Bioactivity-Guided Separation of Anti-Cholinesterase Alkaloids from Uncaria rhynchophlly (Miq.) Miq. Ex Havil Based on HSCCC Coupled with Molecular Docking
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of the HSCCC Solvent Systems
2.2. HSCCC Process and HPLC Analysis
2.3. Structure Identification
2.4. Cholinesterase Inhibitory Activity
2.5. Molecular Docking Result
3. Experimental
3.1. Chemicals and Reagents
3.2. Apparatus
3.3. Preparation of Crude Extract
3.4. Selection of Solvent System
3.5. Preparation of the Solvent System and Sample Solutions
3.6. HSCCC Separation Procedure
3.7. Further Separation by Prep-HPLC
3.8. HPLC Analysis Peak
3.9. Cholinesterase Inhibitory Activity
3.10. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chen, X.Y.; Li, G.Z.; Zhang, B.; Xia, Z.Y.; Zhang, M. Molecular evaluation of herbal compounds as potent inhibitors of acetylcholinesterase for the treatment of alzheimer’s disease. Mol. Med. Rep. 2016, 14, 446–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.Y.; Zhou, S.W. Antihypertensive and neuroprotective activities of rhynchophylline: The role of rhynchophylline in neurotransmission and ion channel activity. J. Ethnopharmacol. 2010, 132, 15–27. [Google Scholar] [CrossRef]
- Keplinger, K.; Laus, G.; Wurm, M.; Dierich, M.P.; Teppner, H. Uncaria tomentosa (Willd.) DC. ethnomedicinal use and new pharmacological, toxicological and botanical results. J. Ethnopharmacol. 1999, 64, 23–34. [Google Scholar] [CrossRef]
- Hsieh, C.L.; Che, M.F.; Li, T.C.; Li, S.C.; Tang, N.Y.; Hsieh, C.T.; Pan, C.Z.; Lin, G.J. Anticonvulsant effect of Uncaria rhynchophylla (Miq) Jack. in rats with kainic acid-induced epileptic seizure. Am. J. Chin. Med. 2014, 27, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.C.; Tang, N.Y.; Liu, C.H.; Hsieh, C.L. Antiepileptic effect of Uncaria rhynchophylla and rhynchophylline involved in the initiation of c-Jun N-Terminal kinase phosphorylation of MAPK signal pathways in acute seizures of kainic acid-treated rats. J. Evid.-Based. Complement. Altern. Med. 2013, 2013, 961289. [Google Scholar]
- Goncalves, C.; Dinis, T.; Batista, M.T. Antioxidant properties of proanthocyanidins of Uncaria tomentosa bark decoction: A mechanism for anti-inflammatory activity. Phytochemistry 2005, 66, 89–98. [Google Scholar] [CrossRef]
- Aquino, R.; De, F.V.; De, S.F.; Pizza, C.; Cirino, G. Plant metabolites: New compounds and anti-inflammatory activity of Uncaria tomentosa. J. Nat. Prod. 1991, 54, 453–459. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, J.; Kim, B.Y.; Lee, H.; Ahn, J.S.; Chang, Y.S. Inhibition of phospholipase Cγ1 and cancer cell proliferation by triterpene esters from Uncaria rhynchophylla. J. Nat. Prod. 2000, 63, 753–756. [Google Scholar] [CrossRef]
- Riva, L.; Coradini, D.; Di, F.G.; De, F.V.; De, T.N.; De, S.F.; Pizza, C. The antiproliferative effects of Uncaria tomentosa extracts and fractions on the growth of breast cancer cell line. Anticancer Res. 2001, 21, 2457–2461. [Google Scholar]
- Viorica, L.A.; Janet, B. Supercritical fluid extraction of oxindole alkaloids from Uncaria Tormentosa. J. Sep. Sci. 1997, 20, 231–236. [Google Scholar]
- Hemingway, S.R.; Phillipson, J.D. Alkaloids from American species of Uncaria (Rubiaceae). J. Pharm. Pharmacol. 1974, 26, 113. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wu, X. Preparative separation of mangiferin glycosides by high speed counter-current chromatography and comparison of their antioxidant and antitumor activities. RSC Adv. 2020, 10, 25780–25785. [Google Scholar] [CrossRef]
- Yu, J.Q.; Sun, X.W.; Zhao, L.; Wangm, X.Y.; Wang, X. An Efficient method to obtain anti-inflammatory phenolic derivatives from Scindapsus Officinalis (Roxb.) Schott. by a high speed counter-current chromatography coupled with a recycling mode. RSC Adv. 2020, 10, 11132–11138. [Google Scholar] [CrossRef] [Green Version]
- Ito, Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chromatogr. A 2005, 1065, 145–168. [Google Scholar] [CrossRef] [PubMed]
- Milato, J.V.; Silva, R.S.F.; Figueiredo, F.S.; Azevedo, D.A.; Ribeiro, C.A.B.; Leitão, G.G. Use of counter-current chromatography as a selective extractor for the diterpenequinone 7α-hydroxyroyleanone from Tetradenia riparia. J. Chromatogr. A 2018, 1537, 135–140. [Google Scholar] [CrossRef]
- Dai, X.; Huang, Q.; Zhou, B.; Gong, Z.; Liu, Z.; Shi, S. Preparative isolation and purification of seven main antioxidants from Eucommia ulmoides Oliv. (Du-Zhong) leaves using HSCCC guided by DPPH-HPLC experiment. Food Chem. 2013, 139, 563–570. [Google Scholar] [CrossRef]
- Tatuedom, O.K.; Kouam, S.F.; Yapna, D.B.; Ngadjui, B.T.; Green, I.R.; Choudhary, M.I.; Lantovololona, J.R.; Spiteller, M. Spiroalkaloids and coumarins from the stem bark of Pauridiantha callicarpoides. Z. Nat. B J. Chem. Sci. 2014, 69, 747–752. [Google Scholar] [CrossRef]
- Erdelmeier, C.; Wright, A.; Orjala, J.; Baumgartner, B.; Rali, T.; Sticher, O. New indole alkaloid glycosides from Nauclea Orientalis. Planta Med. 1991, 57, 149–152. [Google Scholar] [CrossRef]
- Brown, R.T.; Fraser, S.B. Anthocephalus alkaloids: Cadambine and 3α-dihydrocadambine. Tetrahedron Lett. 1974, 23, 1957–1959. [Google Scholar] [CrossRef]
- Endo, K.; Oshima, Y.; Kikuchi, H.; Koshihara, Y.; Hikino, H. Hypotensive principles of Uncaria hooks. Planta Med. 1983, 49, 188–190. [Google Scholar] [CrossRef]
- Kharkar, P.S.; Warrier, S.; Gaud, R.S. Reverse docking: A powerful tool for drug repositioning and drug rescue. Future Med. Chem. 2014, 6, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.; Courteny, K.; Anderes, V.; Featherstone, R. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
Slovent Systems | Ratio (v/v/v) | K | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Methyl-tert-butyl Ether:acetonitrile:water | 4:1:5 | 1.92 | 2.34 | 2.36 | 3.15 | 4.72 |
n-butanol:water | 1:1 | 0.03 | 0.07 | 0.09 | 0.43 | 0.36 |
Ethyl acetate:n-butanol:water | 4:1:5 | 0.07 | 0.35 | 0.39 | 0.74 | 1.53 |
Ethyl acetate:n-butanol:water | 4:0.5:5 | 0.05 | 0.22 | 0.24 | 0.82 | 0.96 |
Ethyl acetate:n-butanol:water | 3:2:5 | 0.11 | 0.71 | 0.82 | 0.95 | 1.11 |
Ethyl acetate:n-butanol:water | 1:4:5 | 0.21 | 0.53 | 0.68 | 1.03 | 1.95 |
Ethyl acetate:n-butanol:water | 1:5:5 | 0.69 | 1.16 | 1.18 | 1.74 | 2.14 |
Samples | IC50 Value (μmol/L) | |
---|---|---|
Acetylcholinesterase | Butyrylcholinesterase | |
Crude extract | 8.17 ± 0.17 | 22.53 ± 1.13 |
1 | 2.85 ± 0.50 | 2.13 ± 0.10 |
2 | 12.4 ± 0.86 | 23.18 ± 0.14 |
3 | 46.57 ± 0.58 | 6.47 ± 0.72 |
4 | 26.12 ± 2.12 | 30.69 ± 0.69 |
5 | 37.01 ± 1.57 | 33.34 ± 0.51 |
Tacrine | 4.39 ± 0.80 | 3.25 ± 1.86 |
Ligands | AchE (kcol/mol) | BuchE (kcol/mol) |
---|---|---|
Native ligand (AchE) | −3.9 | --- |
Native ligand (BuchE) | --- | −7.4 |
Compound 1 | −7.6 | −8.1 |
Compound 2 | −6.3 | −8.4 |
Compound 3 | −7.5 | −7.6 |
Compound 4 | −6.0 | −8.7 |
Compound 5 | −6.9 | −7.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Chen, Z.; Liu, Y.; Gu, Z.; Wang, X.; Zhang, Y.; Ma, Y.; Dong, M.; Tian, Z. Bioactivity-Guided Separation of Anti-Cholinesterase Alkaloids from Uncaria rhynchophlly (Miq.) Miq. Ex Havil Based on HSCCC Coupled with Molecular Docking. Molecules 2022, 27, 2013. https://doi.org/10.3390/molecules27062013
Yu P, Chen Z, Liu Y, Gu Z, Wang X, Zhang Y, Ma Y, Dong M, Tian Z. Bioactivity-Guided Separation of Anti-Cholinesterase Alkaloids from Uncaria rhynchophlly (Miq.) Miq. Ex Havil Based on HSCCC Coupled with Molecular Docking. Molecules. 2022; 27(6):2013. https://doi.org/10.3390/molecules27062013
Chicago/Turabian StyleYu, Pengfei, Zhenshan Chen, Yuecheng Liu, Zhengwei Gu, Xiaoming Wang, Yaowen Zhang, Yanni Ma, Meiyue Dong, and Zhenhua Tian. 2022. "Bioactivity-Guided Separation of Anti-Cholinesterase Alkaloids from Uncaria rhynchophlly (Miq.) Miq. Ex Havil Based on HSCCC Coupled with Molecular Docking" Molecules 27, no. 6: 2013. https://doi.org/10.3390/molecules27062013
APA StyleYu, P., Chen, Z., Liu, Y., Gu, Z., Wang, X., Zhang, Y., Ma, Y., Dong, M., & Tian, Z. (2022). Bioactivity-Guided Separation of Anti-Cholinesterase Alkaloids from Uncaria rhynchophlly (Miq.) Miq. Ex Havil Based on HSCCC Coupled with Molecular Docking. Molecules, 27(6), 2013. https://doi.org/10.3390/molecules27062013