Bioremediation of Perfluoroalkyl Substances (PFAS) by Anaerobic Digestion: Effect of PFAS on Different Trophic Groups and Methane Production Accelerated by Carbon Materials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Toxicity of PFAS towards Different Anaerobic Trophic Groups
2.2. Evaluation of the Effect of PFAS and CM on CH4 Production from VFA
2.3. Toxicity Assessment towards V. fischeri
2.4. Biomethane Production from Sewage Sludge Contaminated with PFAS in the Presence of AC
3. Materials and Methods
3.1. Chemicals
3.2. Carbon Nanomaterials
3.3. Specify Methanogenic Activity
3.4. Anaerobic Assays: Evaluation of the Effect of CM and PFAS on CH4 Production from VFA
3.5. Toxicity Assessment with Vibrio fischeri
3.6. Anaerobic Biodegradability of Sewage Sludge Contaminated with PFAS
3.7. Analytical Methods
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yu, Y.; Zhang, K.; Li, Z.; Ren, C.; Chen, J.; Lin, Y.-H.; Liu, J.; Men, Y. Microbial Cleavage of C–F Bonds in Two C6 Per- and Polyfluorinated Compounds via Reductive Defluorination. Environ. Sci. Technol. 2020, 54, 14393–14402. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, N.J.M.; Temme, H.R.; Simcik, M.F.; Novak, P.J. Aqueous film forming foam and associated perfluoroalkyl substances inhibit methane production and Co-contaminant degradation in an anaerobic microbial community. Environ. Sci. Process. Impacts 2019, 21, 1915–1925. [Google Scholar] [CrossRef]
- Jha, G.; Kankarla, V.; McLennon, E.; Pal, S.; Sihi, D.; Dari, B.; Diaz, D.; Nocco, M. Per- and Polyfluoroalkyl Substances (PFAS) in Integrated Crop- Livestock Systems: Environmental Exposure and Human Health Risks. Int. J. Environ. Res. Public Health 2021, 18, 12550. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Jaffé, P.R. Defluorination of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) by Acidimicrobium sp. Strain A6. Environ. Sci. Technol. 2019, 53, 11410–11419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P.J. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Szostek, B.; Buck, R.C.; Folsom, P.W.; Sulecki, L.M.; Capka, V.; Berti, W.R.; Gannon, J.T. Fluorotelomer Alcohol Biodegradation Direct Evidence that Perfluorinated Carbon Chains Breakdown. Environ. Sci. Technol. 2005, 39, 7516–7528. [Google Scholar] [CrossRef] [PubMed]
- Houtz, E.F.; Sedlak, D.L. Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff. Environ. Sci. Technol. 2012, 46, 9342–9349. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mejia Avendaño, S. Microbial degradation of polyfluoroalkyl chemicals in the environment: A review. Environ. Int. 2013, 61, 98–114. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Stasinakis, A.S. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Sci. Total Environ. 2015, 524–525, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Kwon, B.G.; Lim, H.-J.; Na, S.-H.; Choi, B.-I.; Shin, D.-S.; Chung, S.-Y. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant. Chemosphere 2014, 109, 221–225. [Google Scholar] [CrossRef]
- Zhang, S.; Szostek, B.; McCausland, P.K.; Wolstenholme, B.W.; Lu, X.; Wang, N.; Buck, R.C. 6:2 and 8:2 Fluorotelomer Alcohol Anaerobic Biotransformation in Digester Sludge from a WWTP under Methanogenic Conditions. Environ. Sci. Technol. 2013, 47, 4227–4235. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; DeWitt, J.C.; Higgins, C.P.; Cousins, I.T. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environ. Sci. Technol. 2017, 51, 2508–2518. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.M.J.; Munoz, G.; Bottos, E.M.; Duy, S.V.; Sauvé, S.; Liu, J.; Van Hamme, J.D. Degradation and defluorination of 6:2 fluorotelomer sulfonamidoalkyl betaine and 6:2 fluorotelomer sulfonate by Gordonia sp. strain NB4−1Y under sulfur-limiting conditions. Sci. Total Environ. 2019, 647, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.R.; Soares, O.S.G.P.; Pereira, M.F.R.; Alves, M.M.; Pereira, L. Tailoring Carbon Nanotubes to Enhance their Efficiency as Electron Shuttle on the Biological Removal of Acid Orange 10 Under Anaerobic Conditions. Nanomaterials 2020, 10, 2496. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.R.; Cavaleiro, A.J.; Soares, O.S.G.P.; Braga, C.S.N.; Salvador, A.F.; Pereira, M.F.R.; Alves, M.M.; Pereira, L. Detoxification of Ciprofloxacin in an Anaerobic Bioprocess Supplemented with Magnetic Carbon Nanotubes: Contribution of Adsorption and Biodegradation Mechanisms. Int. J. Mol. Sci. 2021, 22, 2932. [Google Scholar] [CrossRef] [PubMed]
- Toral-Sánchez, E.; Rangel-Mendez, J.R.; Hurt, R.H.; Ascacio Valdés, J.A.; Aguilar, C.N.; Cervantes, F.J. Novel application of magnetic nano-carbon composite as redox mediator in the reductive biodegradation of iopromide in anaerobic continuous systems. Appl. Microbiol. Biotechnol. 2018, 102, 8951–8961. [Google Scholar] [CrossRef] [PubMed]
- Stasinakis, A.S. Review on the fate of emerging contaminants during sludge anaerobic digestion. Bioresour. Technol. 2012, 121, 432–440. [Google Scholar] [CrossRef]
- Lakshminarasimman, N.; Gewurtz, S.B.; Parker, W.J.; Smyth, S.A. Removal and formation of perfluoroalkyl substances in Canadian sludge treatment systems–A mass balance approach. Sci. Total Environ. 2021, 754, 142431. [Google Scholar] [CrossRef] [PubMed]
- van der Zee, F.P.; Bouwman, R.H.M.; Strik, D.P.B.T.B.; Lettinga, G.; Field, J.A. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnol. Bioeng. 2001, 75, 691–701. [Google Scholar] [CrossRef]
- Pereira, L.; Pereira, R.; Pereira, M.F.R.; Alves, M.M. Effect of different carbon materials as electron shuttles in the anaerobic biotransformation of nitroanilines. Biotechnol. Bioeng. 2016, 113, 1194–1202. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.; Pereira, R.; Pereira, M.F.R.; van der Zee, F.P.; Cervantes, F.J.; Alves, M.M. Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction. J. Hazard. Mater. 2010, 183, 931–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, L.; Dias, P.; Soares, O.S.G.P.; Ramalho, P.S.F.; Pereira, M.F.R.; Alves, M.M. Synthesis, characterization and application of magnetic carbon materials as electron shuttles for the biological and chemical reduction of the azo dye Acid Orange 10. Appl. Catal. B Environ. 2017, 212, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, M.A.; Jabbari, V.; Imam, M.A.; Castro, E.; Kim, H.; Curry, M.L.; Valles-Rosales, D.J.; Noveron, J.C. Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation. Sci. Total Environ. 2020, 698, 134214. [Google Scholar] [CrossRef] [PubMed]
- van der Zee, F.P.; Bisschops, I.A.E.; Lettinga, G.; Field, J.A. Activated Carbon as an Electron Acceptor and Redox Mediator during the Anaerobic Biotransformation of Azo Dyes. Environ. Sci. Technol. 2003, 37, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Silva, L.; Meisel, L.; Lino, C.; Pena, A. Environmental impact of pharmaceuticals from Portuguese wastewaters: Geographical and seasonal occurrence, removal and risk assessment. Environ. Res. 2015, 136, 108–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, J.L.; Pereira, M.F.R. The role of surface chemistry in catalysis with carbons. Catal. Today 2010, 150, 2–7. [Google Scholar] [CrossRef]
- Cadena Ramírez, A.; Texier, A.-C.; Martínez, I.G.; Hernández, J.G. Inhibitory effects of quinoid redox mediators on a denitrifying culture. Environ. Technol. 2019, 40, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Amezquita-Garcia, H.J.; Rangel-Mendez, J.R.; Cervantes, F.J.; Razo-Flores, E. Activated carbon fibers with redox-active functionalities improves the continuous anaerobic biotransformation of 4-nitrophenol. Chem. Eng. J. 2016, 286, 208–215. [Google Scholar] [CrossRef]
- Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Vagliasindi, F.G.A.; Roccaro, P. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res. 2020, 171, 115381. [Google Scholar] [CrossRef]
- Hartono, M.R.; Kushmaro, A.; Chen, X.; Marks, R.S. Probing the toxicity mechanism of multiwalled carbon nanotubes on bacteria. Environ. Sci. Pollut. Res. 2018, 25, 5003–5012. [Google Scholar] [CrossRef]
- Du, Z.; Deng, S.; Bei, Y.; Huang, Q.; Wang, B.; Huang, J.; Yu, G. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review. J. Hazard. Mater. 2014, 274, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, X.; Mamadiev, M.; Wang, Z. Sorption of perfluorooctane sulfonate and perfluorooctanoate on polyacrylonitrile fiber-derived activated carbon fibers: In comparison with activated carbon. RSC Adv. 2017, 7, 927–938. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; He, Q.; Wang, M.; Zhang, W.; Liang, Y. Sorption of perfluoroalkylated substances (PFASs) onto granular activated carbon and biochar. Environ. Technol. 2021, 42, 1798–1809. [Google Scholar] [CrossRef] [PubMed]
- Weathers, T.S.; Harding-Marjanovic, K.; Higgins, C.P.; Alvarez-Cohen, L.; Sharp, J.O. Perfluoroalkyl Acids Inhibit Reductive Dechlorination of Trichloroethene by Repressing Dehalococcoides. Environ. Sci. Technol. 2016, 50, 240–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boltes, K.; Rosal, R.; García-Calvo, E. Toxicity of mixtures of perfluorooctane sulphonic acid with chlorinated chemicals and lipid regulators. Chemosphere 2012, 86, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Harding-Marjanovic, K.C.; Yi, S.; Weathers, T.S.; Sharp, J.O.; Sedlak, D.L.; Alvarez-Cohen, L. Effects of Aqueous Film-Forming Foams (AFFFs) on Trichloroethene (TCE) Dechlorination by a Dehalococcoides mccartyi-Containing Microbial Community. Environ. Sci. Technol. 2016, 50, 3352–3361. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Herrera, V.; Field, J.A.; Luna-Velasco, A.; Sierra-Alvarez, R. Microbial toxicity and biodegradability of perfluorooctane sulfonate (PFOS) and shorter chain perfluoroalkyl and polyfluoroalkyl substances (PFASs). Environ. Sci. Process. Impacts 2016, 18, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources: An Introduction; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008. [Google Scholar]
- Gonçalves, A.G.; Figueiredo, J.L.; Órfão, J.J.M.; Pereira, M.F.R. Influence of the surface chemistry of multi-walled carbon nanotubes on their activity as ozonation catalysts. Carbon N. Y. 2010, 48, 4369–4381. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C.; Thavorn-amornsri, T.; Pereira, M.F.R.; Serp, P.; Figueiredo, J.L. Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catal. Today 2012, 186, 29–34. [Google Scholar] [CrossRef]
- Cho, H.-H.; Huang, H.; Schwab, K. Effects of Solution Chemistry on the Adsorption of Ibuprofen and Triclosan onto Carbon Nanotubes. Langmuir 2011, 27, 12960–12967. [Google Scholar] [CrossRef]
- Silva, A.R.; Alves, M.M.; Pereira, L. Progress and prospects of applying carbon-based materials (and nanomaterials) to accelerate anaerobic bioprocesses for the removal of micropollutants. Microb. Biotechnol. 2021, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Goss, K.-U. The pKa Values of PFOA and Other Highly Fluorinated Carboxylic Acids. Environ. Sci. Technol. 2008, 42, 456–458. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.-J.; Li, W.-W.; Lam, P.K.S.; Yu, H.-Q. Insights into perfluorooctane sulfonate photodegradation in a catalyst-free aqueous solution. Sci. Rep. 2015, 5, 9353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Wang, S.; Liang, D.; Li, N. Conductive materials in anaerobic digestion: From mechanism to application. Bioresour. Technol. 2020, 298, 122403. [Google Scholar] [CrossRef] [PubMed]
- Parsons, J.R.; Sáez, M.; Dolfing, J.; de Voogt, P. Biodegradation of Perfluorinated Compounds. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2008; pp. 53–71. [Google Scholar]
- Messele, S.A.; Soares, O.S.G.P.; Órfão, J.J.M.; Bengoa, C.; Stüber, F.; Fortuny, A.; Fabregat, A.; Font, J. Effect of activated carbon surface chemistry on the activity of ZVI/AC catalysts for Fenton-like oxidation of phenol. Catal. Today 2015, 240, 73–79. [Google Scholar] [CrossRef]
- ISO 11348-1; Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent Bacteria Test)—Part 1: Method Using Freshly Prepared Bacteria. International Organisation for Standardization, 1998. Available online: https://www.iso.org/standard/19308.html (accessed on 16 November 2021).
- ISO 11348-3; Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent Bacteria Test)—Part 3: Method Using Freeze-Dried Bacteria. International Organisation for Standardization, 2007. Available online: https://www.iso.org/standard/40518.html (accessed on 16 November 2021).
- Fernández-Alba, A.R.; Hernando, M.D.; Piedra, L.; Chisti, Y. Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal. Chim. Acta 2002, 456, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, E.; Picado, A.; Paixão, S.M.; Silva, L.; Cunha, M.A.; Leitão, S.; Moura, I.; Cortez, C.; Brito, F. Ecotoxicity tests in the environmental analysis of wastewater treatment plants: Case study in Portugal. J. Hazard. Mater. 2009, 163, 665–670. [Google Scholar] [CrossRef]
- Sinclair, G.M.; Long, S.M.; Jones, O.A.H. What are the effects of PFAS exposure at environmentally relevant concentrations? Chemosphere 2020, 258, 127340. [Google Scholar] [CrossRef]
- Ji, K.; Kim, Y.; Oh, S.; Ahn, B.; Jo, H.; Choi, K. Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid on freshwater macroinvertebrates (Daphnia magna and Moina macrocopa) and fish (Oryzias latipes). Environ. Toxicol. Chem. 2008, 27, 2159–2168. [Google Scholar] [CrossRef]
- Silva, A.R.; Sousa, C.; Exner, D.; Schwaiger, R.; Alves, M.M.; Petrovykh, D.Y.; Pereira, L. pH-Induced Modulation of Vibrio fischeri Population Life Cycle. Chemosensors 2021, 9, 283. [Google Scholar] [CrossRef]
- Yi, L.; Chai, L.; Xie, Y.; Peng, Q.; Peng, Q. Isolation, identification, and degradation performance of a PFOA-degrading strain. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Chetverikov, S.P.; Sharipov, D.A.; Korshunova, T.Y.; Loginov, O.N. Degradation of perfluorooctanyl sulfonate by strain Pseudomonas plecoglossicida 2.4-D. Appl. Biochem. Microbiol. 2017, 53, 533–538. [Google Scholar] [CrossRef]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.; Guwy, A.; Kalyuzhnyi, S.; Jenicek, P. Defining the Biomethane Potential (BMP) of Solid Organic Wastes and Energy Crops: A Proposed Protocol for Batch Assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, M.M.; Vieira, J.A.M.; Pereira, R.M.Á.; Pareira, M.A.; Mota, M. Effects of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors, Part II: Oleic acid toxicity and biodegradability. Water Res. 2001, 35, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.-C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008, 71, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffière, P.; Carballa, M.; de Wilde, V.; et al. Towards a standardization of biomethane potential tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Qu, Y.; Huang, J.; Cagnetta, G.; Yu, G.; Weber, R. First assessment on degradability of sodium p-perfluorous nonenoxybenzene sulfonate (OBS), a high volume alternative to perfluorooctane sulfonate in fire-fighting foams and oil production agents in China. RSC Adv. 2017, 7, 46948–46957. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.V.; Duarte, T.; Costa, J.C.; Cavaleiro, A.J.; Pereira, M.A.; Alves, M.M. Improvement of Biomethane Production from Sewage Sludge in Co-digestion with Glycerol and Waste Frying Oil, Using a Design of Experiments. BioEnergy Res. 2018, 11, 763–771. [Google Scholar] [CrossRef]
Concentration (mg L−1) | Specific Methanogenic Activity Inhibition (%) | |||
---|---|---|---|---|
Acetate (30 mmol L−1) | VFA Mixture (10 mmol L−1 Acetate; 10 mmol L−1 Propionate; 5 mmol L−1 Butyrate) | H2/CO2 (80:20 % v/v, at 2 × 105 Pa) | ||
PFOA | 0.1 | 6.6 ± 5.0 | 7.9 ± 4.8 | 0 |
1 | 7.5 ± 4.2 | 11.3 ± 2.9 | 8.6 ± 2.6 | |
5 | 8.9 ± 3.7 | 16.7 ± 8.5 | 0 | |
10 | 12.5 ± 0.5 | 14.8 ± 6.5 | 0 | |
25 | 16.9 ± 6.0 | 18.7 ± 4.9 | 0 | |
50 | 16.0 ± 6.1 | 21.6 ± 2.4 | 0 | |
100 | 15.0 ± 1.4 | 25.9 ± 3.4 | 0 | |
PFOS | 0.1 | 4.4 ± 2.4 | 14.8 ± 5.1 | 0 |
1 | 6.6 ± 5.3 | 20.4 ± 3.9 | 8.8 ± 4.4 | |
4 | 8.8 ± 3.1 | 22.7 ± 1.1 | 6.8 ± 3.5 | |
8 | 11.4 ± 6.1 | 24.2 ± 4.7 | 8.0 ± 3.1 | |
20 | 13.1 ± 1.9 | 24.1 ± 3.3 | 0 | |
40 | 23.1 ± 2.0 | 27.5 ± 6.4 | 2.5 ± 0.8 | |
80 | 24.5 ± 6.0 | 30.4 ± 2.4 | 0 |
Samples | CH4 Production a (L·kg−1·d−1) | ||
---|---|---|---|
Biotic assays (AGS + VFA) | Control without PFAS | 95.4 ± 0.6 | |
PFOA | PFOS | ||
No CM | 61.0 ± 5.2 | 51.2 ± 1.5 | |
CNT | 80.8 ± 6.8 | 68.3 ± 4.5 | |
AC | 94.0 ± 2.4 | 92.1 ± 1.2 | |
AC-HNO3 | 81.9 ± 2.0 | 68.7 ± 10.2 | |
Blank (AGS without VFA) | 0 | 0.9 ± 0.2 |
Sample | CNT | AC | AC-HNO3 |
---|---|---|---|
SBET (±10 m2 g−1) | 201 | 1002 | 852 |
Vp (±0.005 cm3 g−1) | 0.416 | 0.525 | 0.446 |
pHPZC (±0.2) | 6.6 | 8.4 | 4.1 |
Carboxylic acids (μmol g−1) | n.d. | 110 | 378 |
Carboxylic anhydrides (μmol g−1) | n.d. | 36 | 288 |
Carbonyl/quinones (μmol g−1) | n.d. | 306 | 1130 |
Phenols (μmol g−1) | n.d. | 228 | 815 |
Lactones (μmol g−1) | n.d. | 18 | 88 |
CO (±20 μmol g−1) | 200 | 598 | 2311 |
CO2 (±20 μmol g−1) | 23 | 164 | 754 |
N (%) a | 0.00 | 0.0 | 1.3 |
C (%) a | 99.8 | 88.8 | 89.1 |
H (%) a | 0.11 | 0.4 | 0.9. |
S (%) a | 0.00 | 0.6 | 0.8 |
O (%) a | 0.06 | n.d. | n.d. |
Samples | INH (%) | ||
---|---|---|---|
PFOA | PFOS | ||
Biotic assays | No CM | 60 ± 0.2 | 53 ± 6.4 |
CNT | 49 ± 0.5 | 40 ± 6.4 | |
AC | 31 ± 4.9 | 38 ± 4.4 | |
AC-HNO3 | 37 ± 2.5 | 58 ± 4.6 | |
Abiotic assays | CNT | 27 ± 7.4 | 30 ± 0.3 |
AC | 14 ± 1.9 | 21 ± 1.5 | |
AC-HNO3 | 26 ± 3.1 | 32 ± 2.0 | |
Controls | PFAS | 63.3 ± 0.4 | 58.3 ± 7.3 |
Anaerobic medium | 4.9 ± 0.9 | ||
Control (AGS + VFA) | 15 ± 6.7 | ||
Positive control (K2Cr2O7) | 90.8 ± 0.3 |
Samples | MP a (%, mg·mg−1) | BMP b (L·kg−1) | |||
---|---|---|---|---|---|
No CM | AC | No CM | AC | ||
SS | 42.0 ± 3.0 | 40 ± 1.0 | 224 ± 16 | 212 ± 5 | |
SS + PFOA (g L−1) | 0.1 | 41.0 ± 1.1 | 42.6 ± 1.4 | 217 ± 6 | 226 ± 7 |
1 | 8.0 ± 0.3 | 8.9 ± 1.2 | 43 ± 2 | 47 ± 6 | |
1.6 | 5.9 ± 0.1 | 6.9 ± 2.7 | 31 ± 1 | 36 ± 14 | |
2 | 3.9 ± 0.3 | 3.6 ± 0.3 | 21 ± 2 | 20 ± 2 | |
3.4 | 3.0 ± 0.1 | 3.0 ± 0.4 | 16 ± 1 | 16 ± 2 | |
SS + PFOS (g L−1) | 0.1 | 42.8 ± 3.8 | 41.9 ± 0.9 | 227 ± 20 | 223 ± 5 |
1 | 43.9 ± 1.7 | 46.0 ± 1.4 | 230 ± 9 | 244 ± 7 | |
1.2 | 52.8 ± 2.4 | 59.1 ± 6.2 | 280 ± 13 | 313 ± 33 | |
1.6 | 22.8 ± 1.9 | 22.2 ± 1.6 | 121 ± 10 | 118 ± 9 | |
3.5 | 15.8 ± 1.4 | 14.8 ± 4.3 | 84 ± 8 | 78 ± 23 | |
Control (cellulose) | 90 ± 3 | 408 ± 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.R.; Duarte, M.S.; Alves, M.M.; Pereira, L. Bioremediation of Perfluoroalkyl Substances (PFAS) by Anaerobic Digestion: Effect of PFAS on Different Trophic Groups and Methane Production Accelerated by Carbon Materials. Molecules 2022, 27, 1895. https://doi.org/10.3390/molecules27061895
Silva AR, Duarte MS, Alves MM, Pereira L. Bioremediation of Perfluoroalkyl Substances (PFAS) by Anaerobic Digestion: Effect of PFAS on Different Trophic Groups and Methane Production Accelerated by Carbon Materials. Molecules. 2022; 27(6):1895. https://doi.org/10.3390/molecules27061895
Chicago/Turabian StyleSilva, Ana Rita, Maria Salomé Duarte, Maria Madalena Alves, and Luciana Pereira. 2022. "Bioremediation of Perfluoroalkyl Substances (PFAS) by Anaerobic Digestion: Effect of PFAS on Different Trophic Groups and Methane Production Accelerated by Carbon Materials" Molecules 27, no. 6: 1895. https://doi.org/10.3390/molecules27061895
APA StyleSilva, A. R., Duarte, M. S., Alves, M. M., & Pereira, L. (2022). Bioremediation of Perfluoroalkyl Substances (PFAS) by Anaerobic Digestion: Effect of PFAS on Different Trophic Groups and Methane Production Accelerated by Carbon Materials. Molecules, 27(6), 1895. https://doi.org/10.3390/molecules27061895