His387, Glu403, Glu411, Phe457, Lys511, Phe512, His513, Ser516, Ser517, Val518, Tyr520, Tyr523 | Glu403 | |
Indicated by BIOPEP-UWM | VY | −112.800 | Glu123 | Tyr51, Trp59, Tyr62, Ala63, Ile88, Lys118, Glu123, Tyr360 | - |
CF | −108.762 | Tyr62, Leu122, Glu123, Ala125 | Trp59, Tyr62, Thr92, Glu123, Arg124, Ala125, Tyr360 | - | |
AY | −108.695 | Glu123, Arg124, Tyr135, Asn211, Ser517 | Glu123, Arg124, Tyr135, Leu139, Ile204, Ala207, Ala208, Ser219, Trp220, Ser517 | - | |
VF | −107.589 | Glu123 | Trp59, Tyr62, Ile88, Thr92, Leu122, Glu123, Arg124, Tyr360 | - | |
TF | −103.827 | Tyr51, Glu123 | Tyr51, Trp59, Ile88, His91, Thr92, Lys118, Asp121, Glu123 | - | |
EF | −103.021 | Glu123, Arg124, Tyr135 | Glu123, Arg124, Tyr135, Leu139, Ile204, Ala207, Ser219, Trp220, Ser517, Val518, Pro519, Arg522 | Arg522(4) | |
IL | −79.044 | Tyr62, Asn85 | Trp59, Tyr62, Asn85, Ile88, Ala89, Arg124, Leu132 | - | |
GM | −75.728 | Tyr146, Phe512 | Tyr146, Leu161, Glu162, Trp279, His353, Lys511, Phe512, His513 | - | |
Predicted by Swiss Target Prediction | GIL | −103.475 | Asp121, Glu123 | Trp59, Tyr62, Ile88, Ala89, Thr92, Asp121, Leu122, Glu123, Arg124, Ala125 | - |
AK | −64.629 | Glu162, Lys511(2), His513 | Tyr146, Leu161, Glu162, Trp279, Gln281, His353, Lys511, Phe512, His513 | - | |
DL | −60.501 | Tyr62, Glu123, Arg124 | Tyr62, Asn85, Ile88, Ala89, Glu123, Arg124 | Arg124 |
Peptide | Docking Score | Interaction with DPP-IV b | ||
---|---|---|---|---|
Hydrogen Bond c | Hydrophobic Interaction | |||
Diprotin A a | −115.228 | Arg125(2), Glu205, Glu206(2), Tyr547, Tyr662 | Arg125, Glu205, Glu206, Phe357, Tyr547, Ser630, Tyr631, Tyr662, Tyr666 | |
Indicated by BIOPEP-UWM | TF | −134.788 | Glu205(2), Glu206, Tyr662, His740 | Arg125, Glu205, Glu206, Tyr547, Ser630, Tyr631, Val656, Trp659, Tyr662, Tyr666, Asn710, Val711, His740 |
TY | −130.756 | Glu205(2), Glu206, Tyr662, His740 | Arg125, Glu205, Glu206, Tyr547, Ser630, Tyr631, Val656, Trp659, Tyr662, Tyr666, Asn710, Val711, His740 | |
VY | −125.108 | Arg125, Glu205(2), Tyr547 | Arg125, Glu205, Glu206, Ser209, Tyr547, Ser630, Tyr631, Val656, Trp659, Tyr662, Tyr666 | |
VF | −122.342 | Glu205(2), Glu206 | Arg125, Glu205, Glu206, Phe357, Tyr547, Ser630, Tyr631, Tyr662, Tyr666, Asn710 | |
AY | −114.150 | Arg125, Tyr547, Ser630, His740 | Arg125, Tyr547, Ser630, Tyr631, Val656, Trp659, Tyr662, Tyr666, Asn710, Val711, His740 | |
IL | −86.409 | Glu205, Glu206, Tyr547, Ser630, His740 | Glu206, Phe357, Tyr547, Ser630, Tyr631, Val656, Trp659, Tyr662, Tyr666, His740 | |
SL | −85.505 | Glu205, Glu206(2), Tyr547, Tyr631, Tyr662(2) | Arg125, Glu205, Glu206, Tyr547, Ser630, Tyr631, Val656, Trp659, Tyr662, Tyr666, Val711 | |
VL | −84.356 | Arg125, Glu205(3) | Arg125, Glu205, Glu206, Tyr547, Ser630, Tyr631, Tyr662, Tyr666, Arg669 | |
Predicted by Swiss Target Prediction | IAL | −109.567 | Arg125, Glu205, Glu206, Tyr547, Tyr662, His740 | Arg125, Glu205, Glu206, Tyr547, Trp629, Ser630, Tyr662, Tyr666, Val711, His740 |
Peptide a | MW (g/mol) | Fraction Csp3 | RB | HBA | HBD | TPSA (Å2) | Lipophilicity (Consensus Log Po/w) |
---|---|---|---|---|---|---|---|
AK | 217.27 | 0.78 | 8 | 5 | 4 | 118.44 | −0.96 |
AY | 252.27 | 0.33 | 6 | 5 | 4 | 112.65 | −0.54 |
CF | 268.33 | 0.33 | 7 | 4 | 3 | 131.22 | −0.02 |
DL | 246.26 | 0.70 | 8 | 6 | 4 | 129.72 | −0.93 |
EF | 294.30 | 0.36 | 9 | 6 | 4 | 129.72 | −0.21 |
GIL | 301.38 | 0.79 | 11 | 5 | 4 | 121.52 | 0.05 |
GM | 206.26 | 0.71 | 7 | 4 | 3 | 117.72 | −0.82 |
IAL | 315.41 | 0.80 | 11 | 5 | 4 | 121.52 | 0.58 |
IL | 244.33 | 0.83 | 8 | 4 | 3 | 92.42 | 0.49 |
SL | 218.25 | 0.78 | 7 | 5 | 4 | 112.65 | −0.80 |
TF | 266.29 | 0.38 | 7 | 5 | 4 | 112.65 | −0.52 |
TY | 282.29 | 0.38 | 7 | 6 | 5 | 132.88 | −0.97 |
VF | 264.32 | 0.43 | 7 | 4 | 3 | 92.42 | 0.44 |
VL | 230.30 | 0.82 | 7 | 4 | 3 | 92.42 | 0.26 |
VY | 280.32 | 0.43 | 7 | 5 | 4 | 112.65 | 0.01 |
Captopril | 217.29 | 0.78 | 4 | 3 | 1 | 96.41 | 0.62 |
Anagliptin | 383.45 | 0.53 | 8 | 6 | 2 | 115.42 | 0.73 |
Pharmacokinetics | Drug-Likeness | Lead-Likeness (Number of Violations) | |||||||
---|---|---|---|---|---|---|---|---|---|
Peptide | P-gp Substrate | CYP1A2 Inhibitor | CYP2C19 Inhibitor | CYP2C9 Inhibitor | CYP2D6 Inhibitor | CYP3A4 Inhibitor | Lipinski (Number of Violations) | Abbot Bioavailability Score | |
AK | No | No | No | No | No | No | Yes (0) | 0.55 | No (2) |
AY | No | No | No | No | No | No | Yes (0) | 0.55 | Yes (0) |
CF | No | No | No | No | No | No | Yes (0) | 0.55 | Yes (0) |
DL | No | No | No | No | No | No | Yes (0) | 0.56 | No (2) |
EF | No | No | No | No | No | No | Yes (0) | 0.56 | No (1) |
GIL | No | No | No | No | No | No | Yes (0) | 0.55 | No (1) |
GM | No | No | No | No | No | No | Yes (0) | 0.55 | No (1) |
IAL | No | No | No | No | No | No | Yes (0) | 0.55 | No (1) |
IL | No | No | No | No | No | No | Yes (0) | 0.55 | No (2) |
SL | No | No | No | No | No | No | Yes (0) | 0.55 | No (1) |
TF | No | No | No | No | No | No | Yes (0) | 0.55 | Yes (0) |
TY | No | No | No | No | No | No | Yes (0) | 0.55 | Yes (0) |
VF | No | No | No | No | No | No | Yes (0) | 0.55 | Yes (0) |
VL | No | No | No | No | No | No | Yes (0) | 0.55 | No (1) |
VY | No | No | No | No | No | No | Yes (0) | 0.55 | Yes (0) |
Captopril | No | No | No | No | No | No | Yes (0) | 0.56 | No (1) |
Anagliptin | Yes | No | No | No | No | No | Yes (0) | 0.55 | No (2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, T.-T.; Wong, C.C.-C.; Sabri, M.Z.; Wong, F.-C. Seafood Paramyosins as Sources of Anti-Angiotensin-Converting-Enzyme and Anti-Dipeptidyl-Peptidase Peptides after Gastrointestinal Digestion: A Cheminformatic Investigation. Molecules 2022, 27, 3864. https://doi.org/10.3390/molecules27123864
Chai T-T, Wong CC-C, Sabri MZ, Wong F-C. Seafood Paramyosins as Sources of Anti-Angiotensin-Converting-Enzyme and Anti-Dipeptidyl-Peptidase Peptides after Gastrointestinal Digestion: A Cheminformatic Investigation. Molecules. 2022; 27(12):3864. https://doi.org/10.3390/molecules27123864
Chicago/Turabian StyleChai, Tsun-Thai, Clara Chia-Ci Wong, Mohamad Zulkeflee Sabri, and Fai-Chu Wong. 2022. "Seafood Paramyosins as Sources of Anti-Angiotensin-Converting-Enzyme and Anti-Dipeptidyl-Peptidase Peptides after Gastrointestinal Digestion: A Cheminformatic Investigation" Molecules 27, no. 12: 3864. https://doi.org/10.3390/molecules27123864
APA StyleChai, T. -T., Wong, C. C. -C., Sabri, M. Z., & Wong, F. -C. (2022). Seafood Paramyosins as Sources of Anti-Angiotensin-Converting-Enzyme and Anti-Dipeptidyl-Peptidase Peptides after Gastrointestinal Digestion: A Cheminformatic Investigation. Molecules, 27(12), 3864. https://doi.org/10.3390/molecules27123864