Dried Plasma Spot Based LC–MS/MS Method for Monitoring of Meropenem in the Blood of Treated Patients
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of MS Conditions
2.2. Optimization of LC Conditions
2.3. Optimization of Sample Preparation
2.4. Method Validation
2.5. Clinical Application and Method Comparison
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Calibrators and QC Samples
3.3. Patient Samples
3.4. Sample Processing and LC–MS/MS Analysis
3.4.1. Sample Processing
3.4.2. LC–MS/MS Analysis
3.5. Method Validation
3.6. Method Application
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joly-Guillou, M.L.; Kempf, M.; Cavallo, J.D.; Chomarat, M.; Dubreuil, L.; Maugein, J.; Muller-Serieys, C.; Roussel-Delvallez, M. Comparative in vitro activity of Meropenem, Imipenem and Piperacillin/tazobactam against 1071 clinical isolates using 2 different methods: A French multicentre study. BMC. Infect. Dis. 2010, 10, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, N.; Jen, S.P.; Altshuler, D.; Papadopoulos, J.; Pham, V.P.; Dubrovskaya, Y. Evaluation of Meropenem Extended Versus Intermittent Infusion Dosing Protocol in Critically Ill Patients. J. Intensive Care Med. 2020, 35, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Montravers, P.; Rello, J.; Rhodes, A.; Starr, T.; Wallis, S.C.; Lipman, J.; DALI Study. DALI: Defining Antibiotic Levels in Intensive care unit patients: Are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin. Infect. Dis. 2014, 58, 1072–1083. [Google Scholar]
- Hornik, C.P.; Herring, A.H.; Benjamin, D.K., Jr.; Capparelli, E.V.; Kearns, G.L.; van den Anker, J.; Cohen-Wolkowiez, M.; Clark, R.H.; Smith, P.B. Best Pharmaceuticals for Children Act-Pediatric Trials Network. Adverse events associated with meropenem versus imipenem/cilastatin therapy in a large retrospective cohort of hospitalized infants. Pediatr. Infect. Dis. J. 2013, 32, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Abdul-Aziz, M.H.; Davis, J.S.; Dulhunty, J.M.; Cotta, M.O.; Myburgh, J.; Bellomo, R.; Lipman, J. Continuous versus intermittent beta-lactam infusion in severe sepsis: A meta-analysis of individual patient data from randomized trials. Am. J. Respir. Crit. Care Med. 2016, 194, 681–691. [Google Scholar] [CrossRef]
- Ehmann, L.; Zoller, M.; Minichmayr, I.K.; Scharf, C.; Huisinga, W.; Zander, J.; Kloft, C. Development of a dosing algorithm for meropenem in critically ill patients based on a population pharmacokinetic/pharmacodynamic analysis. Int. J. Antimicrob. Agents 2019, 54, 309–317. [Google Scholar] [CrossRef]
- Binder, L.; Schwörer, H.; Hoppe, S.; Streit, F.; Neumann, S.; Beckmann, A.; Wachter, R.; Oellerich, M.; Walson, P.D. Pharmacokinetics of Meropenem in Critically Ill Patients with Severe Infections. Ther. Drug Monit. 2013, 35, 63–70. [Google Scholar] [CrossRef]
- Ariano, R.E.; Nyhlén, A.; Donnelly, J.P.; Sitar, D.S.; Harding, G.K.; Zelenitsky, S.A. Pharmacokinetics and pharmacodynamics of meropenem in febrile neutropenic patients with bacteremia. Ann. Pharmacother. 2005, 39, 32–38. [Google Scholar] [CrossRef]
- Taccone, F.S.; Laterre, P.F.; Dugernier, T.; Spapen, H.; Delattre, I.; Wittebole, X.; De Backer, D.; Layeux, B.; Wallemacq, P.; Vincent, J.L.; et al. Research Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit. Care 2010, 14, R126. [Google Scholar] [CrossRef] [Green Version]
- Gaibani, P.; Lombardo, D.; Bartoletti, M.; Ambretti, S.; Campoli, C.; Giannella, M.; Tedeschi, S.; Conti, M.; Mancini, R.; Landini, M.P.; et al. Comparative serum bactericidal activity of meropenem-based combination regimens against extended-spectrum beta-lactamase and KPC-producing Klebsiella pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Minichmayr, I.K.; Roberts, J.A.; Frey, O.R.; Roehr, A.C.; Kloft, C.; Brinkmann, A. Development of a dosing nomogram for continuous-infusion meropenem in critically ill patients based on a validated population pharmacokinetic model. J. Antimicrob. Chemother. 2018, 73, 1330–1339. [Google Scholar] [CrossRef]
- Isla, A.; Canut, A.; Arribas, J.; Asín-Prieto, E.; Rodríguez-Gascón, A. Meropenem dosing requirements against Enterobacteriaceae in critically ill patients: Influence of renal function, geographical area and presence of extended-spectrum beta-lactamases. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Neugebauer, S.; Wichmann, C.; Bremer-Streck, S.; Hagel, S.; Kiehntopf, M. Simultaneous Quantification of Nine Antimicrobials by LC-MS/MS for Therapeutic Drug Monitoring in Critically Ill Patients. Ther. Drug Monit. 2019, 41, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Barco, S.; Mesini, A.; Barbagallo, L.; Maffia, A.; Tripodi, G.; Pea, F.; Saffioti, C.; Castagnola, E.; Cangemi, G. A liquid chromatography-tandem mass spectrometry platform for the routine therapeutic drug monitoring of 14 antibiotics: Application to critically ill pediatric patients. J. Pharm. Biomed. Anal. 2020, 186, 113273. [Google Scholar] [CrossRef]
- Carlier, M.; Stove, V.; Wallis, S.C.; De Waele, J.J.; Verstraete, A.G.; Lipman, J.; Roberts, J.A. Assays for therapeutic drug monitoring of beta-lactam antibiotics: A structured review. Int. J. Antimicrob. Agents 2015, 46, 367–375. [Google Scholar] [CrossRef]
- Rehm, S.; Rentsch, K.M. HILIC LC-MS/MS method for the quantification of cefepime, imipenem and meropenem. J. Pharm. Biomed. Anal. 2010, 186, 113289. [Google Scholar] [CrossRef]
- Ferrari, D.; Ripa, M.; Premaschi, S.; Banfi, G.; Castagna, A.; Locatelli, M. LC-MS/MS method for simultaneous determination of linezolid, meropenem, piperacillin and teicoplanin in human plasma samples. J. Pharm. Biomed. Anal. 2019, 169, 11–18. [Google Scholar] [CrossRef]
- Shi, M.; Zhao, X.; Wang, T.; Yin, L.; Li, Y. A LC-MS/MS assay for simultaneous determination of two glycopeptides and two small molecule compounds in human plasmat. J. Chromatogr. Sci. 2018, 56, 828–834. [Google Scholar] [CrossRef]
- Pinder, N.; Brenner, T.; Swoboda, S.; Weigand, M.A.; Hoppe-Tichy, T. Therapeutic drug monitoring of beta-lactam antibiotics—Influence of sample stability on the analysis of piperacillin, meropenem, ceftazidime and flucloxacillin by HPLC-U. J. Pharm. Biomed. Anal. 2017, 143, 86–93. [Google Scholar] [CrossRef]
- D’Cunha, R.; Bach, T.; Young, B.A.; Li, P.; Nalbant, D.; Zhang, J.; Winokur, P.; An, G. Quantification of Cefepime, Meropenem, Piperacillin, and Tazobactam in Human Plasma Using a Sensitive and Robust Liquid Chromatography-Tandem Mass Spectrometry Method, Part 2: Stability Evaluation. Antimicrob. Agents Chemother. 2018, 62, e00861-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefeuvre, S.; Bois-Maublanc, J.; Hocqueloux, L.; Bret, L.; Francia, T.; Eleout-Da Violante, C.; Billaud, E.M.; Barbier, F.; Got, L. A simple ultra-high-performance liquid chromatography-high resolution mass spectrometry assay for the simultaneous quantification of 15 antibiotics in plasma. J. Chromatogr. B 2017, 1065–1066, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Martens-Lobenhoffer, J.; Monastyrski, D.; Troger, U.; Bode-Boger, S.M. Stability of meropenem in plasma versus dried blood spots (DBS). J. Pharm. Biomed. Anal. 2019, 170, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Baietto, L.; Simiele, M.; D’Avolio, A. How effective is the use of DBS and DPS as tools to encourage widespread therapeutic drug monitoring? Bioanalysis 2016, 6, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, C.; Ramirez, S.; Ramazzotti, E.; Mancini, R.; Muratori, R.; Raggi, M.A.; Conti, M. Multiplexed therapeutic drug monitoring of antipsychotics in dried plasma spots by LC-MS/MS. J. Sep. Sci. 2010, 43, 1440–1449. [Google Scholar] [CrossRef]
- Namdev, K.K.; Dwivedi, J.; Chilkoti, D.C.; Sharma, S. A simple, rapid and stability indicating validated method for quantification of lamotrigine in human plasma and dry plasma spot using LC-ESI-MS/MS: Application in clinical study. J. Chromatogr. B 2018, 1072, 362–369. [Google Scholar] [CrossRef]
- la Marca, G.; Giocaliere, E.; Villanelli, F.; Malvagia, S.; Funghini, S.; Ombrone, D.; Filippi, L.; De Gaudio, M.; De Martino, M.; Galli, L. Development of an UPLC-MS/MS method for the determination of antibiotic ertapenem on dried blood spots. J. Pharm. Biomed. Anal. 2012, 61, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jiang, Y.; Lin, T.; Wan, Q.; Yang, X.; Xu, G.; Huang, J.; Li, Z. Amantadine hydrochloride monitoring by dried plasma spot technique: High-performance liquid chromatography-tandem mass spectrometry based clinical assay. J. Sep. Sci. 2020, 43, 2264–2269. [Google Scholar] [CrossRef]
- O’Mara, M.; Hudson-Curtis, B.; Olson, K.; Yueh, Y.; Dunn, J.; Spooner, N. The effect of hematocrit and punch location on assay bias during quantitative bioanalysis of dried blood spot samples. Bioanalysis 2011, 3, 2335–2347. [Google Scholar] [CrossRef]
- Yuan, X.; Lu, Y.; Xiao, C.; Zhu, J.; Zhang, W.; Yu, C.; Li, S. Application of a micro plasma collection card for the detection of homocysteine by liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2018, 41, 4167–4176. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Cao, H.; Lin, H.; Ren, W.; Huang, J.; Zhang, J. Therapeutic drug monitoring of valproic acid using a dried plasma spot sampling device. J. Mass Spectrom. 2021, 56, e4603. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Woenker, T.; Adamec, J.; Regnier, F.E. A simple, miniaturized blood plasma extraction method. Anal. Chem. 2013, 23, 11501–11508. [Google Scholar] [CrossRef] [PubMed]
- John, H.; Willoh, S.; Hörmann, P.; Siegert, M.; Vondran, A.; Thiermann, H. Procedures for Analysis of Dried Plasma Using Microsampling Devices to Detect Sulfur Mustard-Albumin Adducts for Verification of Poisoning. Anal. Chem. 2016, 88, 8787–8794. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Guidance for Industry: Boianalytical Method Validation; Center for Drug Evaluation and Research: Beltsville, MD, USA; US Department of Health and Human Services: Washington, DA, USA, 2018. [Google Scholar]
- The European Medicines Agency. EMEA/CHMP/EWP/192217/2009: Guideline on Bioanalytical Method Validation; The European Medicines Agency: London, UK, 2011. [Google Scholar]
Species | Spiked Concentration (µg/mL) | Intra-Day (n = 6) | Inter-Day (n = 18) | ||
---|---|---|---|---|---|
Accuracy (%) | Precision (CV, %) | Accuracy (%) | Precision (CV, %) | ||
DPS | 0.5 | 97.0 ± 6.5 | 6.7 | 96.8 ± 7.1 | 7.4 |
1.5 | 91.5 ± 6.0 | 6.5 | 92.0 ± 5.6 | 6.1 | |
8 | 103.9 ± 8.9 | 8.6 | 104.3 ± 7.4 | 7.1 | |
40 | 99.4 ± 3.6 | 3.7 | 100.8 ± 3.5 | 3.5 | |
Wet plasma | 0.5 | 96.1 ± 6.6 | 6.9 | 100.2 ± 7.4 | 7.1 |
1.5 | 97.2 ± 5.2 | 5.3 | 97.0 ± 4.5 | 4.6 | |
8 | 99.8 ± 7.2 | 7.3 | 103.9 ± 7.3 | 7.0 | |
40 | 101.9 ± 3.1 | 3.0 | 97.9 ± 6.1 | 6.2 |
Species | Spiked Concentration (µg/mL) | Recovery (%) | Matrix Effect (%) | ||
---|---|---|---|---|---|
Average | CV | Average | CV | ||
DPS | 1.5 | 104.4 ± 6.6 | 6.3 | 105.2 ± 6.6 | 6.2 |
8 | 97.6 ± 5.3 | 5.5 | 108.4 ± 3.8 | 3.4 | |
40 | 96.0 ± 5.5 | 5.7 | 111.2 ± 5.4 | 3.7 | |
Wet plasma | 1.5 | 101.4 ± 7.7 | 7.6 | 91.9 ± 3.7 | 4.1 |
8 | 99.1 ± 4.5 | 4.5 | 100.8 ± 8.6 | 8.5 | |
40 | 98.6 ± 8.0 | 8.2 | 90.8 ± 6.8 | 7.4 |
Condition | DPS (Nominal Concentration, µg/mL) | Wet Plasma (Nominal Concentration, µg/mL) | ||
---|---|---|---|---|
1.5 | 40 | 1.5 | 40 | |
R.T for 1 d | 91.6 ± 1.4 | 92.0 ± 4.9 | 71.6 ± 6.5 | 76.4 ± 4.5 |
R.T for 2 d | 72.2 ± 5.2 | 74.3 ± 4.8 | 60.3 ± 2.0 | 64.0 ± 0.9 |
R.T for 3 d | 76.1 ± 6.9 | 74.3 ± 4.0 | 49.4 ± 1.4 | 54.5 ± 2.8 |
R.T for 4 d | 72.0 ± 3.0 | 73.5 ± 7.2 | 39.3 ± 1.8 | 43.1 ± 1.5 |
R.T for 7 d | 70.3 ± 5.2 | 68.3 ± 5.1 | 27.5 ± 3.8 | 28.1 ± 0.9 |
40 °C for 1 d | 64.3 ± 1.5 | 74.7 ± 2.6 | 60.4 ± 2.0 | 55.8 ± 1.4 |
40 °C for 2 d | 43.3 ± 3.4 | 60.8 ± 2.5 | 11.6 ± 0.5 | 14.8 ± 0.2 |
40 °C for 3 d | 37.5 ± 0.8 | 52.9 ± 0.1 | 6.6 ± 0.3 | 3.7 ± 0.1 |
40 °C for 7 d | 31.7 ± 3.3 | 40.9 ± 2.0 | 4.0 ± 0.4 | 0.1 ± 0.0 |
4 °C for 1 w | 100.4 ± 2.1 | 103.8 ± 10.0 | 87.0 ± 3.1 | 93.6 ± 6.5 |
20 °C for 3 w | 93.2 ± 6.0 | 101.5 ± 9.2 | 106.7 ± 3.1 | 98.4 ± 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Jiang, Y.; Wang, S.; Cao, H.; Li, Y.; Huang, J. Dried Plasma Spot Based LC–MS/MS Method for Monitoring of Meropenem in the Blood of Treated Patients. Molecules 2022, 27, 1991. https://doi.org/10.3390/molecules27061991
Cao H, Jiang Y, Wang S, Cao H, Li Y, Huang J. Dried Plasma Spot Based LC–MS/MS Method for Monitoring of Meropenem in the Blood of Treated Patients. Molecules. 2022; 27(6):1991. https://doi.org/10.3390/molecules27061991
Chicago/Turabian StyleCao, Haiwei, Yi Jiang, Shaomin Wang, Haihuan Cao, Yanyan Li, and Jing Huang. 2022. "Dried Plasma Spot Based LC–MS/MS Method for Monitoring of Meropenem in the Blood of Treated Patients" Molecules 27, no. 6: 1991. https://doi.org/10.3390/molecules27061991
APA StyleCao, H., Jiang, Y., Wang, S., Cao, H., Li, Y., & Huang, J. (2022). Dried Plasma Spot Based LC–MS/MS Method for Monitoring of Meropenem in the Blood of Treated Patients. Molecules, 27(6), 1991. https://doi.org/10.3390/molecules27061991