Synthesis, Characterization and Anticancer Efficacy Evaluation of Benzoxanthone Compounds toward Gastric Cancer SGC-7901
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Compounds
2.3. Cell Culture
2.4. In Vitro Cytotoxicity Assay
2.5. Partition Coefficients
2.6. Determination of pKa Values
2.7. DNA Binding Experiments
2.7.1. Electronic Absorption Titration
2.7.2. Luminescence Spectra Titration
2.7.3. Viscosity Experiments
2.8. Molecular Docking Studies
2.9. Cellular Uptake Studies
2.10. Cell Cycle Arrest
2.11. Apoptosis Assays by AO/EB Staining and Flow Cytometry
2.12. Measurement of Reactive Oxygen Species
2.13. Assays of Location of the Compounds at the Mitochondria
2.14. Intracellular Malondialdehyde (MDA) and GSH Assay
2.15. Mitochondrial Membrane Potential Assay (∆Ψm)
2.16. Immunostaining Analysis
2.17. Intracellular ATP Measurement
2.18. Determination of Intracellular Ca2+ Levels
2.19. Western Blot Analyses
2.20. Statistical Analysis
3. Results and Discussion
3.1. Chemistry and Stability Studies
3.2. The Cytotoxicity, Partition Coefficient and pKa Value of Compounds
3.3. Cellular Uptake Studies
3.4. Cell Cycle Arrest
3.5. Apoptosis Studies with AO/EB Double Staining and Flow Cytometry
3.6. Intracellular Oxidative Stress Increase Detection
3.7. Intracellular MDA and GSH Detection
3.8. Mitochondrial Membrane Damage Detection
3.9. Immunogenic Cell Death (ICD) Induced by Compounds
3.10. Mechanism Studies of the Mitochondrial Apoptotic Pathway
3.11. The DNA Binding Studies of Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
A549 | human lung carcinoma cells |
AO | acridine orange |
ATP | adenosine triphosphate |
Bax | Bcl-2 associated x protein |
BCA | bicinchoninic acid |
Bcl-2 | B-cell lymphoma-2 |
BEL-7402 | human hepatocellular carcinoma cells |
Bid BH3 | Interacting Domain Death Agonist |
CRT | calreticulin |
CT-DNA | calf thymus DNA |
Cyt | c cytochrome C |
DAPI | 2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride |
DCHF | 2′,7′-dichloro-3,6-fluorandiol |
DCHF-DA | 2′,7′-dichlorodihydrofluorescein diacetate |
DCF | 2′,7′-dichlorofluorescein |
DFT | density functional theory |
DMEM | Dulbecco’s Modified Eagle Medium |
DMSO | dimethylsulfoxide |
EB | ethidium bromide |
EDTA | ethylene diamine tetraacetic acid |
FBS | fetal bovine serum |
FITC | fluorescein isothiocyanate isomer |
Fluo-3AM | Fluo-3-pentaacetoxymethyl ester |
GSH | glutathione |
Hela | human cervical carcinoma cells |
HepG2 | human hepatocellular carcinoma cells |
HMGB1 | high mobility group box-1 |
HSP70 | heat shock protein 70 |
HRMS | High Resolution Mass Spectrometer |
Hoechst | N,N-bis(2-chloroethyl)-4-[3-[6-[6-(4-methylpiperazin-1-yl)-1H-benzimidazol-2-yl]-1H-benzimidazol-2-yl] propyl] aniline |
IC50 | the half maximal inhibitory concentration |
ICD | immunogenic cell death |
JC-1 | 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetrethylbenzimidalylcarbocyanine iodide |
LO2 | human normal liver cells |
MDA | malondialdehyde |
MTT | 3-(4,5-dimethylthiazole)-2,5-diphenyltetraazolium bromide |
P38 | MAPK P38 mitogen-activated protein kinase |
PARP | poly ADP-ribose polymerase |
PBS | phosphate buffer saline |
PI | propidium iodide |
Rnase | ribonuclease |
ROS | reactive oxygen species |
RPMI | 1640 Roswell Park Memorial Institute 1640 |
SGC-7901 | human gastric adenocarcinoma cells |
THF | tetrahydrofuran |
TLC | thin-layer chromatography |
TMS | tetramethylsilane |
References
- Pinto, M.M.M.; Sousa, M.E.; Nascimento, M.S.J. Xanthone derivatives: New insights in biological activities. Curr. Med. Chem. 2005, 12, 2517–2538. [Google Scholar] [CrossRef] [PubMed]
- Liou, S.S.; Shieh, W.L.; Cheng, T.H.; Won, S.J.; Lin, C.N. Gamma-pyrone compounds as potential anti-cancer drugs. J. Pharm. Pharmacol. 1993, 45, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Jung, J.; Lee, C.; Kwon, Y.; Na, Y. Synthesis of new xanthone analogues and their biological activity test–Cytotoxicity, topoisomerase II inhibition, and DNA cross-linking study. Bioorg. Med. Chem. Lett. 2007, 17, 1163–1166. [Google Scholar] [CrossRef] [PubMed]
- Peres, V.; Nagem, T.J.; De Oliveira, F.F. Tetraoxygenated naturally occurring xanthones. Phytochemistry 2000, 55, 683–710. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Qin, J.K.; Dai, Z.K.; Gao, S.H. Synthesis and biological evaluation of novel benzo[b]xanthone derivatives as potential antitumor agents. J. Serb. Chem. Soc. 2013, 78, 1301–1308. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; Chen, W.H.; Wang, B.; Xu, Z.L. Synthesis of xanthone derivatives with extended π-systems as α-glucosidase inhibitors: Insight into the probable binding mode. Bioorg. Med. Chem. 2007, 15, 2810–2814. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A.; EI-Wahab, M.F.; Shaheen, V.; Mohammed, A.I.; Abdalla, H.N.; Ragan, E.A. Isolation, characterization, complete structural assignment, and anticancer activities of the methoxylated flavonoids from rhamnus disperma roots. Molecules 2021, 26, 5827. [Google Scholar] [CrossRef]
- Al-Salmon, H.N.K.; Ali, E.T.; Jabir, M.; Sulaiman, G.M.; Al-Jadaan, S.A.S. 2-Benzhydrylsulfinyl-N-hydroxyacetamide-na extracted from fig as a novel cytotoxic and apoptosis inducer in SKOV-3 and AMJ-13 cell lines via P53 and caspase-8 pathway. Eur. Food Res. Technol. 2020, 246, 1591–1608. [Google Scholar] [CrossRef]
- Cho, H.J.; Jung, M.J.; Woo, S.W.; Kim, J.S.; Lee, E.S.; Kwon, Y.J.; Na, Y.N. New benzoxanthone derivatives as topoisomerase inhibitors and DNA cross-linkers. Bioorg. Med. Chem. 2010, 18, 1010–1017. [Google Scholar] [CrossRef]
- Woo, S.W.; Kang, D.H.; Nam, J.M.; Lee, C.S.; Ha, E.M.; Lee, E.S.; Kwon, Y.; Na, Y. Synthesis and pharmacological evaluation of new methyloxiranylmethoxyxanthone analogues. Eur. J. Med. Chem. 2010, 45, 4221–4228. [Google Scholar] [CrossRef]
- Heald, R.A.; Dexheimer, T.S.; Vankayalapati, H.; Siddiqui-Jain, A.; Szabo, L.Z.; Gleason-Guzman, M.C.; Hurley, L.H. Conformationally restricted analogues of psorospermin: Design, synthesis, and bioactivity of natural-product-related bisfuranoxanthones. J. Med. Chem. 2005, 48, 2993–3004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J.; Li, X.; Sun, H.P.; Wang, X.J.; Zhao, L.; Gao, Y.; Liu, X.R.; Zhang, S.L.; Wang, Y.Y.; Yang, Y.R.; et al. Garcinia xanthones as orally active antitumor agents. J. Med. Chem. 2013, 56, 276–292. [Google Scholar] [CrossRef] [PubMed]
- Barbero, N.; SanMartin, R.; Dominguez, E. A convenient approach to the xanthone scaffold by an aqueous aromatic substitution of bromo- and iodoarenes. Tetrahedron 2009, 65, 5729–5732. [Google Scholar] [CrossRef]
- Kraus, G.A.; Mengwasser, J. Quinones as key intermediates in natural products synthesis. Syntheses of bioactive xanthones from Hypericum perforatum. Molecules 2009, 14, 2857–2861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.M.S.; Pinto, D.C.G.A.; Tavares, H.R.; Cavaleiro, J.A.S.; Jimeno, M.L.; Elguero, J. Novel(E)-and(Z)-2-styrylchromones from (E, E)-2′-hydroxycinnamylideneaceto-phenones-xanthones from daylight photooxidative cyclization of (E)-2-styrylchromones. J. Eur. J. Org. Chem. 1998, 9, 2031–2038. [Google Scholar] [CrossRef]
- Yokoe, I.; Higuchi, K.; Shirataki, Y.; Komatsu, M. Photochemistry of flavonoids: V. photocyclization of 2-styryl-4H-chromen-4-ones. M. Chem. Pharm. Bull. 1981, 29, 2670–2674. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.Z.; Huang, Z.T.; Zheng, Q.Y. Synthesis of benzo[c]xanthones from 2-benzylidene-1-tetralones by the ultraviolet radiation-mediated tandem reaction. J. Org. Chem. 2008, 73, 5606–5608. [Google Scholar] [CrossRef]
- Palchaudhuri, R.; Hergenrother, P.J. DNA as a target for anticancer compounds: Methods to determine the mode of binding and the mechanism of action. Curr. Opin. Biotechnol. 2007, 18, 497–503. [Google Scholar] [CrossRef]
- Caserta, T.M.; Smith, A.N.; Gultice, A.D.; Reedy, M.A.; Brown, T.L. Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis 2003, 8, 345–352. [Google Scholar] [CrossRef]
- Khanbolooki, S.; Nawrocki, S.T.; Arumugam, T.; Andtbacka, R.; Pino, M.S.; Kurzrock, R.; Logsdon, C.D.; Abbruzzese, J.L.; McConkey, D.J. Nuclear factor-kappaB maintains TRAIL resistance in human pancreatic cancer cells. Mol. Cancer Ther. 2006, 5, 2251–2260. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.H.; Wu, L.W.; Huang, A.C.; Yu, C.C.; Lien, J.C.; Huang, Y.P.; Yang, J.S.; Yang, J.H.; Hsiao, Y.P.; Wood, W.G.; et al. Benzyl Isothiocyanate (BITC) induces G2/M phase arrest and apoptosis in human melanoma A375.S2 Cells through reactive oxygen species (ROS) and both mitochondria-dependent and death receptor-mediated multiple signaling pathways. J. Agric. Food Chem. 2012, 60, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, H.H.; Wang, X.Z.; Song, H.C. Treatment with dibenzoxanthenes inhibits proliferation and induces apoptosis of HepG2 cells via the intrinsic mitochondrial pathway. RSC Adv. 2016, 6, 72703–72714. [Google Scholar] [CrossRef]
- Tan, D.M.; Wang, B.; Xu, Z.L. A Novel domino reaction of 1, 1′-bi-2-naphthol catalyzed by copper (II)-amine complexes. Chin. J. Chem. 2001, 19, 91–95. [Google Scholar] [CrossRef]
- Xu, Y.R.; Jia, Z.; Liu, Y.J.; Wang, X.Z. Novel dibenzoxanthenes compounds inhibit human gastric cancer SGC-7901 cell growth by apoptosis. J. Mol. Struc. 2020, 1220, 128588–128600. [Google Scholar] [CrossRef]
- Owellen, R.J.; Donigian, D.W.; Hartke, C.A.; Hains, F.O. Correlation of biologic data with physico-chemical properties among the Vinca alkaloids and their congeners. BioChem. Pharm. 1977, 26, 1213–1219. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Fei, W.D.; Zhang, H.W.; Zhou, Y.; Tian, L.; Hao, J.; Yuan, Y.H.; Li, W.L.; Liu, Y.J. Increasing anticancer effect in vitro and vivo of liposome-encapsulated iridium(III) complexes on BEL-7402 cells. J. Inorg. Biochem. 2021, 225, 111622. [Google Scholar] [CrossRef] [PubMed]
- Bera, R.; Sahoo, B.K.; Ghosh, K.S.; Dasgupta, S. Studies on the interaction of isoxazolcurcumin with calf thymus DNA. Int. J. Biol. Macromol. 2008, 42, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Psomas, G. Mononuclear metal complexes with ciprofloxacin: Synthesis, characterization and DNA-binding properties. J. Inorg BioChem. 2008, 102, 1798–1811. [Google Scholar] [CrossRef]
- Gan, Q.; Qi, Y.; Xiong, Y.H.; Fu, Y.L.; Le, X.Y. Two new mononuclear copper (II)-dipeptide complexes of 2-(2′-Pyridyl)benzoxazole: DNA interaction, antioxidation and in vitro cytotoxicity studies. J. Fluoresc. 2017, 27, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Cohen, G.; Eisenberg, H. Viscosity and sedimentation study of sonicated DNA–proflavine complexes. Biopolymers 1969, 8, 45–49. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Mahendiran, D.; Gurumoorthy, P.; Gunasekaran, K.; Senthil Kumar, R.; Rahiman, A.K. Structural modeling, in vitro antiproliferative activity, and the effect of substituents on the DNA fastening and scission actions of heteroleptic copper(ii) complexes with terpyridines and naproxen. New J. Chem. 2015, 39, 7895–7911. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, J.; Zhi, S.; Song, W.; Zhao, J. Novel binuclear and trinuclear metal (II) complexes: DNA interactions and in vitro anticancer activity through apoptosis. J. Inorg. Biochem. 2019, 197, 110696. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Yang, H.H.; Liu, Y.J.; Wang, X.Z. Synthetic dibenzoxanthene derivatives induce apoptosis through mitochondrial pathway in human hepatocellular cancer cells. Appl. Biochem. Biotechnol. 2018, 186, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Jue, Y.; Chen, L.; Yan, Y.; Qiu, J.F.; Chen, J.; Song, J.; Rao, Q.; Ben-David, Y.; Li, Y.; Hao, X.J. BW18, a C-21 steroidal glycoside, exerts an excellent anti-leukemia activity through inducing S phase cell cycle arrest and apoptosis via MAPK pathway in K562 cells. Biomed. Pharmacother. 2019, 112, 108603. [Google Scholar]
- Ibrahim, A.A.; Kareem, M.M.; Al-Noor, T.H.; Al-Muhimeed, T.; AlObaid, A.A.; Albukhaty, S.; Sulaiman, G.M.; Jabir, M.; Taqi, Z.J.; Sahib, U.I. Pt(II)-thiocarbohydrazone complex as cytotoxic agent and apoptosis inducer in Caov-3 and HT-29 Cells through the P53 and caspase-8 pathways. Pharmaceuticals 2021, 14, 509. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yuan, C.; Yang, J.; Liu, T.; Yao, Y.; Xiao, X.; Gajendran, B.; Xu, D.; Li, Y.J.; Wang, C.; et al. Novel flavagline-like compounds with potent Fli-1 inhibitory activity suppress diverse types of leukemia. FEBS J. 2018, 285, 4631–4645. [Google Scholar] [CrossRef]
- Su, Y.; Tu, Y.; Lin, H.; Wang, M.M.; Zhang, G.D.; Yang, J.; Liu, H.K.; Su, Z. Mitochondria-targeted Pt(IV) prodrugs conjugated with an aggregation-induced emission luminogen against breast cancer cells by dual modulation of apoptosis and autophagy inhibition. J. Inorg. Biochem. 2022, 226, 111653. [Google Scholar] [CrossRef]
- Ye, R.R.; Chen, B.C.; Lu, J.J.; Ma, X.R.; Li, R.T. Phosphorescent rhenium(I) complexes conjugated with artesunate: Mitochondrial targeting and apoptosis-ferroptosis dual induction. J. Inorg. Biochem. 2021, 223, 111537. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Wang, Y.J.; Du, F.; He, M.; Gu, Y.Y.; Bai, L.; Yang, L.L.; Liu, Y.J. Evaluation of anticancer effect in vitro and in vivo of iridium(III) complexes on gastric carcinoma SGC-7901 cells. Eur. J. Med. Chem. 2019, 178, 401–416. [Google Scholar] [CrossRef]
- Wang, L.L.; Guan, R.L.; Xie, L.N.; Liao, X.X.; Xiong, K.; Rees, T.W.; Chen, Y.; Ji, L.N.; Chao, H. An ER-targeting iridium(III) complex that induces immunogenic cell death in non-small-cell lung cancer. Angew. Chem. Int. Ed. Engl. 2021, 60, 4657–4665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.W.; Tian, L.; Xiao, R.X.; Zhou, Y.; Zhang, Y.Y.; Hao, J.; Liu, Y.L.; Wang, J.P. Anticancer effect evaluation in vitro and in vivo of iridium(III) polypyridyl complexes targeting DNA and mitochondria. Bioorg. Chem. 2021, 115, 105290. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.Y.; Zhang, W.Y.; He, M.; Du, F.; Wang, X.Z.; Wang, Y.J.; Gu, Y.Y.; Bai, L.; Liu, Y.J. Anticancer and antibacterial activity in vitro evaluation of iridium(III) polypyridyl complexes. J. Biol. Inorg. Chem. 2019, 24, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Vinod, V.; Spatafora, C.; Daquino, C.; Tringali, C.; Priya, S.; Srinivas, G. Phenethyl caffeate benzo[kl]xanthene lignan with DNA interacting properties induces DNA damage and apoptosis in colon cancer cells. Life Sci. 2012, 91, 1336–1344. [Google Scholar]
- Yang, H.H.; Liu, Y.J.; Wang, X.Z. Synthesis of novel dibenzoxanthene derivatives and observation of apoptosis in human hepatocellular cancer cells. Bioorg. Chem. 2017, 72, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Fasani, E.; Mella, M.; Albini, A. Noncommunicating photoreaction paths in some pregna-1,4-diene-3,20-diones. J. Org. Chem. 2001, 66, 8086–8093. [Google Scholar] [CrossRef] [PubMed]
- Matyjaszczyk, K.; Kolonko, M.; Gonciarz-Dytman, A.; Oszczapowicz, I.; Łukawska, M.; Jawień, W.; Chlopicki, S.; Walczak, M. Effects of structural modification of the daunosamine moiety of anthracycline antibiotics on pK a values determined by capillary zone electrophoresis. J. Chromatogr. B. 2017, 1060, 44–52. [Google Scholar] [CrossRef]
- Ke, J.; Dou, H.F.; Zhang, X.M.; Uhagaze, D.; Ding, X.L.; Dong, Y.M. Determination of pKa values of alendronate sodium in aqueous solution by piecewise linear regression based on acid-base potentiometric titration. J. Pharm. Anal. 2016, 6, 404–409. [Google Scholar] [CrossRef] [Green Version]
- Babić, S.; Horvat, A.J.M.; Pavlović, D.M.; Kastelan-Macan, M. Determination of pKa values of active pharmaceutical ingredients. Trendsin. Anal. Chem. 2007, 26, 1043–1061. [Google Scholar] [CrossRef]
- Wang, X.Z.; Jia, Z.; Yang, H.H.; Liu, Y.J. Dibenzoxanthenes induce apoptosis and autophagy in HeLa cells by modeling the PI3K/Akt pathway. J. Photochem. Photobiol. B 2018, 187, 76–88. [Google Scholar] [CrossRef]
- Chen, C.S.; Lin, S.T. Prediction of pH effect on the octanol–water partition coefficient of ionizable pharmaceuticals. Ind. Eng. Chem. Res. 2016, 55, 9284–9294. [Google Scholar] [CrossRef]
- Lobert, S.; Fahy, J.; Hill, B.T.; Duflos, A.; Etievant, C.; Correia, J.J. Correia. Vinca alkaloid-induced tubulin spiral formation correlates with cytotoxicity in the LeukemicL1210 cell line. Biochemistry 2000, 39, 12053–12062. [Google Scholar] [CrossRef]
- Zhang, T.F.; Li, Y.Y.; Zheng, Z.; Ye, R.; Zhang, Y.R.; Kwok, R.; Lam, J.W.Y.; Tang, B.Z. In-Situ monitoring apoptosis process by a self-reporting photosensitizer. J. Am. Chem. Soc. 2019, 141, 5612–5616. [Google Scholar] [CrossRef]
- Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, T.; Iino, M.; Goto, K. Sec6 enhances cell migration and suppresses apoptosis by elevating the phosphorylation of p38 MAPK, MK2, and HSP27. Cell Signal. 2018, 49, 1–16. [Google Scholar] [CrossRef]
- Hsu, C.C.; Lien, J.C.; Chang, C.W.; Chang, C.H.; Kuo, S.; Huang, T.F. Yuwen02f1 suppresses LPS-induced endotoxemia and adjuvant-induced arthritis primarily through blockade of ROS formation, NFkB and MAPK activation. Biochem. Pharmacol. 2013, 85, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Nishanth, R.P.; Jyotsna, R.G.; Schlager, J.J. Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: Role of ROS-NFκB signaling pathway. Nanotoxicology 2011, 5, 502–516. [Google Scholar] [CrossRef] [PubMed]
- Del, R.D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Locigno, R.; Castronovo, V. Reduced glutathione system: Role in cancer development, prevention and treatment (review). Int. J. Oncol. 2001, 19, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Brieger, K.; Schiavone, S.; Miller, F.J.; Krause, K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012, 142, 13659. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, C.H.; Gao, D.; Chen, S.; Zhu, Y.D.; Sun, J.; Luo, H.R.; Yu, K.; Fan, H.S.; Zhang, X.D. Antitumor effect by hydroxyapatite nanospheres: Activation of mitochondria-dependent apoptosis and negative-regulation of phosphatidylinositol3-kinase/protein kinase B pathway. ACS Nano. 2018, 12, 7838–7854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.Y.; Du, F.; He, M.; Bai, L.; Gu, Y.Y.; Yang, L.L.; Liu, Y.J. Studies of anticancer activity in vitro and in vivo of iridium(III) polypyridyl complexes-loaded liposomes as drug delivery system. Eur. Med. Chem. 2019, 178, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ni, X.; Jia, S.R.; Liang, Y.; Wu, X.; Kong, D.; Ding, D. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater. 2019, 31, 1904–1914. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.Q.; Zhang, T.; Yuan, H.T.; Li, D.F.; Lou, H.X.; Fan, P.H. Mitochondria-targeted lupane triterpenoid derivatives and their selective apoptosis-inducing anticancer mechanisms. J. Med. Chem. 2017, 60, 6353–6363. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.J.; Al, E. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Kim, C.; Yang, N.J.; Jemmerson, R.; Wang, W. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome. Cell. 1996, 86, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Lerman, L.S. Structural considerations in the interaction of DNA and acridines. J. Mol. Biol. 1961, 3, 18–30. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, X.H.; Ji, L.N. Synthesis, characterization and antitumor activity of a series of polypyridyl complexes. Met. Based Drugs. 2000, 7, 343–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maheswari, P.U.; Palaniandavar, M. DNA binding and cleavage properties of certain tetrammine ruthenium(II) complexes of modified 1,10-phenanthrolines--effect of hydrogen-bonding on DNA-binding affinity. J. Inorg. Biochem. 2004, 98, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Lakshmipraba, J.; Arunachalam, S.; Solomon, R.V.; Venuvanalingam, P.; Riyasdeen, A.; Dhivya, R.; Akbarsha, M.A. Surfactant-copper(II) Schiff base complexes: Synthesis, structural investigation, DNA interaction, docking studies, and cytotoxic activity. J. Biomol. Struct. Dyn. 2015, 33, 877–891. [Google Scholar] [CrossRef] [PubMed]
Comps. | IC50(μM) | LogP | pKa | ||||
---|---|---|---|---|---|---|---|
SGC-7901 | A549 | HeLa | BEL-7402 | LO2 | |||
3a | >100 | >100 | >100 | >100 | >100 | ----- | ----- |
3b | 45.6 ± 6.50 | 51.5 ± 13.7 | 68.0 ± 9.28 | >100 | 38.1 ± 0.41 | 0.822 | 7.48 |
3c | 2.36 ± 0.63 | 20.8 ± 3.17 | 18.8 ± 0.66 | >100 | 39.1 ± 1.04 | 1.152 | 7.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Xu, Y.; Liu, Y.; Wang, Y.; Chen, J.; Wang, X. Synthesis, Characterization and Anticancer Efficacy Evaluation of Benzoxanthone Compounds toward Gastric Cancer SGC-7901. Molecules 2022, 27, 1970. https://doi.org/10.3390/molecules27061970
Fu Y, Xu Y, Liu Y, Wang Y, Chen J, Wang X. Synthesis, Characterization and Anticancer Efficacy Evaluation of Benzoxanthone Compounds toward Gastric Cancer SGC-7901. Molecules. 2022; 27(6):1970. https://doi.org/10.3390/molecules27061970
Chicago/Turabian StyleFu, Yuan, Yunran Xu, Yunjun Liu, Yi Wang, Ju Chen, and Xiuzhen Wang. 2022. "Synthesis, Characterization and Anticancer Efficacy Evaluation of Benzoxanthone Compounds toward Gastric Cancer SGC-7901" Molecules 27, no. 6: 1970. https://doi.org/10.3390/molecules27061970
APA StyleFu, Y., Xu, Y., Liu, Y., Wang, Y., Chen, J., & Wang, X. (2022). Synthesis, Characterization and Anticancer Efficacy Evaluation of Benzoxanthone Compounds toward Gastric Cancer SGC-7901. Molecules, 27(6), 1970. https://doi.org/10.3390/molecules27061970