Pinus sylvestris L. and Syzygium aromaticum (L.) Merr. & L. M. Perry Essential Oils Inhibit Endotoxin-Induced Airway Hyperreactivity despite Aggravated Inflammatory Mechanisms in Mice
Abstract
:1. Introduction
2. Results
2.1. Chemical Analysis of EOs
2.2. Respiratory Functions
2.3. Lung Histopathological Evaluation
2.4. LPS-Induced Lung Myeloperoxidase (MPO) Activity Was Aggravated by SO and CO Inhalation
2.5. SO and CO Aggravated LPS-Evoked Inflammatory Cytokine Concentrations of the Lung
3. Discussion
4. Materials and Methods
4.1. EO Samples and the Gas Chromatographic Analysis of Their Composition
4.2. Animals
4.3. Induction of Acute Airway Inflammation and Groups of Animals
4.4. Pulmonary Function Measurement
4.5. Histopathological Assessment and Semiquantitative Scoring
4.6. Spectrophotometric Measurement of Myeloperoxidase (MPO) Activity
4.7. Measurement of Inflammatory Cytokine Concentration Using Luminex xMAP Technology
4.8. Statistical Analysis of Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 25 February 2022).
- Baser, K.H.C.; Buchbauer, G. Handbook Of Essential Oils: Science, Technology, and Applications; CRC Press (Taylor & Francis Group): Boca Raton, FL, USA, 2010; ISBN 978-1-4200-6315-8. [Google Scholar]
- Faleiro, M.L.; Miguel, M. Use of Essential Oils and Their Components against Multidrug-Resistant Bacteria. In Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components; Elsevier: San Diego, CA, USA, 2013; pp. 65–94. ISBN 978-0-12-398539-2. [Google Scholar]
- Csikós, E.; Csekő, K.; Ashraf, A.R.; Kemény, Á.; Kereskai, L.; Kocsis, B.; Böszörményi, A.; Helyes, Z.; Horváth, G. Effects of Thymus vulgaris L., Cinnamomum verum J. Presl and Cymbopogon nardus (L.) Rendle Essential Oils in the Endotoxin-Induced Acute Airway Inflammation Mouse Model. Molecules 2020, 25, 3553. [Google Scholar] [CrossRef] [PubMed]
- Jäger, W.; Nasel, B.; Nasel, C.; Binder, R.; Stimpfl, T.; Vycudilik, W.; Buchbauer, G. Pharmacokinetic Studies of the Fragrance Compound 1,8-Cineol in Humans during Inhalation. Chem. Senses 1996, 21, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Kenia, P.; Houghton, T.; Beardsmore, C. Does Inhaling Menthol Affect Nasal Patency or Cough? Pediatr. Pulmonol. 2008, 43, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Horváth, G.; Ács, K. Essential Oils in the Treatment of Respiratory Tract Diseases Highlighting Their Role in Bacterial Infections and Their Anti-Inflammatory Action: A Review. Flavour Fragr. J. 2015, 30, 331–341. [Google Scholar] [CrossRef]
- Chainy, G.B.; Manna, S.K.; Chaturvedi, M.M.; Aggarwal, B.B. Anethole Blocks Both Early and Late Cellular Responses Transduced by Tumor Necrosis Factor: Effect on NF-KappaB, AP-1, JNK, MAPKK and Apoptosis. Oncogene 2000, 19, 2943–2950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.S.; Oh, O.-J.; Min, H.-Y.; Park, E.-J.; Kim, Y.; Park, H.J.; Nam Han, Y.; Lee, S.K. Eugenol Suppresses Cyclooxygenase-2 Expression in Lipopolysaccharide-Stimulated Mouse Macrophage RAW264.7 Cells. Life Sci. 2003, 73, 337–348. [Google Scholar] [CrossRef]
- Raghavenra, H.; Diwakr, B.T.; Lokesh, B.R.; Naidu, K.A. Eugenol—The Active Principle from Cloves Inhibits 5-Lipoxygenase Activity and Leukotriene-C4 in Human PMNL Cells. Prostaglandins Leukot. Essent. Fat. Acids 2006, 74, 23–27. [Google Scholar] [CrossRef]
- Kim, D.-S.; Lee, H.-J.; Jeon, Y.-D.; Han, Y.-H.; Kee, J.-Y.; Kim, H.-J.; Shin, H.-J.; Kang, J.; Lee, B.S.; Kim, S.-H.; et al. Alpha-Pinene Exhibits Anti-Inflammatory Activity Through the Suppression of MAPKs and the NF-ΚB Pathway in Mouse Peritoneal Macrophages. Am. J. Chin. Med. 2015, 43, 731–742. [Google Scholar] [CrossRef]
- Chniguir, A.; Pintard, C.; Liu, D.; Dang, P.M.-C.; El-Benna, J.; Bachoual, R. Eugenol Prevents FMLF-Induced Superoxide Anion Production in Human Neutrophils by Inhibiting ERK1/2 Signaling Pathway and P47phox Phosphorylation. Sci. Rep. 2019, 9, 18540. [Google Scholar] [CrossRef]
- Allenspach, M.; Valder, C.; Flamm, D.; Grisoni, F.; Steuer, C. Verification of Chromatographic Profile of Primary Essential Oil of Pinus sylvestris L. Combined with Chemometric Analysis. Molecules 2020, 25, 2973. [Google Scholar] [CrossRef]
- EMA Caryophylli Flos. Available online: https://www.ema.europa.eu/en/medicines/herbal/caryophylli-flos (accessed on 25 February 2022).
- EMA Caryophylli Floris Aetheroleum. Available online: https://www.ema.europa.eu/en/medicines/herbal/caryophylli-floris-aetheroleum (accessed on 25 February 2022).
- Huo, M.; Cui, X.; Xue, J.; Chi, G.; Gao, R.; Deng, X.; Guan, S.; Wei, J.; Soromou, L.W.; Feng, H.; et al. Anti-Inflammatory Effects of Linalool in RAW 264.7 Macrophages and Lipopolysaccharide-Induced Lung Injury Model. J. Surg. Res. 2013, 180, e47–e54. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, L.; Zhang, C.; Lan, Z. Protective effect of p-cymene on lipopolysaccharide-induced acute lung injury in mice. Inflammation 2014, 37, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Sun, Z.; Guo, X. Citral Inhibits Lipopolysaccharide-Induced Acute Lung Injury by Activating PPAR-γ. Eur. J. Pharmacol. 2015, 747, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Zhang, T.; Yin, N.; Ma, X.; Zhao, G.; Wu, H.; Qiu, C.; Deng, G. Geraniol Alleviates LPS-Induced Acute Lung Injury in Mice via Inhibiting Inflammation and Apoptosis. Oncotarget 2017, 8, 71038–71053. [Google Scholar] [CrossRef] [Green Version]
- Helyes, Z.; Hajna, Z. Endotoxin-Induced Airway Inflammation and Asthma Models. In TRP Channels in Drug Discovery: Volume I; Szallasi, A., Bíró, T., Eds.; Methods in Pharmacology and Toxicology; Humana Press: Totowa, NJ, USA, 2012; pp. 301–342. ISBN 978-1-62703-077-9. [Google Scholar]
- Tümen, İ.; Akkol, E.K.; Taştan, H.; Süntar, I.; Kurtca, M. Research on the Antioxidant, Wound Healing, and Anti-Inflammatory Activities and the Phytochemical Composition of Maritime Pine (Pinus pinaster Ait). J. Ethnopharmacol. 2018, 211, 235–246. [Google Scholar] [CrossRef]
- Yu, P.-J.; Wan, L.-M.; Wan, S.-H.; Chen, W.-Y.; Xie, H.; Meng, D.-M.; Zhang, J.-J.; Xiao, X.-L. Standardized Myrtol Attenuates Lipopolysaccharide Induced Acute Lung Injury in Mice. Pharm. Biol. 2016, 54, 3211–3216. [Google Scholar] [CrossRef] [Green Version]
- Dorow, P.; Weiss, T.; Felix, R.; Schmutzler, H. Effect of a secretolytic and a combination of pinene, limonene and cineole on mucociliary clearance in patients with chronic obstructive pulmonary disease. Arzneimittelforschung 1987, 37, 1378–1381. [Google Scholar]
- Falk, A.A.; Hagberg, M.T.; Löf, A.E.; Wigaeus-Hjelm, E.M.; Wang, Z.P. Uptake, Distribution and Elimination of Alpha-Pinene in Man after Exposure by Inhalation. Scand. J. Work. Environ. Health 1990, 16, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Filipsson, A.F. Short Term Inhalation Exposure to Turpentine: Toxicokinetics and Acute Effects in Men. Occup. Environ. Med. 1996, 53, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.-Y.; Chung, C.; Seo, J.-H.; Rah, S.-Y.; Kim, H.-M.; Jeong, H.-J. The Therapeutic Efficacy of α-Pinene in an Experimental Mouse Model of Allergic Rhinitis. Int. Immunopharmacol. 2014, 23, 273–282. [Google Scholar] [CrossRef]
- Basholli-Salihu, M.; Schuster, R.; Hajdari, A.; Mulla, D.; Viernstein, H.; Mustafa, B.; Mueller, M. Phytochemical Composition, Anti-Inflammatory Activity and Cytotoxic Effects of Essential Oils from Three Pinus spp. Pharm. Biol. 2017, 55, 1553–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguel, M.G.; da Silva, C.I.; Farah, L.; Castro Braga, F.; Figueiredo, A.C. Effect of Essential Oils on the Release of TNF-α and CCL2 by LPS-Stimulated THP-1 Cells. Plants 2020, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Chniguir, A.; Zioud, F.; Marzaioli, V.; El-Benna, J.; Bachoual, R. Syzygium aromaticum Aqueous Extract Inhibits Human Neutrophils Myeloperoxidase and Protects Mice from LPS-Induced Lung Inflammation. Pharm. Biol. 2019, 57, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, T.; Shinkafi, T.S.; Routray, I.; Mahmood, A.; Ali, S. Aqueous Extract of Dried Flower Buds of Syzygium aromaticum Inhibits Inflammation and Oxidative Stress. J. Basic Clin. Pharm. 2012, 3, 323–327. [Google Scholar] [CrossRef] [Green Version]
- Lang, M.; Ferron, P.-J.; Bursztyka, J.; Montjarret, A.; Duteil, E.; Bazire, A.; Bedoux, G. Evaluation of Immunomodulatory Activities of Essential Oils by High Content Analysis. J. Biotechnol. 2019, 303, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt-Mernak, M.I.; Pinheiro, N.M.; da Silva, R.C.; Ponci, V.; Banzato, R.; Pinheiro, A.J.M.C.R.; Olivo, C.R.; Tibério, I.F.L.C.; Lima Neto, L.G.; Santana, F.P.R.; et al. Effects of Eugenol and Dehydrodieugenol B from Nectandra leucantha against Lipopolysaccharide (LPS)-Induced Experimental Acute Lung Inflammation. J. Nat. Prod. 2021, 84, 2282–2294. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, C.B.; Riva, D.R.; DePaula, L.J.; Brando-Lima, A.; Koatz, V.L.G.; Leal-Cardoso, J.H.; Zin, W.A.; Faffe, D.S. In Vivo Anti-Inflammatory Action of Eugenol on Lipopolysaccharide-Induced Lung Injury. J. Appl. Physiol. 2010, 108, 845–851. [Google Scholar] [CrossRef]
- Zin, W.A.; Silva, A.G.L.S.; Magalhães, C.B.; Carvalho, G.M.C.; Riva, D.R.; Lima, C.C.; Leal-Cardoso, J.H.; Takiya, C.M.; Valença, S.S.; Saldiva, P.H.N.; et al. Eugenol Attenuates Pulmonary Damage Induced by Diesel Exhaust Particles. J. Appl. Physiol. 2012, 112, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, C.; Fuentes, A.; Barat, J.M.; Ruiz, M.J. Relevant Essential Oil Components: A Minireview on Increasing Applications and Potential Toxicity. Toxicol. Mech. Methods 2021, 31, 559–565. [Google Scholar] [CrossRef]
- Ács, K.; Bencsik, T.; Böszörményi, A.; Kocsis, B.; Horváth, G. Essential Oils and Their Vapors as Potential Antibacterial Agents against Respiratory Tract Pathogens. Nat. Prod. Commun. 2016, 11, 1709–1712. [Google Scholar] [CrossRef] [Green Version]
- Ács, K.; Balázs, V.L.; Kocsis, B.; Bencsik, T.; Böszörményi, A.; Horváth, G. Antibacterial Activity Evaluation of Selected Essential Oils in Liquid and Vapor Phase on Respiratory Tract Pathogens. BMC Complement. Altern. Med. 2018, 18, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, S.; Maruyama, N.; Hayama, K.; Ishibashi, H.; Inoue, S.; Oshima, H.; Yamaguchi, H. Suppression of Tumor Necrosis Factor-Alpha-Induced Neutrophil Adherence Responses by Essential Oils. Mediat. Inflamm. 2003, 12, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Helyes, Z.; Pintér, E.; Sándor, K.; Elekes, K.; Bánvölgyi, A.; Keszthelyi, D.; Szoke, E.; Tóth, D.M.; Sándor, Z.; Kereskai, L.; et al. Impaired Defense Mechanism against Inflammation, Hyperalgesia, and Airway Hyperreactivity in Somatostatin 4 Receptor Gene-Deleted Mice. Proc. Natl. Acad. Sci. USA 2009, 106, 13088–13093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helyes, Z.; Elekes, K.; Sándor, K.; Szitter, I.; Kereskai, L.; Pintér, E.; Kemény, A.; Szolcsányi, J.; McLaughlin, L.; Vasiliou, S.; et al. Involvement of Preprotachykinin A Gene-Encoded Peptides and the Neurokinin 1 Receptor in Endotoxin-Induced Murine Airway Inflammation. Neuropeptides 2010, 44, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Zeldin, D.C.; Wohlford-Lenane, C.; Chulada, P.; Bradbury, J.A.; Scarborough, P.E.; Roggli, V.; Langenbach, R.; Schwartz, D.A. Airway Inflammation and Responsiveness in Prostaglandin H Synthase-Deficient Mice Exposed to Bacterial Lipopolysaccharide. Am. J. Respir. Cell Mol. Biol. 2001, 25, 457–465. [Google Scholar] [CrossRef]
Compound | RI | Scots Pine (%) | Clove (%) |
---|---|---|---|
α-Pinene | 959 | 39.4 | - |
Camphene | 977 | 0.8 | - |
Fenchone | 982 | 1.1 | - |
β-Pinene | 1005 | 11.0 | - |
δ-3-Carene | 1036 | 7.0 | - |
Limonene | 1055 | 14.3 | - |
α-Terpineol | 1216 | 8.8 | - |
Bornyl acetate | 1300 | 3.4 | - |
Eugenol | 1372 | - | 88.6 |
Longifolene | 1429 | 0.5 | - |
β-Caryophyllene | 1435 | 8.4 | 8.6 |
α-Humulene | 1471 | 0.8 | 2.2 |
Caryophyllene oxide | 1594 | 0.7 | 0.5 |
Total | 96.2 | 99.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csikós, E.; Csekő, K.; Kemény, Á.; Draskóczi, L.; Kereskai, L.; Kocsis, B.; Böszörményi, A.; Helyes, Z.; Horváth, G. Pinus sylvestris L. and Syzygium aromaticum (L.) Merr. & L. M. Perry Essential Oils Inhibit Endotoxin-Induced Airway Hyperreactivity despite Aggravated Inflammatory Mechanisms in Mice. Molecules 2022, 27, 3868. https://doi.org/10.3390/molecules27123868
Csikós E, Csekő K, Kemény Á, Draskóczi L, Kereskai L, Kocsis B, Böszörményi A, Helyes Z, Horváth G. Pinus sylvestris L. and Syzygium aromaticum (L.) Merr. & L. M. Perry Essential Oils Inhibit Endotoxin-Induced Airway Hyperreactivity despite Aggravated Inflammatory Mechanisms in Mice. Molecules. 2022; 27(12):3868. https://doi.org/10.3390/molecules27123868
Chicago/Turabian StyleCsikós, Eszter, Kata Csekő, Ágnes Kemény, Lilla Draskóczi, László Kereskai, Béla Kocsis, Andrea Böszörményi, Zsuzsanna Helyes, and Györgyi Horváth. 2022. "Pinus sylvestris L. and Syzygium aromaticum (L.) Merr. & L. M. Perry Essential Oils Inhibit Endotoxin-Induced Airway Hyperreactivity despite Aggravated Inflammatory Mechanisms in Mice" Molecules 27, no. 12: 3868. https://doi.org/10.3390/molecules27123868
APA StyleCsikós, E., Csekő, K., Kemény, Á., Draskóczi, L., Kereskai, L., Kocsis, B., Böszörményi, A., Helyes, Z., & Horváth, G. (2022). Pinus sylvestris L. and Syzygium aromaticum (L.) Merr. & L. M. Perry Essential Oils Inhibit Endotoxin-Induced Airway Hyperreactivity despite Aggravated Inflammatory Mechanisms in Mice. Molecules, 27(12), 3868. https://doi.org/10.3390/molecules27123868