Unveiling the Effect of Solvents on Crystallization and Morphology of 2D Perovskite in Solvent-Assisted Method
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Subsection
3.2. Device Fabrication
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berhe, T.A.; Su, W.N.; Chen, C.H.; Pan, C.J.; Cheng, J.H.; Chen, H.M.; Tsai, M.C.; Chen, L.Y.; Dubale, A.A.; Hwang, B.J. Organometal halide perovskite solar cells: Degradation and stability. Energy Environ. Sci. 2016, 9, 323–356. [Google Scholar] [CrossRef]
- Fu, W.F.; Liu, H.B.; Shi, X.L.; Zuo, D.; Li, X.S.; Jen, L.K.Y. Tailoring the Functionality of Organic Spacer Cations for Efficient and Stable Quasi-2D Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1900221. [Google Scholar] [CrossRef]
- Tsai, H.; Nie, W.; Blancon, J.-C.; Toumpos, C.C.S.; Asadpour, R.; Harutyunyan, B.; Neukirch, A.J.; Verduzco, R.; Crochet, J.J.; Tretiak, S.; et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 2016, 536, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Stoumpos, C.C.; Cao, D.H.; Clark, D.J.; Young, J.; Rondinelli, J.M.; Jang, J.I.; Hupp, J.T.; Kanatzidis, M.G. Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chem. Mater. 2016, 28, 2852–2867. [Google Scholar] [CrossRef]
- Zheng, Y.; Niu, T.; Qiu, J.; Chao, L.; Li, B.; Yang, Y.; Li, Q.; Lin, C.; Gao, X.; Zhang, C.; et al. Oriented and Uniform Distribution of Dion–Jacobson Phase Perovskites Controlled by Quantum Well Barrier Thickness. Sol. RRL 2019, 3, 1900090. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, H.P.; Tong, J.H.; Berry, J.J.; Beard, M.C.; Zhu, K. Advances in two-dimensional organic-inorganic hybrid perovskites. Energy Environ. Sci. 2020, 13, 1154–1186. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, J.J.; Wang, M.S.; Bai, Y.J.; Zou, H.; Keum, J.K.; Tao, R.M.; Xu, H.X.; Yu, H.M.; Haacke, S.; et al. Uniform Permutation of Quasi-2D Perovskites by Vacuum Poling for Efficient, High-Fill-Factor Solar Cells. Joule 2019, 3, 3061–3071. [Google Scholar] [CrossRef]
- Wang, J.F.; Luo, S.Q.; Lin, Y.; Chen, Y.F.; Deng, Y.H.; Li, Z.M.; Meng, K.; Chen, G.; Huang, T.T.; Xiao, S.; et al. Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nat. Commun. 2020, 11, 582. [Google Scholar] [CrossRef]
- Fu, W.F.; Wang, J.; Zuo, L.J.; Gao, K.; Liu, F.; Ginger, D.S.; Jen, A.K.Y. Two-Dimensional Perovskite Solar Cells with 14.1% Power Conversion Efficiency and 0.68% External Radiative Efficiency. ACS Energy Lett. 2018, 3, 2086–2093. [Google Scholar] [CrossRef]
- Gao, L.G.; Zhang, F.; Xiao, C.X.; Chen, X.H.; Larson, B.W.; Berry, J.J.; Zhu, K. Improving Charge Transport via Intermediate-Controlled Crystal Growth in 2D Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1901652. [Google Scholar] [CrossRef]
- Ren, H.; Yu, S.D.; Chao, L.F.; Xia, Y.D.; Sun, Y.H.; Zuo, S.W.; Li, F.; Niu, T.T.; Yang, Y.G.; Ju, H.X.; et al. Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 2020, 14, 154–163. [Google Scholar] [CrossRef]
- Wu, G.B.; Li, X.; Zhou, J.Y.; Zhang, J.Q.; Zhang, X.N.; Leng, X.Y.; Wang, P.J.; Chen, M.; Zhang, D.Y.; Zhao, K.; et al. Fine Multi-Phase Alignments in 2D Perovskite Solar Cells with Efficiency over 17% via Slow Post-Annealing. Adv. Mater. 2019, 31, 1903889. [Google Scholar] [CrossRef]
- Zhao, X.M.; Liu, T.R.; Kaplan, A.B.; Yao, C.; Loo, Y.L. Accessing Highly Oriented Two-Dimensional Perovskite Films via Solvent-Vapor Annealing for Efficient and Stable Solar Cells. Nano Lett. 2020, 20, 8880–8889. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.K.; Wang, M.; Lei, Y.T.; Ci, Z.P.; Jin, Z.W. Crystallization Kinetics in 2D Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 2002558. [Google Scholar] [CrossRef]
- Huang, F.; Siffalovic, P.; Li, B.; Yang, S.X.; Zhang, L.X.; Nadazdy, P.; Cao, G.Z.; Tian, J.J. Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti-solvent for solar cells. Chem. Eng. J. 2020, 394, 124959. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Wu, G.; Yang, S.D.; Fu, W.F.; Zhang, Z.Q.; Chen, C.; Liu, W.Q.; Yan, J.L.; Yang, W.T.; Chen, H.Z. Vertically Oriented 2D Layered Perovskite Solar Cells with Enhanced Efficiency and Good Stability. Small 2017, 13, 1700611. [Google Scholar] [CrossRef]
- Song, J.N.; Zhou, G.Q.; Chen, W.; Zhang, Q.Z.; Ali, J.; Hu, Q.; Wang, J.; Wang, C.; Feng, W.; Djurisic, A.B.; et al. Unraveling the Crystallization Kinetics of 2D Perovskites with Sandwich-Type Structure for High-Performance Photovoltaics. Adv. Mater. 2020, 32, 2002784. [Google Scholar] [CrossRef]
- Qiu, J.; Zheng, Y.T.; Xia, Y.D.; Chao, L.F.; Chen, Y.H.; Huang, W. Rapid Crystallization for Efficient 2D Ruddlesden-Popper (2DRP) Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1806831. [Google Scholar] [CrossRef]
- Su, Y.J.; Xu, C.; Gao, L.G.; Wei, G.Y.; Ma, T.L. Solvent-assisted crystallization of two-dimensional Ruddlesden-Popper perovskite. Chem. Commun. 2021, 57, 10552–10555. [Google Scholar] [CrossRef]
- Jin, X.; Yang, L.; Wang, X.F. Efficient Two-Dimensional Perovskite Solar Cells Realized by Incorporation of Ti3C2Tx MXene as Nano-Dopants. Nano-Micro Lett. 2021, 13, 68. [Google Scholar] [CrossRef]
- Huang, P.; Chen, Q.Y.; Zhang, K.C.; Yuan, L.G.; Zhou, Y.; Song, B.; Li, Y.F. 21.7% efficiency achieved in planar n-i-p perovskite solar cells via interface engineering with water-soluble 2D TiS2. J. Mater. Chem. A 2019, 7, 6213–6219. [Google Scholar] [CrossRef]
- Xie, Y.L.; Yu, H.Y.; Duan, J.S.; Xu, L.; Hu, B. Enhancing Device Performance in Quasi-2D Perovskite ((BA)(2)(MA)(3)Pb4I13) Solar Cells Using PbCl2 Additives. ACS Appl. Mater. Interfaces 2020, 12, 11190–11196. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Yang, Y.R.; Gu, K.; Liu, C.M.; Zheng, J.; Gong, X. Novel Quasi-2D Perovskites for Stable and Efficient Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 51744–51755. [Google Scholar] [CrossRef] [PubMed]
Voc (V) | Jsc (mA/cm2) | FF | PCE (%) | ||
---|---|---|---|---|---|
DMPU | best | 1.01 | 19.94 | 0.68 | 13.69 |
average | 1.00 ± 0.06 | 17.02 ± 0.98 | 0.67 ± 0.08 | 12.19 ± 0.93 | |
DMAC | Best | 1.01 | 15.14 | 0.69 | 10.58 |
average | 0.97 ± 0.06 | 14.18 ± 1.83 | 0.68 ± 0.07 | 8.48 ± 0.98 | |
DMAC | best | 1.02 | 14.94 | 0.65 | 9.88 |
average | 0.97 ± 0.06 | 13.78 ± 0.96 | 0.63 ± 0.08 | 7.94 ± 1.12 | |
NMP | best | 0.99 | 13.75 | 0.63 | 8.49 |
average | 0.97 ± 0.09 | 12.02 ± 1.02 | 0.63 ± 0.05 | 5.89 ± 1.27 | |
GBL | best | 0.99 | 13.44 | 0.59 | 7.80 |
average | 0.98 ± 0.07 | 10.46 ± 1.7 | 0.59 ± 0.05 | 6.0 ± 1.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Xue, J.; Liu, A.; Ma, T.; Gao, L. Unveiling the Effect of Solvents on Crystallization and Morphology of 2D Perovskite in Solvent-Assisted Method. Molecules 2022, 27, 1828. https://doi.org/10.3390/molecules27061828
Su Y, Xue J, Liu A, Ma T, Gao L. Unveiling the Effect of Solvents on Crystallization and Morphology of 2D Perovskite in Solvent-Assisted Method. Molecules. 2022; 27(6):1828. https://doi.org/10.3390/molecules27061828
Chicago/Turabian StyleSu, Yingjie, Jianqiang Xue, Anmin Liu, Tingli Ma, and Liguo Gao. 2022. "Unveiling the Effect of Solvents on Crystallization and Morphology of 2D Perovskite in Solvent-Assisted Method" Molecules 27, no. 6: 1828. https://doi.org/10.3390/molecules27061828
APA StyleSu, Y., Xue, J., Liu, A., Ma, T., & Gao, L. (2022). Unveiling the Effect of Solvents on Crystallization and Morphology of 2D Perovskite in Solvent-Assisted Method. Molecules, 27(6), 1828. https://doi.org/10.3390/molecules27061828