Are Vitamin E Supplementation Beneficial for Female Gynaecology Health and Diseases?
Abstract
:1. Introduction
2. Vitamin E in Female Fertility, Pregnancy, and Reproductive Health
3. Vitamin E and Reproductive Hormones
4. Vitamin E Supplementation on Pregnancy Outcome in Assisted Reproductive Technologies
5. Vitamin E in Female Gynaecology Diseases
6. Roles of Vitamin E in Gynaecologic Cancer
7. Conclusions and Future Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, H.M.; Bishop, K.S. On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 1922, 56, 650–651. [Google Scholar] [CrossRef] [Green Version]
- Olcott, H.S.; Emerson, O.H. Antioxidants and the Autoxidation of Fats. IX. The Antioxidant Properties of the Tocopherols. J. Am. Chem. Soc. 1937, 59, 1008–1009. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Peisker, M. Utilization of stereoisomers from alpha-tocopherol in livestock animals. J. Anim. Physiol. Anim. Nutr. 2009, 94, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The Role of Vitamin E in Human Health and Some Diseases. Sultan Qaboos Univ. Med. J. 2014, 14, e157–e165. [Google Scholar] [PubMed]
- Le, N.K.; Kesayan, T.; Chang, J.Y.; Rose, D.Z. Cryptogenic Intracranial Hemorrhagic Strokes Associated with Hypervitaminosis E and Acutely Elevated α-Tocopherol Levels. J. Stroke Cerebrovasc. Dis. 2020, 29, 104747. [Google Scholar] [CrossRef] [PubMed]
- Owen, K.N.; Dewald, O. Vitamin E Toxicity; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Bowry, V.; Ingold, K.U.; Stocker, R. Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem. J. 1992, 288 Pt 2, 341–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santanam, N.; Parthasarathy, S. Paradoxical actions of antioxidants in the oxidation of low density lipoprotein by peroxidases. J. Clin. Investig. 1995, 95, 2594–2600. [Google Scholar] [CrossRef]
- Manan, N.A.; Mohamed, N.; Shuid, A.N. Effects of Low-Dose versus High-Doseγ-Tocotrienol on the Bone Cells Exposed to the Hydrogen Peroxide-Induced Oxidative Stress and Apoptosis. Evid. Based Complement. Altern. Med. 2012, 2012, 680834. [Google Scholar] [CrossRef] [Green Version]
- Mazlan, M.; Then, S.-M.; Top, G.M.; Ngah, W.Z.W. Comparative effects of α-tocopherol and γ-tocotrienol against hydrogen peroxide induced apoptosis on primary-cultured astrocytes. J. Neurol. Sci. 2006, 243, 5–12. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Kelly, F.J.; Salonen, J.T.; Neuzil, J.; Zingg, J.-M.; Azzi, A. The European perspective on vitamin E: Current knowledge and future research. Am. J. Clin. Nutr. 2002, 76, 703–716. [Google Scholar] [CrossRef]
- Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med. 2014, 72, 76–90. [Google Scholar] [CrossRef] [Green Version]
- Zaffarin, A.S.M.; Ng, S.-F.; Ng, M.H.; Hassan, H.; Alias, E. Pharmacology and Pharmacokinetics of Vitamin E: Nanoformulations to Enhance Bioavailability. Int. J. Nanomed. 2020, 15, 9961–9974. [Google Scholar] [CrossRef]
- Galli, F.; Azzi, A.; Birringer, M.; Cook-Mills, J.M.; Eggersdorfer, M.; Frank, J.; Cruciani, G.; Lorkowski, S.; Özer, N.K. Vitamin E: Emerging aspects and new directions. Free Radic. Biol. Med. 2016, 102, 16–36. [Google Scholar] [CrossRef]
- Drotleff, A.M.; Bohnsack, C.; Schneider, I.; Hahn, A.; Ternes, W. Human oral bioavailability and pharmacokinetics of tocotrienols from tocotrienol-rich (tocopherol-low) barley oil and palm oil formulations. J. Funct. Foods 2014, 7, 150–160. [Google Scholar] [CrossRef]
- Richelle, M.; Enslen, M.; Hager, C.; Groux, M.; Tavazzi, I.; Godin, J.-P.; Berger, A.; Métairon, S.; Quaile, S.; Piguet-Welsch, C.; et al. Both free and esterified plant sterols reduce cholesterol absorption and the bioavailability of β-carotene and α-tocopherol in normocholesterolemic humans. Am. J. Clin. Nutr. 2004, 80, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Bardowell, S.A.; Ding, X.; Parker, R.S. Disruption of P450-mediated vitamin E hydroxylase activities alters vitamin E status in tocopherol supplemented mice and reveals extra-hepatic vitamin E metabolism. J. Lipid Res. 2012, 53, 2667–2676. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Arai, H.; Miyata, A.; Tokita, S.; Yamamoto, K.; Tanabe, T.; Inoue, K. Primary structure of alpha-tocopherol transfer protein from rat liver. Homology with cellular retinaldehyde-binding protein. J. Biol. Chem. 1993, 268, 17705–17710. [Google Scholar] [CrossRef]
- Traber, M.G. Mechanisms for the prevention of vitamin E excess. J. Lipid Res. 2013, 54, 2295–2306. [Google Scholar] [CrossRef] [Green Version]
- Traber, M.G.; Kayden, H.J. Preferential incorporation of alpha-tocopherol vs gamma-tocopherol in human lipoproteins. Am. J. Clin. Nutr. 1989, 49, 517–526. [Google Scholar] [CrossRef]
- Gianello, R.; Libinaki, R.; Azzi, A.; Gavin, P.D.; Negis, Y.; Zingg, J.-M.; Holt, P.; Keah, H.-H.; Griffey, A.; Smallridge, A.; et al. α-Tocopheryl phosphate: A novel, natural form of vitamin E. Free Radic. Biol. Med. 2005, 39, 970–976. [Google Scholar] [CrossRef]
- Traber, M.G.; Rudel, L.L.; Burton, G.W.; Hughes, L.; Ingold, K.U.; Kayden, H.J. Nascent VLDL from liver perfusions of cynomolgus monkeys are preferentially enriched in RRR-compared with SRR-alpha-tocopherol: Studies using deuterated tocopherols. J. Lipid Res. 1990, 31, 687–694. [Google Scholar] [CrossRef]
- Birringer, M.; Pfluger, P.; Kluth, D.; Landes, N.; Brigelius-Flohé, R. Identities and Differences in the Metabolism of Tocotrienols and Tocopherols in HepG2 Cells. J. Nutr. 2002, 132, 3113–3118. [Google Scholar] [CrossRef]
- Schmolz, L.; Birringer, M.; Lorkowski, S.; Wallert, M. Complexity of vitamin e metabolism. World J. Biol. Chem. 2016, 7, 14–43. [Google Scholar] [CrossRef]
- Torquato, P.; Giusepponi, D.; Galarini, R.; Bartolini, D.; Piroddi, M.; Galli, F. Analysis of Vitamin E Metabolites. In Vitamin E; The Royal Society of Chemistry: Cambridge, UK, 2019; pp. 208–227. [Google Scholar] [CrossRef]
- Monsen, E.R. Dietary Reference Intakes for the Antioxidant Nutrients: Vitamin C, Vitamin E, Selenium, and Carotenoids. J. Am. Diet. Assoc. 2000, 100, 637–640. [Google Scholar] [CrossRef]
- Rizvi, A.A.; Nikolic, D.; Sallam, H.S.; Montalto, G.; Rizzo, M.; Abate, N. Adipokines and Lipoproteins: Modulation by Antihyperglycemic and Hypolipidemic Agents. Metab. Syndr. Relat. Disord. 2014, 12, 1–10. [Google Scholar] [CrossRef]
- Slover, H.T. Tocopherols in foods and fats. Lipids 1971, 6, 291–296. [Google Scholar] [CrossRef]
- Duncan, S.E.; Chang, H.-H. Implications of Light Energy on Food Quality and Packaging Selection. Adv. Food Nutr. Res. 2012, 67, 25–73. [Google Scholar] [CrossRef]
- Ahsan, H.; Ahad, A.; Siddiqui, W.A. A review of characterization of tocotrienols from plant oils and foods. J. Chem. Biol. 2015, 8, 45–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qureshi, A.A.; Mo, H.; Packer, L.; Peterson, D.M. Isolation and Identification of Novel Tocotrienols from Rice Bran with Hypocholesterolemic, Antioxidant, and Antitumor Properties. J. Agric. Food Chem. 2000, 48, 3130–3140. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Brzuskiewicz, L. Separation of tocopherol and tocotrienol isomers using normal- and reverse-phase liquid chromatography. Anal. Biochem. 1989, 180, 368–373. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Sundaram, C.; Prasad, S.; Kannappan, R. Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Biochem. Pharmacol. 2010, 80, 1613–1631. [Google Scholar] [CrossRef] [Green Version]
- Durani, L.W.; Hamezah, H.S.; Ibrahim, N.F.; Yanagisawa, D.; Nasaruddin, M.L.; Mori, M.; Azizan, K.A.; Damanhuri, H.A.; Makpol, S.; Ngah, W.Z.W.; et al. Tocotrienol-Rich Fraction of Palm Oil Improves Behavioral Impairments and Regulates Metabolic Pathways in AβPP/PS1 Mice. J. Alzheimer’s Dis. 2018, 64, 249–267. [Google Scholar] [CrossRef] [Green Version]
- Bonvehi, J.S.; Coll, F.V.; Rius, I.A. Liquid Chromatographic Determination of Tocopherols and Tocotrienols in Vegetable Oils, Formulated Preparations, and Biscuits. J. AOAC Int. 2000, 3, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.A.; Burger, W.C.; Peterson, D.M.; Elson, C.E. The structure of an inhibitor of cholesterol biosynthesis isolated from barley. J. Biol. Chem. 1986, 261, 10544–10550. [Google Scholar] [CrossRef]
- Guthrie, N.; Gapor, A.; Chambers, A.; Carroll, K.K. Inhibition of Proliferation of Estrogen Receptor—Negative MDA-MB-435 and—Positive MCF-7 Human Breast Cancer Cells by Palm Oil Tocotrienols and Tamoxifen, Alone and in Combination. J. Nutr. 1997, 127, 544S–548S. [Google Scholar] [CrossRef]
- Kato, A.; Yamaoka, M.; Tanaka, A.; Komiyama, K.; Umezawa, I. Physiological Effect of Tocotrienol. J. Jpn. Oil Chem. Soc. 1985, 34, 375–376. [Google Scholar] [CrossRef] [Green Version]
- Sundram, K.; Khor, H.T.; Ong, A.S.; Pathmanathan, R. Effect of dietary palm oils on mammary carcinogenesis in female rats induced by 7,12-dimethylbenz(a)anthracene. Cancer Res. 1989, 49, 1447–1451. [Google Scholar]
- Makpol, S.; Jam, F.A.; Khor, S.C.; Ismail, Z.; Yusof, Y.A.M.; Ngah, W.Z.W. Comparative Effects of Biodynes, Tocotrienol-Rich Fraction, and Tocopherol in Enhancing Collagen Synthesis and Inhibiting Collagen Degradation in Stress-Induced Premature Senescence Model of Human Diploid Fibroblasts. Oxidative Med. Cell. Longev. 2013, 2013, 298574. [Google Scholar] [CrossRef]
- Sen, C.K.; Khanna, S.; Roy, S. Tocotrienol: The Natural Vitamin E to Defend the Nervous System? Ann. N. Y. Acad. Sci. 2004, 1031, 127–142. [Google Scholar] [CrossRef]
- Fang, F.; Kang, Z.; Wong, C. Vitamin E tocotrienols improve insulin sensitivity through activating peroxisome proliferator-activated receptors. Mol. Nutr. Food Res. 2009, 54, 345–352. [Google Scholar] [CrossRef]
- Kim, Y.; Wang, W.; Okla, M.; Kang, I.; Moreau, R.; Chung, S. Suppression of NLRP3 inflammasome by γ-tocotrienol ameliorates type 2 diabetes. J. Lipid Res. 2016, 57, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Selvaraju, T.R.; Khaza’Ai, H.; Vidyadaran, S.; Abd Mutalib, M.S.; Vasudevan, R. The neuroprotective effects of tocotrienol rich fraction and alpha tocopherol against glutamate injury in astrocytes. Bosn. J. Basic Med. Sci. 2014, 14, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Budin, S.B.; Othman, F.; Louis, S.R.; Abu Bakar, M.; Das, S.; Mohamed, J. The effects of palm oil tocotrienol-rich fraction supplementation on biochemical parameters, oxidative stress and the vascular wall of streptozotocin-induced diabetic rats. Clinics 2009, 64, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, N.; Tan, E.; Loh, L.J.; Soh, B.S.; Yap, W.N. Tocotrienol is a cardioprotective agent against ageing-associated cardiovascular disease and its associated morbidities. Nutr. Metab. 2018, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, H.; Ahad, A.; Iqbal, J.; Siddiqui, W.A. Pharmacological potential of tocotrienols: A review. Nutr. Metab. 2014, 11, 52. [Google Scholar] [CrossRef] [Green Version]
- Cicek, N.; Eryilmaz, O.G.; Sarikaya, E.; Gulerman, C.; Genc, Y. Vitamin E effect on controlled ovarian stimulation of unexplained infertile women. J. Assist. Reprod. Genet. 2012, 29, 325–328. [Google Scholar] [CrossRef] [Green Version]
- Khanna, S.; Patel, V.; Rink, C.; Roy, S.; Sen, C.K. Delivery of orally supplemented α-tocotrienol to vital organs of rats and tocopherol-transport protein deficient mice. Free Radic. Biol. Med. 2005, 39, 1310–1319. [Google Scholar] [CrossRef] [Green Version]
- Mutalip, S.S.M.; Ab-Rahim, S.; Rajikin, M.H. Vitamin E as an Antioxidant in Female Reproductive Health. Antioxidants 2018, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Mokhtar, N.M.; Rajikin, M.H.; Zakaria, Z. Role of tocotrienol-rich palm vitamin E on pregnancy and preim-plantation embryos in nicotine-treated rats. Biomed. Res. 2008, 19, 181–184. [Google Scholar]
- Anderson Berry, A.L.; Hanson, C.K. The role of vitamin E in pregnancy. In Vitamin E in Human Health; Springer: Berlin/Heidelberg, Germany, 2019; pp. 405–417. [Google Scholar]
- Chappell, L.C.; Seed, P.T.; Briley, A.L.; Kelly, F.J.; Lee, R.; Hunt, B.J.; Parmar, K.; Bewley, S.; Shennan, A.H.; Steer, P.J.; et al. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: A randomised trial. Lancet 1999, 354, 810–816. [Google Scholar] [CrossRef]
- Fraser, W.D.; Audibert, F.; Bujold, E.; LeDuc, L.; Xu, H.; Boulvain, M.; Julien, P. The vitamin E debate: Implications for ongoing trials of pre-eclampsia prevention. BJOG Int. J. Obstet. Gynaecol. 2005, 112, 684–688. [Google Scholar] [CrossRef]
- De Vriese, S.R.; Dhont, M.; Christophe, A.B. Oxidative stability of low density lipoproteins and vitamin E levels increase in maternal blood during normal pregnancy. Lipids 2001, 36, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Von Mandach, U.; Huch, R.; Huch, A. Maternal and cord serum vitamin E levels in normal and abnormal pregnancy. Int. J. Vitam. Nutr. Res. 1994, 64, 26–32. [Google Scholar] [PubMed]
- Chełchowska, M.; Laskowska-Klita, T.; Leibschang, J. The effect of tobacco smoking during pregnancy on concentration of vitamin E in blood of mothers and their newborns in umbilical cord blood. Ginekol. Pol. 2006, 77, 263–268. [Google Scholar] [PubMed]
- Imşek, M.; Naziroǧlu, M.; Şimşek, H.; Cay, M.; Aksakal, M.; Kumru, S. Blood plasma levels of lipoperoxides, glutathione peroxidase, beta carotene, vitamin A and E in women with habitual abortion. Cell Biochem. Funct. Cell. Biochem. Its Modul. By Act. Agents Dis. 1998, 16, 227–231. [Google Scholar]
- Ma, H.; Qiao, Z.; Li, N.; Zhao, Y.; Zhang, S. The relationship between changes in vitamin A, vitamin E, and oxidative stress levels, and pregnancy outcomes in patients with gestational diabetes mellitus. Ann. Palliat. Med. 2021, 10, 6630–6636. [Google Scholar] [CrossRef]
- Hashemi, Z.; Sharifi, N.; Khani, B.; Aghadavod, E.; Asemi, Z. The effects of vitamin E supplementation on endometrial thickness, and gene expression of vascular endothelial growth factor and inflammatory cytokines among women with implantation failure. J. Matern. Neonatal Med. 2017, 32, 95–102. [Google Scholar] [CrossRef]
- Kamsani, Y.S.; Rajikin, M.H.; Khan, N.-A.M.N.; Satar, N.A.; Chatterjee, A. Nicotine-induced cessation of embryonic development is reversed by γ-tocotrienol in mice. Med. Sci. Monit. Basic Res. 2013, 19, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Nam, J.H. Antioxidants and Gene Regulation: The Effects of Vitamins C and E on Estrogen Receptors. Elements 2006, 2, 78–88. [Google Scholar] [CrossRef]
- Sharaf, A.; Gomaa, N. Hormonal properties of vitamin E and its synergism with gonadal hormones. Qual. Plant. Mater. Veg. 1972, 22, 91–98. [Google Scholar] [CrossRef]
- Kortenkamp, A. Ten Years of Mixing Cocktails: A Review of Combination Effects of Endocrine-Disrupting Chemicals. Environ. Health Perspect. 2007, 115 (Suppl. 1), 98–105. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.-C.; Liu, J.-M.; Fraser, W.D. Large prospective birth cohort studies on environmental contaminants and child health–Goals, challenges, limitations and needs. Med. Hypotheses 2010, 74, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Updat. 2008, 14, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Wells, P.G.; McCallum, G.P.; Chen, C.S.; Henderson, J.T.; Lee, C.J.J.; Perstin, J.; Preston, T.J.; Wiley, M.J.; Wong, A.W. Oxidative Stress in Developmental Origins of Disease: Teratogenesis, Neurodevelopmental Deficits, and Cancer. Toxicol. Sci. 2009, 108, 4–18. [Google Scholar] [CrossRef] [Green Version]
- Al-Gubory, K.H.; Fowler, P.A.; Garrel, C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int. J. Biochem. Cell Biol. 2010, 42, 1634–1650. [Google Scholar] [CrossRef]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Durairajanayagam, D.; Du Plessis, S.S. Utility of antioxidants during assisted reproductive techniques: An evidence based review. Reprod. Biol. Endocrinol. 2014, 12, 112. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Sekhon, L.; Kim, Y.; Agarwal, A. The Role of Oxidative Stress and Antioxidants in Assisted Reproduction. Curr. Womens Health Rev. 2010, 6, 227–238. [Google Scholar] [CrossRef]
- Ombelet, W. The revival of intrauterine insemination: Evidence-based data have changed the picture. Facts Views Vis. ObGyn 2017, 9, 131–132. [Google Scholar]
- Bahadur, G.; Homburg, R.; Al-Habib, A. A New Dawn for Intrauterine Insemination: Efficient and Prudent Practice will Benefit Patients, the Fertility Industry and the Healthcare Bodies. J. Obstet. Gynecol. India 2016, 67, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, R.; Burt, E.; Gallagher, A.M.; Butler, L.; Venkatakrishnan, R.; Peitsidis, P. Prospective randomized trial of multiple micronutrients in subfertile women undergoing ovulation induction: A pilot study. Reprod. Biomed. Online 2012, 24, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Cetin, I.; Berti, C.; Calabrese, S. Role of micronutrients in the periconceptional period. Hum. Reprod. Update 2009, 16, 80–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaskins, A.J.; Colaci, D.S.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Dietary patterns and semen quality in young men. Hum. Reprod. 2012, 27, 2899–2907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özkaya, M.O.; Nazıroğlu, M. Multivitamin and mineral supplementation modulates oxidative stress and antioxidant vitamin levels in serum and follicular fluid of women undergoing in vitro fertilization. Fertil. Steril. 2010, 94, 2465–2466. [Google Scholar] [CrossRef] [PubMed]
- Özkaya, M.O.; Nazıroğlu, M.; Barak, C.; Berkkanoglu, M. Effects of Multivitamin/Mineral Supplementation on Trace Element Levels in Serum and Follicular Fluid of Women Undergoing in Vitro Fertilization (IVF). Biol. Trace Elem. Res. 2010, 139, 1–9. [Google Scholar] [CrossRef]
- Vitale, S.G.; Rossetti, P.; Corrado, F.; Rapisarda, A.M.C.; La Vignera, S.; Condorelli, R.A.; Valenti, G.; Sapia, F.; Laganà, A.S.; Buscema, M. How to Achieve High-Quality Oocytes? The Key Role of Myo-Inositol and Melatonin. Int. J. Endocrinol. 2016, 2016, 4987436. [Google Scholar] [CrossRef] [Green Version]
- Youssef, M.A.F.M.; Abdelmoty, H.I.; Elashmwi, H.A.; Abduljawad, E.M.; Elghamary, N.; Magdy, A.; Mohesen, M.N.; Abdella, R.M.A.; Bar, M.A.; Gouda, H.M.; et al. Oral antioxidants supplementation for women with unexplained infertility undergoing ICSI/IVF: Randomized controlled trial. Hum. Fertil. 2014, 18, 38–42. [Google Scholar] [CrossRef]
- Palini, S.; Benedetti, S.; Tagliamonte, M.C.; De Stefani, S.; Primiterra, M.; Polli, V.; Rocchi, P.; Catalani, S.; Battistelli, S.; Canestrari, F.; et al. Influence of ovarian stimulation for IVF/ICSI on the antioxidant defence system and relationship to outcome. Reprod. Biomed. Online 2014, 29, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Nardelli, A.A.; Stafinski, T.; Motan, T.; Klein, K.; Menon, D. Assisted reproductive technologies (ARTs): Evaluation of evidence to support public policy development. Reprod. Health 2014, 11, 76. [Google Scholar] [CrossRef] [Green Version]
- Bahadori, M.H.; Sharami, S.H.; Fakor, F.; Milani, F.; Pourmarzi, D.; Dalil-Heirati, S.F. Level of Vitamin E in Follicular Fluid and Serum and Oocyte Morphology and Embryo Quality in Patients Undergoing IVF Treatment. J. Fam. Reprod. Health 2017, 11, 74–81. [Google Scholar]
- El Nashar, A.; Salama, K.; El-Deen, A.; Fayez, A. Effects of Pentoxifylline and Vitamin E on Pregnancy Rate in Infertile Women Treated By ICSI: A Randomized Clinical Trial. Benha J. Appl. Sci. 2021, 5, 1–6. [Google Scholar] [CrossRef]
- Kavtaradze, N.; Dominguez, C.E.; Rock, J.A.; Parthasarathy, S.; Murphy, A.A. Vitamin E and C supplementation reduces endometriosis related pelvic pain. Fertil. Steril. 2003, 80, 221–222. [Google Scholar] [CrossRef]
- Mier-Cabrera, J.; Aburto, T.C.; Burrola-Méndez, S.; Jimenez, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Kashanian, M.; Lakeh, M.M.; Ghasemi, A.; Noori, S. Evaluation of the effect of vitamin E on pelvic pain reduction in women suffering from primary dysmenorrhea. J. Reprod. Med. 2013, 58, 34–38. [Google Scholar]
- Ziaei, S.; Zakeri, M.; Kazemnejad, A. A randomised controlled trial of vitamin E in the treatment of primary dysmenorrhoea. BJOG Int. J. Obstet. Gynaecol. 2005, 112, 466–469. [Google Scholar] [CrossRef]
- Jennings, L.K.; Krywko, D.M. Pelvic Inflammatory Disease; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Mueller, A.M.; Stuart, E.S.; Tan, B. Pretreatment with Delta-Tocotrienol Reduces Chlamydia Infection in Mammalian Cell Lines. FASEB J. 2006, 20, A132. [Google Scholar] [CrossRef]
- Loganathan, R.; Selvaduray, K.R.; Nesaretnam, K.; Radhakrishnan, A.K. Tocotrienols promote apoptosis in human breast cancer cells by inducing poly(ADP-ribose) polymerase cleavage and inhibiting nuclear factor kappa-B activity. Cell Prolif. 2013, 46, 203–213. [Google Scholar] [CrossRef]
- Nesaretnam, K.; Meganathan, P.; Veerasenan, S.D.; Selvaduray, K.R. Tocotrienols and breast cancer: The evidence to date. Genes Nutr. 2011, 7, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Rajasinghe, L.D.; Pindiprolu, R.H.; Gupta, S.V. Delta-tocotrienol inhibits non-small-cell lung cancer cell invasion via the inhibition of NF-κB, uPA activator, and MMP-9. OncoTargets Ther. 2018, 11, 4301–4314. [Google Scholar] [CrossRef] [Green Version]
- Zarogoulidis, P.; Cheva, A.; Zarampouka, K.; Huang, H.; Li, C.; Huang, Y.; Katsikogiannis, N.; Zarogoulidis, K. Tocopherols and tocotrienols as anticancer treatment for lung cancer: Future nutrition. J. Thorac. Dis. 2013, 5, 349–352. [Google Scholar] [CrossRef]
- Sato, C.; Kaneko, S.; Sato, A.; Virgona, N.; Namiki, K.; Yano, T. Combination Effect of δ-Tocotrienol and γ-Tocopherol on Prostate Cancer Cell Growth. J. Nutr. Sci. Vitaminol. 2017, 63, 349–354. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.D.; Liu, J.; Russell, P.J.; Clements, J.A.; Ling, M.-T. Gamma-Tocotrienol Induces Apoptosis in Prostate Cancer Cells by Targeting the Ang-1/Tie-2 Signalling Pathway. Int. J. Mol. Sci. 2019, 20, 1164. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q. Natural Forms of Vitamin E as Effective Agents for Cancer Prevention and Therapy. Adv. Nutr. Int. Rev. J. 2017, 8, 850–867. [Google Scholar] [CrossRef] [PubMed]
- Ghani, S.M.A.; Goon, J.A.; Azman, N.H.E.N.; Zakaria, S.N.A.; Hamid, Z.; Ngah, W.Z.W. Comparing the effects of vitamin E tocotrienol-rich fraction supplementation and α-tocopherol supplementation on gene expression in healthy older adults. Clinics 2019, 74, e688. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Han, S.N. The Role of Vitamin E in Immunity. Nutrients 2018, 10, 1614. [Google Scholar] [CrossRef] [Green Version]
- Mahalingam, D.; Radhakrishnan, A.K.; Amom, Z.; Ibrahim, N.; Nesaretnam, K. Effects of supplementation with tocotrienol-rich fraction on immune response to tetanus toxoid immunization in normal healthy volunteers. Eur. J. Clin. Nutr. 2010, 65, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Hasani, N.A.; Yusoff, P.A.; Bak, K.; Gapor, M.; Wan Ngah, W.Z. The possible mechanism of action of palm oil γ-tocotrienol and α-tocopherol on the cervical carcinoma CaSki cell apoptosis. Biomed. Res. 2008, 19, 194–200. [Google Scholar]
- Wu, S.-J.; Huang, L.-T. Tocotrienols Inhibited Growth and Induced Apoptosis in Human HeLa Cells Through the Cell Cycle Signaling Pathway. Integr. Cancer Ther. 2010, 9, 66–72. [Google Scholar] [CrossRef]
- Hasani, N.A.; Bak, K.; Ngah, W.Z.W. The anti proliferative effect of palm oil γ-tocotrienol involves alterations in MEK-2 and ERK-2 protein expressions in CaSki cells. Asian Biomed. 2011, 5, 601–609. [Google Scholar]
- Gu, W.; Prasadam, I.; Yu, M.; Zhang, F.; Ling, P.; Xiao, Y.; Yu, C. Gamma tocotrienol targets tyrosine phosphatase SHP2 in mammospheres resulting in cell death through RAS/ERK pathway. BMC Cancer 2015, 15, 609. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Mi, Y.; He, P.; He, S.; Niu, L. γ-Tocotrienol Inhibits Proliferation and Induces Apoptosis via the Mitochondrial Pathway in Human Cervical Cancer HeLa Cells. Molecules 2017, 22, 1299. [Google Scholar] [CrossRef] [Green Version]
- Bermudez, Y.; Ahmadi, S.; Lowell, N.E.; Kruk, P.A. Vitamin E suppresses telomerase activity in ovarian cancer cells. Cancer Detect. Prev. 2007, 31, 119–128. [Google Scholar] [CrossRef]
- Saleh, H.S.; Omar, E.; Froemming, G.; Said, R.M. Tocotrienol preserves ovarian function in cyclophosphamide therapy. Hum. Exp. Toxicol. 2015, 34, 946–952. [Google Scholar] [CrossRef]
- Salleh, H.S.; Omar, E.; Froemming, G.R.; Said, R.M. Tocotrienol rich fraction supplementation confers protection on the ovary from cyclophasphamide induced apoptosis. Asian Pac. J. Trop. Dis. 2014, 4, 234. [Google Scholar] [CrossRef]
- Thomsen, C.B.; Andersen, R.F.; Steffensen, K.D.; Adimi, P.; Jakobsen, A. Delta tocotrienol in recurrent ovarian cancer. A phase II trial. Pharmacol. Res. 2019, 141, 392–396. [Google Scholar] [CrossRef]
Type of Vitamin E | Chemical Structure | Type of Sidechain | Number of Methyl Group on Chromanol Ring | Position of Methyl Group on Chromanol Ring | |
---|---|---|---|---|---|
Tocopherols | α | Saturated 16-carbon isoprenoid sidechain | three | 5,7,8-trimethyl | |
α-tocopheryl acetate | |||||
β | two | 5,8-dimethyl | |||
γ | two | 7,8-dimethyl | |||
δ | one | 8-methyl | |||
Tocotrienols | α | Unsaturated 16-carbon isoprenoid sidechain, containing three double bonds | three | 5,7,8-trimethyl | |
β | two | 5,8-dimethyl | |||
γ | two | 7,8-dimethyl | |||
δ | one | 8-methyl |
Age | RDA in mg (IU) |
---|---|
0–6 months | 4 (6) |
7–12 months | 5 (7.5) |
1–3 years | 6 (9) |
4–8 years | 7 (10.4) |
9–13 years | 11 (16.4) |
>14 years | 15 (22.4) |
Pregnant women | 15 (22.4) |
Breastfeeding women | 19 (28.4) |
Tocopherols, µg/mL | Tocotrienols, µg/mL | |||||
---|---|---|---|---|---|---|
Sample | α | γ | δ | α | γ | δ |
Palm oil | 198 | - | 11 | 210 | 408 | 87 |
232 | - | 9 | 237 | 425 | 78 | |
Sunflower oil | 765 | - | - | - | - | - |
710 | - | - | - | - | - | |
Cocoa butter | 14 | 225 | 37 | 9 | - | - |
9 | 187 | 31 | 7 | - | - | |
Walnut oil | 12 | 517 | 61 | - | - | - |
15 | 569 | 72 | - | - | - | |
Coconut oil | 3 | - | 13 | 8 | 32 | - |
5 | - | 15 | 11 | 27 | - | |
Hazelnut oil | 425 | 68 | 17 | - | - | - |
478 | 74 | 14 | - | - | - | |
Corn oil | 263 | 1365 | 88 | - | - | - |
245 | 1319 | 63 | - | - | - |
Type of Vitamin E | Source | Dose | Duration | Type of Cancer | Type of Cell/Tissue | Mechanism | References |
---|---|---|---|---|---|---|---|
α-TCP γ-TCT | Palm oil | 150 μM of γ-TCT and 300 μM α-TCP | 24 h | Cervix | CaSki | α-TCP and γ-TCT triggered apoptosis via upregulation of p53, Bcl-2-associated X (Bax), and Caspase-3 proteins, as well as Caspase-3 activity. | [101] |
α-TCP α-TCT γ-TCT δ-TCT | α-TCP from vegetable oil and TCTs from palm oil | 3 μM of each isomer | 24 h | Cervix | HeLa | α-TCT and γ-TCT induced apoptosis via cell cycle arrest at G2/M phase in a dose- and time-dependent manner and exerted anti-proliferative properties by increasing the expression of IL-6 and decreasing the expression of cyclin D3, p16, and CDK6 expression in the cell cycle signaling pathway. | [102] |
γ-TCT α-TCP | Palm oil | 150 μM of γ-TCT and 300 μM α-TCP | 0, 1, 3, 6, 12, 18, and 24 h | Cervix | CaSki | γ-TCT exerted anti-proliferative properties by suppressing the expression of MEK-2 and ERK-2 proteins. | [103] |
γ-TCT | Palm oil | 0.5, 1.0, 2.5, and 5.0 μg/mL | 7–8 days, until spheres formed | Cervix | HeLa | γ-TCT prevents the development of spherical cervical cancer cells. | [104] |
γ-TCT | Palm oil | 15, 30, 45, and 60 µM | 12, 24, and 48 h | Cervix | HeLa | γ-TCT reduced proliferative cell nuclear antigen (PCNA) and Ki-67 expression and induced apoptosis by reducing the Bcl-2 levels, increasing Bax levels, and release of cytochrome from mitochondria, as well as activating the caspase-9 and caspase-3 activities and ensuing cleavage of poly (ADP-ribose) polymerase (PARP). | [105] |
d-α tocopheryl acetate (ester of Acetic acid and α-TCP) | Synthetic | 0–100 IU | 0–72 h | Ovary | Normal and malignant ovarian Surface epithelial (OSE) | d-α tocopheryl acetate inhibited cancer cell proliferation via upregulation of caspase-3 activity. Downregulation of hTERT-mRNA Transcription and hTERT promoter activity, thus, blocked the activity of endogenous telomerase. | [106] |
α-TCT γ-TCT δ-TCT Cyclophosp-hamide (CPA) | Palm oil | 60 mg/kg of TCTs and 10 mg/kg of CPA | Treatment was given for 30 consecutive days. | Ovary | Mice ovarian tissues | Concurrent administration of both TRF and CPA confer protection from apoptosis in ovaries with chemotherapy-induced damage. TCTs administration restored CPA’s harmful effects, which included aberrant folliculogenesis, with decreased ovulation rate, follicular edoema, increased vascularity, and inflammatory cell infiltration. | [107,108] |
δ-TCT bevacizumab | Annatto | 300 mg orally, three times daily | The treatment continued until progression, grade 3 toxicity, or patient wish to discontinue. | Ovary | Human clinical trial | Concurrent administration of δ-TCT with bevacizumab indicate an additive effect in chemotherapy refractory cancer. | [109] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Md Amin, N.A.; Sheikh Abdul Kadir, S.H.; Arshad, A.H.; Abdul Aziz, N.; Abdul Nasir, N.A.; Ab Latip, N. Are Vitamin E Supplementation Beneficial for Female Gynaecology Health and Diseases? Molecules 2022, 27, 1896. https://doi.org/10.3390/molecules27061896
Md Amin NA, Sheikh Abdul Kadir SH, Arshad AH, Abdul Aziz N, Abdul Nasir NA, Ab Latip N. Are Vitamin E Supplementation Beneficial for Female Gynaecology Health and Diseases? Molecules. 2022; 27(6):1896. https://doi.org/10.3390/molecules27061896
Chicago/Turabian StyleMd Amin, Nur Amira, Siti Hamimah Sheikh Abdul Kadir, Akmal Hisyam Arshad, Norhaslinda Abdul Aziz, Nurul Alimah Abdul Nasir, and Normala Ab Latip. 2022. "Are Vitamin E Supplementation Beneficial for Female Gynaecology Health and Diseases?" Molecules 27, no. 6: 1896. https://doi.org/10.3390/molecules27061896
APA StyleMd Amin, N. A., Sheikh Abdul Kadir, S. H., Arshad, A. H., Abdul Aziz, N., Abdul Nasir, N. A., & Ab Latip, N. (2022). Are Vitamin E Supplementation Beneficial for Female Gynaecology Health and Diseases? Molecules, 27(6), 1896. https://doi.org/10.3390/molecules27061896