Antimicrobial and Cytotoxic Activity of Novel Imidazolium-Based Ionic Liquids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Properties
2.1.1. Phase Transition
2.1.2. Thermal Stability
2.1.3. Infrared Spectra Analysis
2.2. Antimicrobial Activity
2.3. Surface Active Properties
2.4. Cytotoxic Properties
2.5. Selectivity Indexes
3. Materials and Methods
3.1. Synthesis
Phenoxy Acid Synthesis
3.2. Characterization of New ILs
3.2.1. NMR and IR Spectroscopy
3.2.2. Thermal Properties
3.3. Surface Active Properties Determination
3.4. Antimicrobial Activity Determination
3.5. Cytotoxic Activity Determination
3.5.1. Cell Culture of the B16 F10 Line
3.5.2. Determination of Cytotoxicity Using the MTT Test
3.5.3. Cytotoxicity Assessment
3.6. Determination of the Selectivity Index (SI)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3, 156–164. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Wasserscheid, P.; Keim, W. Ionic liquids—New ‘solutions’ for transition metal catalysis. Angew. Chem.—Int. Ed. 2000, 39, 3772–3789. [Google Scholar] [CrossRef]
- Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef]
- Pedro, S.N.; Freire, C.S.R.; Silvestre, A.J.D.; Freire, M.G. The role of ionic liquids in the pharmaceutical field: An overview of relevant applications. Int. J. Mol. Sci. 2020, 21, 8298. [Google Scholar] [CrossRef]
- Hao, J.; Qin, T.; Zhang, Y.; Li, Y.; Zhang, Y. Synthesis, surface properties and antimicrobial performance of novel gemini pyridinium surfactants. Colloids Surf. B Biointerfaces 2019, 181, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Buettner, C.S.; Cognigni, A.; Schröder, C.; Bica-Schröder, K. Surface-active ionic liquids: A review. J. Mol. Liq. 2022, 347, 118160. [Google Scholar] [CrossRef]
- Docherty, K.M.; Kulpa, C.F., Jr. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 2005, 7, 185–189. [Google Scholar] [CrossRef]
- Ranke, J.; Mölter, K.; Stock, F.; Bottin-Weber, U.; Poczobutt, J.; Hoffmann, J.; Ondruschka, B.; Filser, J.; Jastorff, B. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol. Environ. Saf. 2004, 58, 396–404. [Google Scholar] [CrossRef]
- Swatloski, R.P.; Holbrey, J.D.; Memon, S.B.; Caldwell, G.A.; Caldwell, K.A.; Rogers, R.D. Using Caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium chloride based ionic liquids. Chem. Commun. 2004, 4, 668–669. [Google Scholar] [CrossRef]
- Flieger, J.; Flieger, M. Ionic liquids toxicity—Benefits and threats. Int. J. Mol. Sci. 2020, 21, 6267. [Google Scholar] [CrossRef]
- Couling, D.J.; Bernot, R.J.; Docherty, K.M.; Dixon, J.K.; Maginn, E.J. Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem. 2006, 8, 82–90. [Google Scholar] [CrossRef]
- Cho, C.-W.; Pham, T.P.T.; Zhao, Y.; Stolte, S.; Yun, Y.-S. Review of the toxic effects of ionic liquids. Sci. Total Environ. 2021, 786, 147309. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Liu, C.; Zhao, H.; Yang, Y.; Sun, J. The effects of 1-hexyl-3-methylimidazolium bromide on embryonic development and reproduction in Daphnia magna. Ecotoxicol. Environ. Saf. 2020, 190, 110137. [Google Scholar] [CrossRef] [PubMed]
- Pałkowski, Ł.; Błaszczyński, J.; Skrzypczak, A.; Błaszczak, J.; Kozakowska, K.; Wróblewska, J.; Kozuszko, S.; Gospodarek, E.; Krysiński, J.; Słowiński, R. Antimicrobial activity and SAR study of new gemini imidazolium-based chlorides. Chem. Biol. Drug Des. 2014, 83, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Pałkowski, L.; Błaszczyński, J.; Skrzypczak, A.; Błaszczak, J.; Nowaczyk, A.; Wróblewska, J.; Kozuszko, S.; Gospodarek, E.; Słowiński, R.; Krysiński, J. Prediction of antifungal activity of gemini imidazolium compounds. BioMed Res. Int. 2015, 2015, 392326. [Google Scholar] [CrossRef] [PubMed]
- Pałkowski, Ł.; Karolak, M.; Błaszczyński, J.; Krysiński, J.; Słowiński, R. Structure-activity relationships of the imidazolium compounds as antibacterials of staphylococcus aureus and pseudomonas aeruginosa. Int. J. Mol. Sci. 2021, 22, 7997. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.R.P.; Paredes, X.; Cristino, A.F.; Santos, F.J.V.; Queirós, C.S.G.P. Ionic liquids—A review of their toxicity to living organisms. Int. J. Mol. Sci. 2021, 22, 5612. [Google Scholar] [CrossRef] [PubMed]
- Nikfarjam, N.; Ghomi, M.; Agarwal, T.; Hassanpour, M.; Sharifi, E.; Khorsandi, D.; Ali Khan, M.; Rossi, F.; Rossetti, A.; Nazarzadeh Zare, E.; et al. Antimicrobial Ionic Liquid-Based Materials for Biomedical Applications. Adv. Funct. Mater. 2021, 31, 2104148. [Google Scholar] [CrossRef]
- Miskiewicz, A.; Ceranowicz, P.; Szymczak, M.; Bartuś, K.; Kowalczyk, P. The use of liquids ionic fluids as pharmaceutically active substances helpful in combating nosocomial infections induced by Klebsiella Pneumoniae New Delhi strain, Acinetobacter Baumannii and Enterococcus species. Int. J. Mol. Sci. 2018, 19, 2779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem. Rev. 2017, 117, 7132–7189. [Google Scholar] [CrossRef]
- Kwaśniewska, D.; Chen, Y.-L.; Wieczorek, D. Biological activity of quaternary ammonium salts and their derivatives. Pathogens 2020, 9, 459. [Google Scholar] [CrossRef]
- Brycki, B.E.; Szulc, A.; Kowalczyk, I.; Koziróg, A.; Sobolewska, E. Antimicrobial activity of gemini surfactants with ether group in the spacer part. Molecules 2021, 26, 5759. [Google Scholar] [CrossRef]
- Kowalczyk, I.; Pakiet, M.; Szulc, A.; Koziróg, A. Antimicrobial activity of gemini surfactants with azapolymethylene spacer. Molecules 2020, 25, 4054. [Google Scholar] [CrossRef]
- Bingham, R.J.; Ballone, P. Computational study of room-temperature ionic liquids interacting with a POPC phospholipid bilayer. J. Phys. Chem. B 2012, 116, 11205–11216. [Google Scholar] [CrossRef]
- Yee, P.; Shah, J.K.; Maginn, E.J. State of hydrophobic and hydrophilic ionic liquids in aqueous solutions: Are the ions fully dissociated? J. Phys. Chem. B 2013, 117, 12556–12566. [Google Scholar] [CrossRef]
- Garcia, M.T.; Gathergood, N.; Scammells, P.J. Biodegradable ionic liquids Part II. Effect of the anion and toxicology. Green Chem. 2005, 7, 9–14. [Google Scholar] [CrossRef]
- Lee, S.-M.; Chang, W.-J.; Choi, A.-R.; Koo, Y.-M. Influence of ionic liquids on the growth of escherichia coli. Korean J. Chem. Eng. 2005, 22, 687–690. [Google Scholar] [CrossRef]
- Pernak, J.; Sobaszkiewicz, K.; Mirska, I. Anti-microbial activities of ionic liquids. Green Chem. 2003, 5, 52–56. [Google Scholar] [CrossRef]
- Pernak, J.; Goc, I.; Mirska, I. Anti-microbial activities of protic ionic liquids with lactate anion. Green Chem. 2004, 6, 323–329. [Google Scholar] [CrossRef]
- Cieniecka-Rosłonkiewicz, A.; Pernak, J.; Kubis-Feder, J.; Ramani, A.; Robertson, A.J.; Seddon, K.R. Synthesis, anti-microbial activities and anti-electrostatic properties of phosphonium-based ionic liquids. Green Chem. 2005, 7, 855–862. [Google Scholar] [CrossRef]
- Kumar, H.; Kaur, G. Scrutinizing Self-Assembly, Surface Activity and Aggregation Behavior of Mixtures of Imidazolium Based Ionic Liquids and Surfactants: A Comprehensive Review. Front. Chem. 2021, 9, 667941. [Google Scholar] [CrossRef] [PubMed]
- Pernak, J.; Niemczak, M.; Materna, K.; Zelechowski, K.; Marcinkowska, K.; Praczyk, T. Synthesis, properties and evaluation of biological activity of herbicidal ionic liquids with 4-(4-chloro-2-methylphenoxy)butanoate anion. RSC Adv. 2016, 6, 7330–7338. [Google Scholar] [CrossRef]
- Łuczak, J.; Hupka, J.; Thöming, J.; Jungnickel, C. Self-organization of imidazolium ionic liquids in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2008, 329, 125–133. [Google Scholar] [CrossRef]
- Łuczak, J.; Jungnickel, C.; Łącka, I.; Stolte, S.; Hupka, J. Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem. 2010, 12, 593–601. [Google Scholar] [CrossRef]
- Kumar, R.A.; Papaïconomou, N.; Lee, J.-M.; Salminen, J.; Clark, D.S.; Prausnitz, J.M. In vitro cytotoxicities of ionic liquids: Effect of cation rings, functional groups, and anions. Environ. Toxicol. 2009, 24, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Ranke, J.; Müller, A.; Bottin-Weber, U.; Stock, F.; Stolte, S.; Arning, J.; Störmann, R.; Jastorff, B. Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity. Ecotoxicol. Environ. Saf. 2007, 67, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Ranke, J.; Stolte, S.; Störmann, R.; Aming, J.; Jastorff, B. Design of sustainable chemical products—The example of ionic liquids. Chem. Rev. 2007, 107, 2183–2206. [Google Scholar] [CrossRef] [PubMed]
- Stasiewicz, M.; Mulkiewicz, E.; Tomczak-Wandzel, R.; Kumirska, J.; Siedlecka, E.M.; Gołebiowski, M.; Gajdus, J.; Czerwicka, M.; Stepnowski, P. Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicol. Environ. Saf. 2008, 71, 157–165. [Google Scholar] [CrossRef]
- Stolte, S.; Arning, J.; Bottin-Weber, U.; Müller, A.; Pitner, W.-R.; Welz-Biermann, U.; Jastorff, B.; Ranke, J. Effects of different head groups and functionalised side chains on the cytotoxicity of ionic liquids. Green Chem. 2007, 9, 760–776. [Google Scholar] [CrossRef]
- Müller, G.; Kramer, A. Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J. Antimicrob. Chemother. 2008, 61, 1281–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Kwon, D.; Lee, S.; Son, S.W.; Kwon, J.T.; Kim, P.J.; Jung, Y.S. Concentration-and Time-Dependent Effects of Benzalkonium Chloride in Human Lung Epithelial Cells: Necrosis, Apoptosis, or Epithelial Mesenchymal Transition. Toxics 2020, 8, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, D.Y.; Kim, E.; Kwon, J.T.; Lee, D.H.; Park, S.Y.; Kim, H.M.; Choi, K. Ethylene glycol potentiated didecyldimethylammonium chloride toxicity in human bronchial epithelial cells. Mol. Cell. Toxicol. 2015, 11, 161–166. [Google Scholar] [CrossRef]
- Dzhemileva, L.U.; D’yakonov, V.A.; Seitkalieva, M.M.; Kulikovskaya, N.S.; Egorova, K.S.; Ananikov, V.P. A large-scale study of ionic liquids employed in chemistry and energy research to reveal cytotoxicity mechanisms and to develop a safe design guide. Green Chem. 2021, 23, 6414–6430. [Google Scholar] [CrossRef]
- Stolte, S.; Abdulkarim, S.; Arning, J.; Blomeyer-Nienstedt, A.-K.; Bottin-Weber, U.; Matzke, M.; Ranke, J.; Jastorff, B.; Thöming, J. Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds. Green Chem. 2008, 10, 214–222. [Google Scholar] [CrossRef]
- Thuy Pham, T.P.; Cho, C.-W.; Yun, Y.-S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 2010, 44, 352–372. [Google Scholar] [CrossRef]
- Kumari, P.; Pillai, V.V.; Benedetto, A. Mechanisms of action of ionic liquids on living cells: The state of the art. Biophys. Rev. 2020, 12, 1187–1215. [Google Scholar] [CrossRef]
- Wang, L.L.; Hu, C.; Shao, L.Q. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamaruzzaman, N.F.; Tan, L.P.; Hamdan, R.H.; Choong, S.S.; Wong, W.K.; Gibson, A.J.; Chivu, A.; Pina, M.D.F. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? Int. J. Mol. Sci. 2019, 20, 2747. [Google Scholar] [CrossRef] [Green Version]
Name | Anion Structure |
---|---|
FE-1 | |
BE-2 | |
OR-3 | |
CL-4 | |
MR-5 | |
PR-6 | |
TY-7 | |
VA-8 | |
EV-9 | |
TR-10 |
Compound | Tg (°C) | Tc (°C) | Tm (°C) |
---|---|---|---|
FE-1 | −49.76 | −23.61 | 8.8 |
BE-2 | −29.37 | −4.78 −0.56 | −18.90 17.10 |
OR-3 | −69.24 | −50.39 | −43.05 |
CL-4 | - | −2.02 | 16.62 |
MR-5 | −54.54 | −18.75 | −24.98 |
PR-6 | - | −52.23 | −37.01 |
TY-7 | −68.73 | - | - |
VA-8 | −36.92 | - | - |
EV-9 | −59.45 | −49.36 | −37.26 |
TR-10 | - | −68.65 | −61.58 |
Compound | Ti (°C) | T0.01 (°C) | T0.02 (°C) | T0.05 (°C) |
---|---|---|---|---|
FE-1 | 138.65 | 159.92 | 170.90 | 192.18 |
BE-2 | 135.62 | 163.71 | 176.93 | 196.93 |
OR-3 | 115.98 | 130.23 | 139.40 | 156.37 |
CL-4 | 117.60 | 147.81 | 159.69 | 177.68 |
MR-5 | 97.48 | 107.77 | 116.00 | 129.73 |
PR-6 | 85.81 | 97.92 | 106.05 | 120.46 |
TY-7 | 114.24 | 133.92 | 144.79 | 162.77 |
VA-8 | 112.85 | 135.25 | 144.08 | 157.66 |
EV-9 | 118.62 | 135.59 | 145.78 | 163.09 |
TR-10 | 102.67 | 114.21 | 122.36 | 134.91 |
Compound | MIC (mM/L) | |||||
---|---|---|---|---|---|---|
SAU | KPN | PAE | ECO | EFA | CAL | |
FE-1 | 1.7248 | 13.9097 | 27.8195 | 1.7248 | 1.7248 | 1.7248 |
BE-2 | 0.2329 | 1.8052 | 7.2788 | 0.4658 | 0.2329 | 0.2329 |
OR-3 | 0.1016 | 1.5754 | 6.3526 | 1.5754 | 0.1016 | 0.1016 |
CL-4 | 0.1804 | 1.3980 | 5.6371 | 0.3608 | 0.1804 | 0.1804 |
MR-5 | 0.1729 | 2.6804 | 10.8079 | 0.3459 | 0.1729 | 0.1729 |
PR-6 | 0.1542 | 1.1952 | 4.8195 | 0.1542 | 0.3084 | 0.1542 |
TY-7 | 0.0508 | 0.7877 | 3.1763 | 0.4066 | 0.0508 | 0.1016 |
VA-8 | 0.1011 | 1.5678 | 6.3216 | 0.4046 | 0.1011 | 0.2023 |
EV-9 | 0.0982 | 3.0673 | 3.0673 | 1.5214 | 0.0982 | 0.1963 |
TR-10 | 0.2783 | 2.1571 | 8.6981 | 0.5567 | 0.2783 | 0.2783 |
ST-1 | 0.0035 | 0.8561 | 0.8561 | 0.0138 | 0.0069 | 0.0069 |
ST-2 | 0.0284 | 0.4555 | 1.7653 | 0.0569 | 0.0142 | 0.0142 |
No | CMC [mmol L−1] | γCMC (mN m−1) | Γmax (mol m−2) | Amin × 10−19 (m2) | ΔG0ads × 104 (J m−1) | Contact Angle (°) |
---|---|---|---|---|---|---|
FE-1 | 4.78 | 33.5 | 7.84 × 106 | 2.12 | −1.84 | 61.2 |
BE-2 | 6.11 | 32.0 | 1.33 × 105 | 1.25 | −1.50 | 58.9 |
OR-3 | 0.87 | 27.9 | 7.69 × 106 | 2.16 | −2.26 | 38.7 |
CL-4 | 32.35 | 37.7 | 6.92 × 106 | 2.40 | −1.43 | 71.8 |
MR-5 | 2.99 | 25.2 | 1.63 × 105 | 1.02 | −1.53 | 62.5 |
PR-6 | 15.63 | 27.6 | 5.53 × 106 | 3.00 | −1.89 | 64.7 |
TY-7 | 0.82 | 28.2 | 8.72 × 106 | 1.91 | −2.01 | 39.5 |
VA-8 | 0.82 | 30.1 | 1.19 × 105 | 1.39 | −1.96 | 53.8 |
EV-9 | 0.96 | 29.5 | 1.27 × 105 | 1.31 | −1.93 | 48.9 |
TR-10 | 0.72 | 28.8 | 8.78 × 106 | 1.89 | −2.15 | 46.8 |
FE-1 | BE-2 | OR-3 | CL-4 | MR-5 | PR-6 | TY-7 | VA-8 | EV-9 | TR-10 | |
---|---|---|---|---|---|---|---|---|---|---|
IC 50 [mM/L] | 1.22 × 10−2 | 1.22 × 10−2 | 1.11 × 10−2 | 1.97 × 10−2 | 1.84 × 10−2 | 1.58 × 10−2 | 1.01 × 10−2 | 1.11 × 10−2 | 1.11 × 10−2 | 1.63 × 10−2 |
SD | 5.02 × 10−4 | 9.42 × 10−4 | 9.47 × 10−4 | 3.80 × 10−3 | 8.49 × 10−4 | 2.55 × 10−3 | 5.62 × 10−4 | 1.05 × 10−3 | 8.34 × 10−4 | 5.09 × 10−4 |
% RSD | 4.11 | 7.74 | 8.51 | 19.29 | 4.62 | 16.09 | 5.56 | 9.42 | 7.55 | 3.13 |
Compound | SISAU | SIKPN | SIPAE | SIECO | SIEFA | SICAL |
---|---|---|---|---|---|---|
FE-1 | 0.0071 | 0.0009 | 0.0004 | 0.0071 | 0.0071 | 0.0071 |
BE-2 | 0.0524 | 0.0068 | 0.0017 | 0.0262 | 0.0524 | 0.0524 |
OR-3 | 0.1096 | 0.0071 | 0.0018 | 0.0071 | 0.1096 | 0.1016 |
CL-4 | 0.1092 | 0.0141 | 0.0035 | 0.0546 | 0.1092 | 0.1092 |
MR-5 | 0.1064 | 0.0069 | 0.0017 | 0.0532 | 0.1064 | 0.1064 |
PR-6 | 0.1025 | 0.0132 | 0.0033 | 0.1025 | 0.0512 | 0.1025 |
TY-7 | 0.1988 | 0.0128 | 0.0032 | 0.0248 | 0.1988 | 0.0994 |
VA-8 | 0.1098 | 0.0071 | 0.0018 | 0.0274 | 0.1098 | 0.0549 |
EV-9 | 0.1130 | 0.0036 | 0.0036 | 0.0073 | 0.1130 | 0.0565 |
TR-10 | 0.0586 | 0.0076 | 0.0019 | 0.0293 | 0.0586 | 0.0586 |
R1 | R2 | R3 | Yield (%) | Mp. (°C) | |
---|---|---|---|---|---|
Thymoloxyacetic acid | iPr | H | Me | 87 | 146 |
Carvacroloxyacetic acid | Me | H | iPr | 82 | 151 |
Vanillinoxyacetic acid | OMe | CHO | H | 72 | 190 * |
Eugenoloxyacetic acid | OMe | All | H | 76 | 99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pałkowski, Ł.; Karolak, M.; Skrzypczak, A.; Wojcieszak, M.; Walkiewicz, F.; Podemski, J.; Jaroch, K.; Bojko, B.; Materna, K.; Krysiński, J. Antimicrobial and Cytotoxic Activity of Novel Imidazolium-Based Ionic Liquids. Molecules 2022, 27, 1974. https://doi.org/10.3390/molecules27061974
Pałkowski Ł, Karolak M, Skrzypczak A, Wojcieszak M, Walkiewicz F, Podemski J, Jaroch K, Bojko B, Materna K, Krysiński J. Antimicrobial and Cytotoxic Activity of Novel Imidazolium-Based Ionic Liquids. Molecules. 2022; 27(6):1974. https://doi.org/10.3390/molecules27061974
Chicago/Turabian StylePałkowski, Łukasz, Maciej Karolak, Andrzej Skrzypczak, Marta Wojcieszak, Filip Walkiewicz, Jonasz Podemski, Karol Jaroch, Barbara Bojko, Katarzyna Materna, and Jerzy Krysiński. 2022. "Antimicrobial and Cytotoxic Activity of Novel Imidazolium-Based Ionic Liquids" Molecules 27, no. 6: 1974. https://doi.org/10.3390/molecules27061974
APA StylePałkowski, Ł., Karolak, M., Skrzypczak, A., Wojcieszak, M., Walkiewicz, F., Podemski, J., Jaroch, K., Bojko, B., Materna, K., & Krysiński, J. (2022). Antimicrobial and Cytotoxic Activity of Novel Imidazolium-Based Ionic Liquids. Molecules, 27(6), 1974. https://doi.org/10.3390/molecules27061974