Application of Transmission Raman Spectroscopy in Combination with Partial Least-Squares (PLS) for the Fast Quantification of Paracetamol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development
2.1.1. Method Feasibility
2.1.2. Development of PLS Calibration Model
2.1.3. Model Validation
2.2. Quantification of Marketed Paracetamol Tablets
3. Materials and Methods
3.1. Materials
3.2. Preparation of Samples
3.3. Experimental Conditions
3.3.1. Transmission Raman Spectroscopy Conditions
3.3.2. Chromatographic Conditions of HPLC-UV
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Griffen, J.; Owen, A.; Matousek, P. Comprehensive quantification of tablets with multiple active pharmaceutical ingredients using transmission Raman spectroscopy—A proof of concept study. J. Pharm. Biomed. Anal. 2015, 115, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Strachan, C.J.; Rades, T.; Gordon, K.C.; Rantanen, J. Raman spectroscopy for quantitative analysis of pharmaceutical solids. J. Pharm. Pharmacol. 2007, 59, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.-I.; Han, J.; Woo, Y.-A.; Kim, J.; Kang, M.J. Rapid quantitation of atorvastatin in process pharmaceutical powder sample using Raman spectroscopy and evaluation of parameters related to accuracy of analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 200, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Griffen, J.A.; Owen, A.W.; Burley, J.; Taresco, V.; Matousek, P. Rapid quantification of low level polymorph content in a solid dose form using transmission Raman spectroscopy. J. Pharm. Biomed. Anal. 2016, 128, 35–45. [Google Scholar] [CrossRef]
- Inoue, M.; Hisada, H.; Koide, T.; Fukami, T.; Roy, A.; Carriere, J.; Heyler, R. Transmission Low-Frequency Raman Spec-troscopy for Quantification of Crystalline Polymorphs in Pharmaceutical Tablets. Anal. Chem. 2019, 91, 1997–2003. [Google Scholar] [CrossRef]
- Li, Y.; Igne, B.; Drennen, J.K., 3rd; Anderson, C.A. Method development and validation for pharmaceutical tablets analysis using transmission Raman spectroscopy. Int. J. Pharm. 2016, 498, 318–325. [Google Scholar] [CrossRef]
- Eliasson, C.; Macleod, N.A.; Jayes, L.C.; Clarke, F.C.; Hammond, S.V.; Smith, M.R.; Matousek, P. Non-invasive quan-titative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy. J. Pharm. Biomed. Anal. 2008, 47, 221–229. [Google Scholar] [CrossRef]
- Buckley, K.; Matousek, P. Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis. J. Pharm. Biomed. Anal. 2011, 55, 645–652. [Google Scholar] [CrossRef]
- Johansson, J.; Sparen, A.; Svensson, O.; Folestad, S.; Claybourn, M. Quantitative transmission Raman spectroscopy of phar-maceutical tablets and capsules. Appl. Spectrosc. 2007, 61, 1211–1218. [Google Scholar] [CrossRef]
- Everall, N.; Priestnall, I.; Dallin, P.; Andrews, J.; Lewis, I.; Davis, K.; Owen, H.; George, M.W. Measurement of spatial reso-lution and sensitivity in transmission and backscattering Raman spectroscopy of opaque samples: Impact on pharmaceutical quality control and Raman tomography. Appl. Spectrosc. 2010, 64, 476–484. [Google Scholar] [CrossRef]
- Townshend, N.; Nordon, A.; Littlejohn, D.; Myrick, M.; Andrews, J.; Dallin, P. Comparison of the Determination of a Low-Concentration Active Ingredient in Pharmaceutical Tablets by Backscatter and Transmission Raman Spectrometry. Anal. Chem. 2012, 84, 4671–4676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelletier, M.J.; Larkin, P.; Santangelo, M. Transmission Fourier Transform Raman Spectroscopy of Pharmaceutical Tablet Cores. Appl. Spectrosc. 2012, 66, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Mazivila, S.J.; Nogueira, H.I.S.; Pascoa, R.; Ribeiro, D.S.M.; Santos, J.; Leitao, J.; Esteves da Silva, J.C.G. Portable and benchtop Raman spectrometers coupled to cluster analysis to identify quinine sulfate polymorphs in solid dosage forms and antimalarial drug quantification in solution by AuNPs-SERS with MCR-ALS. Anal. Methods 2020, 12, 2407–2421. [Google Scholar] [CrossRef] [PubMed]
- Matousek, P.; Everall, N.; Littlejohn, D.; Nordon, A.; Bloomfield, M. Dependence of Signal on Depth in Transmission Raman Spectroscopy. Appl. Spectrosc. 2011, 65, 724–733. [Google Scholar] [CrossRef]
- Hargreaves, M.D.; Macleod, N.A.; Smith, M.R.; Andrews, D.; Hammond, S.V.; Matousek, P. Characterisation of transmis-sion Raman spectroscopy for rapid quantitative analysis of intact multi-component pharmaceutical capsules. J. Pharm. Biomed. Anal. 2011, 54, 463–468. [Google Scholar] [CrossRef]
- Pelletier, M.J. Quantitative Analysis Using Raman Spectrometry. Appl. Spectrosc. 2003, 57, 20A–42A. [Google Scholar] [CrossRef]
- Sparen, A.; Hartman, M.; Fransson, M.; Johansson, J.; Svensson, O. Matrix Effects in Quantitative Assessment of Pharmaceu-tical Tablets Using Transmission Raman and Near-Infrared (NIR) Spectroscopy. Appl. Spectrosc. 2015, 69, 580–589. [Google Scholar] [CrossRef]
- Fransson, M.; Johansson, J.; Sparén, A.; Svensson, O. Comparison of multivariate methods for quantitative determination with transmission Raman spectroscopy in pharmaceutical formulations. J. Chemom. 2010, 24, 674–680. [Google Scholar] [CrossRef]
- Shih, W.-C. Constrained regularization for noninvasive glucose sensing using Raman spectroscopy. J. Innov. Opt. Health Sci. 2015, 8, 1550022. [Google Scholar] [CrossRef]
- Meredith, T.J.; Goulding, R. Paracetamol. Postgrad Med. J. 1980, 56, 459–473. [Google Scholar] [CrossRef] [Green Version]
- Niedzialkowski, P.; Cebula, Z.; Malinowska, N.; Bialobrzeska, W.; Sobaszek, M.; Ficek, M.; Bogdanowicz, R.; Anand, J.S.; Ossowski, T. Comparison of the paracetamol electrochemical determination using boron-doped diamond electrode and boron-doped carbon nanowalls. Biosens. Bioelectron. 2019, 126, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M.A.; Maher, H.M.; Alzoman, N.Z.; Alshehri, M.M.; Rizk, M.S.; Elshahed, M.S.; Olah, I.V. Capillary electropho-retic determination of antimigraine formulations containing caffeine, ergotamine, paracetamol and domperidone or metoclopramide. J. Chromatogr. Sci. 2013, 51, 502–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciurba, A.; Hancu, G.; Cojocea, L.-M.; Sipos, E.; Todoran, N. Development of new formulation and its evaluation by capillary electrophoresis of tablets containing tramadol hydrochloride and paracetamol. Pharm. Dev. Technol. 2013, 19, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Khodaveisi, J.; Dadfarnia, S.; Haji Shabani, A.M.; Rohani Moghadam, M.; Hormozi-Nezhad, M.R. Artificial neural network assisted kinetic spectrophotometric technique for simultaneous determination of paracetamol and p-aminophenol in pharma-ceutical samples using localized surface plasmon resonance band of silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 138, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Espinosa Bosch, M.; Ruiz Sanchez, A.J.; Sanchez Rojas, F.; Bosch Ojeda, C. Determination of paracetamol: Historical evolution. J. Pharm. Biomed. Anal. 2006, 42, 291–321. [Google Scholar] [CrossRef] [PubMed]
- Shimamura, R.; Koide, T.; Hisada, H.; Inoue, M.; Fukami, T.; Katori, N.; Goda, Y. Pharmaceutical quantification with uni-variate analysis using transmission Raman spectroscopy. Drug Dev. Ind. Pharm. 2019, 45, 1430–1436. [Google Scholar] [CrossRef]
- Steinbach, D.; Anderson, C.A.; McGeorge, G.; Igne, B.; Bondi, R.W.; Drennen, J.K. Calibration Transfer of a Quantitative Transmission Raman PLS Model: Direct Transfer vs. Global Modeling. J. Pharm. Innov. 2017, 12, 347–356. [Google Scholar] [CrossRef]
- Villaumié, J.; Andrews, D.; Geentjens, K.; Igne, B.; McGeorge, G.; Owen, A.; Pedge, N.; Woodward, V. Analytical Method Development Using Transmission Raman Spectroscopy for Pharmaceutical Assays and Compliance with Regulatory Guide-lines—Part II: Practical Implementation Considerations. J. Pharm. Innov. 2018, 14, 245–258. [Google Scholar] [CrossRef]
- Andrews, D.; Geentjens, K.; Igne, B.; McGeorge, G.; Owen, A.; Pedge, N.; Villaumié, J.; Woodward, V. Analytical Method Development Using Transmission Raman Spectroscopy for Pharmaceutical Assays and Compliance with Regulatory Guide-lines—Part I: Transmission Raman Spectroscopy and Method Development. J. Pharm. Innov. 2018, 13, 121–132. [Google Scholar] [CrossRef]
- Moynihan, H.A.; O’Hare, I.P. Spectroscopic characterisation of the monoclinic and orthorhombic forms of paracetamol. Int. J. Pharm. 2002, 247, 179–185. [Google Scholar] [CrossRef]
- Omar, J.; Boix, A.; Ulberth, F. Raman spectroscopy for quality control and detection of substandard painkillers. Vib. Spectrosc. 2020, 111, 103147. [Google Scholar] [CrossRef]
Sample | Mixture ♦ (mg) | Calcium Carbonate (mg) | Pregelled Starch (mg) | API (mg) | Total (mg) | API (%) |
---|---|---|---|---|---|---|
1 * | 266.6 | 992.9 | 1125.9 | 7607.4 | 9992.8 | 76.13 |
2 | 299.2 | 1199.7 | 892.8 | 7591.4 | 9983.1 | 76.04 |
3 * | 300.1 | 1198.0 | 1361.7 | 7122.7 | 9982.5 | 71.35 |
4 * | 300.9 | 783.1 | 889.8 | 8009.9 | 9983.7 | 80.23 |
5 • | 299.4 | 783.1 | 1363.3 | 7560.5 | 10,006.3 | 75.56 |
6 | 379.0 | 990.4 | 790.1 | 7832.2 | 9991.7 | 78.39 |
7 * | 378.6 | 989.5 | 1125.0 | 7500.5 | 9993.6 | 75.05 |
8 | 378.5 | 990.9 | 1464.6 | 7162.5 | 9996.5 | 71.65 |
9 • | 379.0 | 1288.5 | 1125.6 | 7195.3 | 9988.4 | 72.04 |
10 | 377.7 | 693.8 | 1126.0 | 7794.4 | 9991.9 | 78.01 |
11 * | 457.5 | 1198.9 | 889.6 | 7454.0 | 10,000.0 | 74.54 |
12 | 457.6 | 1198.2 | 1362.2 | 6970.3 | 9988.3 | 69.78 |
13 • | 457.2 | 783.7 | 889.9 | 7862.2 | 9993.0 | 78.68 |
14 * | 408.2 | 729.4 | 1271.3 | 6885.2 | 9294.1 | 74.08 |
15 * | 490.1 | 990.3 | 1126.0 | 7400.5 | 10,006.9 | 73.95 |
Sample | HPLC (%) | TRS (%) | Relative Error (%) |
---|---|---|---|
13-1 | 77.74 | 76.84 | −1.16 |
13-2 | 77.34 | 76.62 | −0.93 |
13-3 | 76.95 | 76.74 | −0.27 |
13-4 | 76.87 | 76.78 | −0.12 |
13-5 | 76.67 | 75.07 | −2.09 |
9-1 | 70.46 | 70.30 | −0.23 |
9-2 | 69.55 | 70.17 | 0.89 |
9-3 | 70.26 | 70.34 | 0.11 |
9-4 | 71.35 | 70.59 | −1.07 |
9-5 | 67.62 | 70.13 | 3.71 |
5-1 | 74.24 | 73.61 | −0.85 |
5-2 | 73.86 | 73.63 | −0.31 |
5-3 | 74.67 | 74.27 | −0.54 |
5-4 | 76.36 | 73.90 | −3.22 |
5-5 | 74.40 | 73.21 | −1.60 |
Linear regression equation | y = 0.7672x + 16.79 | ||
R2 | 0.9099 |
Brand | The Model of 150 Spectra 1 | The Model of 152 Spectra 2 | |||||
---|---|---|---|---|---|---|---|
HPLC (%) | TRS (%) | Relative Error (%) | HPLC (%) | TRS (%) | Relative Error (%) | ||
Panadol | 1 | 82.30 | 85.44 | 3.68 | 82.30 | 80.67 | −2.02 |
2 | 80.82 | 85.44 | 5.72 | 80.82 | 80.62 | −0.25 | |
3 | 80.82 | 85.24 | 5.47 | 80.82 | 80.78 | −0.05 | |
Anlipai | 1 | 86.12 | 91.35 | 6.07 | 86.12 | 88.60 | 2.88 |
2 | 85.39 | 91.52 | 7.18 | 85.39 | 88.82 | 4.02 | |
3 | 86.82 | 91.49 | 5.38 | 86.82 | 88.66 | 2.12 | |
Guike | 1 | 84.27 | 90.91 | 7.88 | 84.27 | 87.74 | 4.12 |
2 | 86.02 | 90.72 | 5.46 | 86.02 | 87.49 | 1.71 | |
3 | 85.83 | 88.00 | 2.53 | 85.83 | 84.28 | −1.81 | |
Jinlu | 1 | 80.34 | 87.93 | 9.45 | 80.34 | 79.59 | −0.93 |
2 | 79.87 | 89.00 | 11.43 | 79.87 | 80.95 | 1.35 | |
3 | 78.51 | 88.32 | 12.50 | 78.51 | 79.76 | 1.59 |
Sample | HPLC (%) | TRS (%) | Relative Error (%) |
---|---|---|---|
1 | 79.81 | 82.20 | 2.99 |
2 | 79.45 | 82.33 | 3.62 |
3 | 80.60 | 81.96 | 1.69 |
4 | 81.19 | 81.66 | 0.58 |
5 | 81.86 | 83.02 | 1.42 |
6 | 81.00 | 82.79 | 2.21 |
7 | 80.72 | 82.77 | 2.54 |
8 | 81.23 | 82.32 | 1.34 |
9 | 81.41 | 82.98 | 1.93 |
10 | 80.89 | 82.68 | 2.21 |
11 | 82.38 | 82.96 | 0.70 |
12 | 80.74 | 82.57 | 2.27 |
13 | 81.35 | 82.61 | 1.55 |
14 | 81.92 | 82.66 | 0.90 |
15 | 81.40 | 82.28 | 1.08 |
16 | 81.56 | 82.51 | 1.16 |
17 | 80.58 | 82.16 | 1.96 |
18 | 81.31 | 81.99 | 0.84 |
19 | 81.55 | 82.03 | 0.59 |
20 | 81.72 | 82.12 | 0.49 |
RSD (%) | 0.46 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Wang, N.; Zhu, M.; Qiu, X.; Sun, S.; Liu, Y.; Zhao, T.; Yao, J.; Shan, G. Application of Transmission Raman Spectroscopy in Combination with Partial Least-Squares (PLS) for the Fast Quantification of Paracetamol. Molecules 2022, 27, 1707. https://doi.org/10.3390/molecules27051707
Zhao X, Wang N, Zhu M, Qiu X, Sun S, Liu Y, Zhao T, Yao J, Shan G. Application of Transmission Raman Spectroscopy in Combination with Partial Least-Squares (PLS) for the Fast Quantification of Paracetamol. Molecules. 2022; 27(5):1707. https://doi.org/10.3390/molecules27051707
Chicago/Turabian StyleZhao, Xuejia, Ning Wang, Minghui Zhu, Xiaodan Qiu, Shengnan Sun, Yitong Liu, Ting Zhao, Jing Yao, and Guangzhi Shan. 2022. "Application of Transmission Raman Spectroscopy in Combination with Partial Least-Squares (PLS) for the Fast Quantification of Paracetamol" Molecules 27, no. 5: 1707. https://doi.org/10.3390/molecules27051707
APA StyleZhao, X., Wang, N., Zhu, M., Qiu, X., Sun, S., Liu, Y., Zhao, T., Yao, J., & Shan, G. (2022). Application of Transmission Raman Spectroscopy in Combination with Partial Least-Squares (PLS) for the Fast Quantification of Paracetamol. Molecules, 27(5), 1707. https://doi.org/10.3390/molecules27051707