Single-Step Hydrolysis and Derivatization of Homocysteine Thiolactone Using Zone Fluidics: Simultaneous Analysis of Mixtures with Homocysteine Following Separation by Fluorosurfactant-Modified Gold Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydrolysis of HTL under Flow Conditions
2.2. Separation of HCY and HTL
2.3. Analytical Figures of Merit
F(HTL) = 29.12 (±0.63) × [HTL] + 1.24 (±5.52), r = 0.998
2.4. Analysis of HCY and HTL in Artificial Urine
3. Materials and Methods
3.1. Instrumentation
3.2. Reagents and Materials
3.3. ZF Procedure
3.4. Preparation of Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chubarov, A.S. Homocysteine Thiolactone: Biology and Chemistry. Encyclopedia 2021, 1, 445–459. [Google Scholar] [CrossRef]
- Jakubwski, H. Copper, Heart Disease and Homocysteine Thilactone. J. Intern. Med. 2021, 290, 229–230. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Nandi, R.; Ghoshal, K.; Bhattacharyya, M.; Maiti, D.K. A Smart Sensor for Rapid Detection of Lethal Hydrazine in Human Blood and Drinking Water. New J. Chem. 2019, 43, 3303–3308. [Google Scholar] [CrossRef]
- Gątarek, P.; Rosiak, A.; Borowczyk, K.; Głowacki, R.; Kałużna-Czaplińska, J. Higher Levels of Low Molecular Weight Sulfur Compounds and Homocysteine Thiolactone in the Urine of Autistic Children. Molecules 2020, 25, 973. [Google Scholar] [CrossRef] [Green Version]
- Borowczyk, K.; Piechocka, J.; Głowacki, R.; Dhar, I.; Midtun, Ø.; Tell, G.S.; Ueland, P.M.; Nygård, O.; Jakubowski, H. Urinary excretion of homocysteine thiolactone and the risk of acute myocardial infarction in coronary artery disease patients: The WENBIT trial. J. Intern. Med. 2019, 285, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, M.; Šćepanović, L.; Bosnić, O.; Mitrović, D.; Jozanov-Stankov, O.; Šćepanović, V.; Šćepanović, R.; Stojanović, T.; Ilić, S.; Djurić, D. Effects of Acute Administration of D,L-Homocysteine Thiolactone on the Antioxidative Status of Rat Intestine and Liver. Acta Vet. 2016, 66, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Aitken, R.J.; Flanagan, H.M.; Connaughton, H.; Whiting, S.; Hedges, A.; Baker, M.A. Involvement of homocysteine, homocysteine thiolactone, and paraoxonase type 1 (PON-1) in the etiology of defective human sperm function. Andrology 2016, 4, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.M.; Kruzliak, P.; Adamcikova, Z.; Zulli, A. Role of Nox inhibitors plumbagin, ML090 and gp91ds-tat peptide on homocysteine thiolactone induced blood vessel dysfunction. Clin. Exp. Pharmacol. Physiol. 2015, 42, 860–864. [Google Scholar] [CrossRef]
- Gu, W.; Lu, J.; Yang, G.; Dou, J.; Mu, Y.; Meng, J.; Pan, C. Plasma homocysteine thiolactone associated with risk of macrovasculopathy in Chinese patients with type 2 diabetes mellitus. Adv. Ther. 2008, 25, 914–924. [Google Scholar] [CrossRef]
- Purgat, K.; Kośka, I.; Kubalczyk, P. The Use of Single Drop Microextraction and Field Amplified Sample Injection for CZE Determination of Homocysteine Thiolactone in Urine. Molecules 2021, 26, 5687. [Google Scholar] [CrossRef]
- Piechocka, J.; Wrońska, M.; Chwatko, G.; Jakubowski, H.; Głowacki, R. Quantification of homocysteine thiolactone in human saliva and urine by gas chromatography-mass spectrometry. J. Chromatogr. B 2020, 1149, 122155. [Google Scholar] [CrossRef] [PubMed]
- Furmaniak, P.; Kubalczyk, P.; Głowacki, R. Determination of homocysteine thiolactone in urine by field amplified sample injection and sweeping MEKC method with UV detection. J. Chromatogr. B 2014, 961, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Wrońska, M.; Chwatko, G.; Borowczyk, K.; Piechocka, J.; Kubalczyk, P.; Głowacki, R. Application of GC–MS technique for the determination of homocysteine thiolactone in human urine. J. Chromatogr. B 2018, 1099, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Tseng, W.L. Role of fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone: Remover and sensor. Anal. Chem. 2008, 80, 6345–6350. [Google Scholar] [CrossRef] [PubMed]
- Chwatko, G.; Jakubowski, H. The determination of homocysteine-thiolactone in human plasma. Anal. Biochem. 2005, 337, 271–277. [Google Scholar] [CrossRef]
- Jakubowski, H. The determination of homocysteine-thiolactone in biological samples. Anal. Biochem. 2002, 308, 112–119. [Google Scholar] [CrossRef]
- Piechocka, J.; Wieczorek, M.; Głowacki, R. Gas Chromatography–Mass Spectrometry Based Approach for the Determination of Methionine-Related Sulfur-Containing Compounds in Human Saliva. Int. J. Mol. Sci. 2020, 21, 9252. [Google Scholar] [CrossRef]
- Głowacki, R.; Bald, E.; Jakubowski, H. An on-column derivatization method for the determination of homocysteine-thiolactone and protein N-linked homocysteine. Amino Acids 2011, 41, 187–194. [Google Scholar] [CrossRef]
- Zinellu, A.; Sotgia, S.; Scanu, B.; Pisanu, E.; Sanna, M.; Sati, S.; Deiana, L.; Sengupta, S.; Carru, C. Determination of homocysteine thiolactone, reduced homocysteine, homocystine, homocysteine–cysteine mixed disulfide, cysteine and cystine in a reaction mixture by overimposed pressure/voltage capillary electrophoresis. Talanta 2010, 82, 1281–1285. [Google Scholar] [CrossRef]
- Purgat, K.; Olejarz, P.; Kośka, I.; Głowacki, R.; Kubalczyk, P. Determination of homocysteine thiolactone in human urine by capillary zone electrophoresis and single drop microextraction. Anal. Biochem. 2020, 596, 113640. [Google Scholar] [CrossRef]
- Tsiasioti, A.; Andreou, A.; Tzanavaras, P.D. Selective reaction of homocysteine with o-phthalaldehyde under flow conditions in highly alkaline medium: Fluorimetric determination using zone fluidics. Luminescence 2020, 35, 1402–1407. [Google Scholar] [CrossRef]
- Jakubowski, H. Mechanism of the Condensation of Homocysteine Thiolactone with Aldehydes. Chem.–Eur. J. 2006, 12, 8039–8043. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, K.K.; Rabha, B.; Pati, S.; Sarkar, T.; Choudhury, B.K.; Barman, A.; Bhattacharjya, D.; Srivastava, A.; Baishya, D.; Edinur, H.A.; et al. Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules 2021, 26, 6389. [Google Scholar] [CrossRef] [PubMed]
- Rónavári, A.; Igaz, N.; Adamecz, D.I.; Szerencsés, B.; Molnar, C.; Kónya, Z.; Pfeiffer, I.; Kiricsi, M. Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules 2021, 26, 844. [Google Scholar] [CrossRef] [PubMed]
- Ait-Touchente, Z.; Falah, S.; Scavetta, E.; Chehimi, M.M.; Touzani, R.; Tonelli, D.; Taleb, A. Different Electrochemical Sensor Designs Based on Diazonium Salts and Gold Nanoparticles for Pico Molar Detection of Metals. Molecules 2020, 25, 3903. [Google Scholar] [CrossRef]
- Lu, C.; Zu, Y.; Yam, V.W.W. Specific postcolumn detection method for HPLC assay of homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles. Anal. Chem. 2007, 79, 666–672. [Google Scholar] [CrossRef]
- Li, F.; Zu, Y. Effect of Nonionic Fluorosurfactant on the Electrogenerated Chemiluminescence of the Tris(2,2′-bipyridine)ruthenium(II)/Tri-n-propylamine System: Lower Oxidation Potential and Higher Emission Intensity. Anal. Chem. 2004, 76, 1768–1772. [Google Scholar] [CrossRef]
- Lu, C.; Zu, Y. Specific detection of cysteine and homocysteine: Recognizing one-methylene difference using fluorosurfactant-capped gold nanoparticles. Chem. Commun. 2007, 37, 3871–3873. [Google Scholar] [CrossRef]
- Chubarov, A.S.; Zakharova, O.D.; Koval, O.A.; Romaschenko, A.V.; Akulov, A.E.; Zavjalov, E.L.; Razumov, I.A.; Koptyug, I.V.; Knorre, D.G.; Godovikova, T.S. Design of protein homocystamides with enhanced tumor uptake properties for 19F magnetic resonance imaging. Bioorg. Med. Chem. 2015, 23, 6943–6954. [Google Scholar] [CrossRef]
Sample | HTL (μmol L−1) | Recovery (%) | HCY (μmol L−1) | Recovery (%) |
---|---|---|---|---|
S1 | — | — | 2 | 89 (±3) |
S2 | 2 | 112 (±5) | — | — |
S3 | 5 | 95 (±3) | 5 | 109 (±5) |
S4 | 5 | 109 (±5) | 10 | 97 (±3) |
S5 | 5 | 108 (±4) | 20 | 110 (±4) |
S6 | — | — | 10 | 91 (±4) |
S7 | 10 | 115 (±5) | — | — |
S8 | 10 | 112 (±4) | 10 | 102 (±3) |
S9 | 20 | 92 (±5) | 5 | 116 (±5) |
S10 | 20 | 90 (±2) | — | — |
S11 | 5 | 87 (±5) | — | — |
S12 | 5 | 89 (±4) | 5 | 85 (±5) |
S13 | — | — | 10 | 114 (±6) |
S14 | 10 | 119 (±3) | 5 | 107 (±4) |
S15 | 10 | 102 (±4) | 10 | 90 (±6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiasioti, A.; Zacharis, C.K.; Tzanavaras, P.D. Single-Step Hydrolysis and Derivatization of Homocysteine Thiolactone Using Zone Fluidics: Simultaneous Analysis of Mixtures with Homocysteine Following Separation by Fluorosurfactant-Modified Gold Nanoparticles. Molecules 2022, 27, 2040. https://doi.org/10.3390/molecules27072040
Tsiasioti A, Zacharis CK, Tzanavaras PD. Single-Step Hydrolysis and Derivatization of Homocysteine Thiolactone Using Zone Fluidics: Simultaneous Analysis of Mixtures with Homocysteine Following Separation by Fluorosurfactant-Modified Gold Nanoparticles. Molecules. 2022; 27(7):2040. https://doi.org/10.3390/molecules27072040
Chicago/Turabian StyleTsiasioti, Apostolia, Constantinos K. Zacharis, and Paraskevas D. Tzanavaras. 2022. "Single-Step Hydrolysis and Derivatization of Homocysteine Thiolactone Using Zone Fluidics: Simultaneous Analysis of Mixtures with Homocysteine Following Separation by Fluorosurfactant-Modified Gold Nanoparticles" Molecules 27, no. 7: 2040. https://doi.org/10.3390/molecules27072040
APA StyleTsiasioti, A., Zacharis, C. K., & Tzanavaras, P. D. (2022). Single-Step Hydrolysis and Derivatization of Homocysteine Thiolactone Using Zone Fluidics: Simultaneous Analysis of Mixtures with Homocysteine Following Separation by Fluorosurfactant-Modified Gold Nanoparticles. Molecules, 27(7), 2040. https://doi.org/10.3390/molecules27072040