GC–MS Analysis and In Vivo and Ex Vivo Antidiarrheal and Antispasmodic Effects of the Methanolic Extract of Acacia nilotica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Plant Material
2.2. Chemicals
2.3. Animals
2.4. GC–MS Analysis
2.5. In Vivo Antidiarrheal Study
2.6. Ex Vivo Experiments on Isolated Rat Ileum
2.7. Ca++ Inhibitory Confirmation
2.8. PDE Inhibitory Confirmation
2.9. Statistical Analysis
3. Results
3.1. Methanolic Extract Yield (%)
3.2. GC–MS Phytochemical Profiling
3.3. In Vivo Antidiarrheal Effect
3.4. Ex Vivo Antispasmodic Effects
3.5. Phosphodiesterase Enzyme (PDE)-Inhibitory like Effect
3.6. Calcium Channel Blocking (CCB)-like Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Malagelada, J.R. A symptom-based approach to making a positive diagnosis of irritable bowel syndrome with constipation. Intern. J. Clin. Pract. 2006, 60, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, Y.; Zhang, J.; Huang, X.; Wang, Y.; Xu, X.; Zheng, B.; Zhou, X.; Tian, H.; Liu, L.; et al. Antidiarrheal effect of Alpinia oxyphylla Miq. (Zingiberaceae) in experimental mice and its possible mechanism of action. J. Ethnopharmacol. 2015, 168, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Al Jarousha, A.M.; ElJarou, M.A.; El Qouqa, I.A. Bacterial enteropathogens and risk factors associated with childhood diarrhea. Indian J. Pediatr. 2011, 78, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, M.; Hwang, L.; Melmed, G.Y.; Low, K.; Vasiliauskas, E.; Ippoliti, A.; Yang, J.; Lezcano, S.; Conklin, J.L.; Sahakian, A. New clinical method for distinguishing D-IBS from other gastrointestinal conditions causing diarrhea: The LA/IBS diagnostic strategy. Dig. Dis. Sci. 2010, 55, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Young, V.B.; Schmidt, T.M. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J. Clin. Microbiol. 2004, 42, 1203–1206. [Google Scholar] [CrossRef] [Green Version]
- Farthing, M.J. Diarrhoea: A significant worldwide problem. Int. J. Antimicrob. Agents 2000, 14, 65–69. [Google Scholar] [CrossRef]
- Semenya, S.S.; Maroyi, A. Medicinal plants used by the Bapedi traditional healers to treat diarrhea in the Limpopo province. S. Afr. J. Ethnopharmacol. 2012, 144, 395–401. [Google Scholar] [CrossRef]
- Dey, I.; Lejeune, M.; Chadee, K. Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. Br. J. Pharmacol. 2006, 149, 611–623. [Google Scholar] [CrossRef] [Green Version]
- Pasricha, P.J. Treatment of disorders of bowel motility and water flux; antiemetics; agents used in bilary and pancreatic diseases. In The Pharmacological Basis of Therapeutics, 11th ed.; Brunton, L.L., Lazo, J.S., Parker, K.L., Eds.; McGraw-Hill: New York, NY, USA, 2006; pp. 983–1008. [Google Scholar]
- Burks, T.F. Actions of drugs on gastrointestinal motility. In Physiology of the Gastrointestinal Tract, 2nd ed.; Johnson, L.R., Ed.; Raven Press: New York, NY, USA, 1987; pp. 723–744. [Google Scholar]
- Brunton, L.L. Agents for Control of Gastric Acidity and Treatment of Peptic Ulcers Goodman Gilman’s the Pharmacological Basis of Therapeutics, 11th ed.; McGaw-Hill: New York, NY, USA, 2008; pp. 623–652. [Google Scholar]
- Jailwala, J.; Imperiale, T.F.; Kroenke, K. Pharmacologic treatment of the irritable bowel syndrome: A systematic review of randomized, controlled trials. Ann. Intern. Med. 2000, 133, 136–147. [Google Scholar] [CrossRef]
- Lesbros-Pantoflickova, D.; Michetti, P.; Fried, M.; Beglinger, C.; Blum, A. Meta-analysis: The treatment of irritable bowel syndrome. Aliment. Pharmacol. Ther. 2004, 20, 1253–1269. [Google Scholar] [CrossRef]
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef] [PubMed]
- Uniyal, S.K.; Singh, K.; Jamwal, P.; Lal, B. Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. J. Ethnobiol. Ethnomed. 2006, 2, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, S.Y.; Litscher, G.; Gao, S.H.; Zhou, S.F.; Yu, Z.L.; Chen, H.Q.; Zhang, S.F.; Tang, M.K.; Sun, J.N.; Ko, K.M. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evid Based Complement. Altern. Med. 2014, 2014, 525340. [Google Scholar] [CrossRef] [PubMed]
- Lovkova, M.Y.; Buzuk, G.N.; Sokolova, S.M.; Kliment’eva, N.I. Chemical Features of Medicinal Plants (Review). Appl. Biochem. Microbiol. 2004, 37, 229–237. [Google Scholar] [CrossRef]
- Ali, A.M.H.; Yagoub, S.O. Anti-microbial Activity of Acacia nilotica Extracts against Some Bacteria Isolated from Clinical Specimens. Res. J. Med. Plant 2007, 1, 25–28. [Google Scholar]
- Rather, L.J.; Islam, S.; Mohammad, F. Acacia nilotica (L.): A review of its traditional uses, phytochemistry, and pharmacology. Sustain. Chem. Pharm. 2015, 2, 12–30. [Google Scholar] [CrossRef]
- Said, M. Hamdard Pharmacopoeia of Eastern Medicine; Time Press: Karachi, Pakistan, 1969; pp. 27, 33. [Google Scholar]
- Nadkarni, K.M. Indian Materia Medica; Popular Prakshan Private, Ltd.: Bombay, India, 1976; pp. 9–11. [Google Scholar]
- Kirtikar, K.R.; Basu, B.D. Indian Medicinal Plants, Part I; Indian Press: Allahabad, India, 1918. [Google Scholar]
- El-Tahir, A.; Satti, G.N.H.; Khalid, S.A. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Acacia nilotica. Phytother. Res. 1999, 13, 474–478. [Google Scholar] [CrossRef]
- Fatima, S.; Baig, M.R.; Baig, M.; Kadam, V.B. Antimicrobial activity of Acacia nilotica (L.) Del. plant extracts against Xanthomonas malvacearum bacteria. Int. Multidiscip. Res. J. 2012, 2, 48–49. [Google Scholar]
- Ahmad, M.; Zaman, F.; Sharif, T.; Zabta, M.C. Antidiabetic and hypolipidemic effects of aqueous methanolic extract of Acacia nilotica pods in alloxan-induced diabetic rabbits. Scand. J. Lab. Anim. Sci. 2008, 35, 29–34. [Google Scholar]
- Seigler, D.S. Phytochemistry of Acacia—Sensu lato. Biochem. Syst. Ecol. 2003, 31, 845–873. [Google Scholar] [CrossRef]
- Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S.; Arora, S. Umbelliferone—An antioxidant isolated from Acacia nilotica (L.) Wild. ex Del. Food Chem. 2010, 120, 825–830. [Google Scholar] [CrossRef]
- El-Toumy, S.A.; Mohamed, S.M.; Hassan, E.M.; Mossa, A.H. Phenolic metabolites from Acacia nilotica flowers and evaluation of its free radical scavenging activity. J. Am. Sci. 2011, 7, 287–295. [Google Scholar] [CrossRef]
- Omara, E.O.; Nadab, S.A.; Farraga, A.R.H.; Sharafa, W.M.; El-Toumy, S.A. Therapeutic effect of Acacia nilotica pods extract on streptozotocin induced diabetic nephropathy in rat. Phytomedicine 2012, 19, 1059–1067. [Google Scholar] [CrossRef]
- Ahmad, W.; Parveen, R.; Mujeeb, M.; Zaidi, S.M.A. Comparative Fingerprint Profiling of Unani Polyherbomineral (Safoof-e-Pathar Phori) Formulation by HPTLC, HPLC, and GC–MS. J. AOAC Int. 2020, 103, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Tamboli, E.T.; Ali, A.; Amir, M.; Zaidi, S.M.A.; Ahmad, S. Didymocarpous pedicellatus R. Br.: Qualitative and Quantitative GCMS Approach for Quality Control in Traditional Poly-herbal Formulation with In vitro Antioxidant and Antimicrobial Activity. Orient. J. Chem. 2019, 35, 648–657. [Google Scholar] [CrossRef]
- National Research Council. Guide for the Care and Use of Laboratory Animals; National Academy Press: Washington, DC, USA, 1996; pp. 1–7. [Google Scholar]
- Khan, W.; Chester, K.; Anjum, V.; Ahmad, W.; Ahmad, S.; Narwaria, A.; Katiyar, C.K. Chromatographic profiling of Pancharishta at different stages of its development using HPTLC, HPLC, GC–MS and UPLC–MS. Phytochem. Lett. 2017, 20, 391–400. [Google Scholar] [CrossRef]
- Jebunnessa; Uddin, S.B.; Mahbub-Uz-Zaman, M.; Akhtar, R.; Ahmed, N.U. Antidiarrheal activity of ethanolic bark extract of Mitragyna diversifolia. Bangl. J. Pharmacol. 2009, 4, 144–146. [Google Scholar]
- Rehman, N.U.; Ansari, M.N.; Samad, A. In Silico, Ex Vivo and In Vivo Studies of Roflumilast as a Potential Antidiarrheal and Antispasmodic agent: Inhibition of the PDE-4 Enzyme and Voltage-gated Ca++ ion Channels. Molecules 2020, 25, 1008. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.; Rehman, N.U.; Ansari, M.N.; Palla, A.H. Effects of Essential Oils of Elettaria cardamomum Grown in India and Guatemala on Gram-Negative Bacteria and Gastrointestinal Disorders. Molecules 2021, 26, 2546. [Google Scholar] [CrossRef]
- Godfraind, T.; Miller, R.; Wibo, M. Calcium antagonism and calcium entry blockade. Pharmacol. Rev. 1986, 38, 321–416. [Google Scholar]
- Gilani, A.H.; Khan, A.; Subhan, F.; Khan, M. Antispasmodic and bronchodilator activities of St. John’s wort are putatively mediated through dual inhibition of calcium influx and phosphodiesterase. Fundam. Clin. Pharmacol. 2005, 19, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Fleckenstein, A. Specific pharmacology of Ca++ in myocardium, cardiac pacemakers and vascular smooth muscle. Rev. Pharmacol. Toxicol. 1977, 17, 149–166. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.T.; Liao, G.; Bi, X.; Oka, T.; Tamura, S.; Baudry, M. The PDE10A inhibitor, papaverine, differentially activates ERK in male and female rat striatal slices. Neuropharmacology 2011, 61, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Rang, H.P.; Dale, M.M.; Ritter, J.M. Pharmacology, 4th ed.; Churchill Livingstone: New York, NY, USA, 1999; pp. 289–290. [Google Scholar]
- Gilani, A.H.; Shaheen, F.; Zaman, M.; Janbaz, K.H.; Shah, B.H.; Akhtar, M.S. Studies on antihypertensive and antispasmodic activities of methanol extract of Acacia nilotica pods. Phytother. Res. 1999, 13, 665–669. [Google Scholar] [CrossRef]
- Croci, T.; Landi, M.; Elmonds-Alt, X.; Le-Fur, G.; Maffrand, J.P.; Manara, L. Role of tachykinins in castor oil-induced diarrhoea in rats. Br. J. Pharmacol. 1997, 121, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Rehman, N.U.; Gilani, A.H.; Khan, A.; Nazneen, M.; El Gamal, A.A.; Fawzy, G.A.; Al-Ati, H.Y.; Abdel-kader, M.S. Antidiarrheal and Antispasmodic Activities of Buddleja polystachya are Mediated Through Dual Inhibition of Ca(++) Influx and Phosphodiesterase Enzyme. Phytother. Res. 2015, 29, 1211–1218. [Google Scholar] [CrossRef]
- Iwao, I.; Terada, Y. On the mechanism of diarrhea due to castor oil. Jpn. J. Pharmacol. 1962, 12, 137–145. [Google Scholar] [CrossRef]
- Khan, M.; Khan, A.U.; Rehman, N.U.; Gilani, A.H. Pharmacological basis for medicinal use of Lens culinaris in gastrointestinal and respiratory disorders. Phytother. Res. 2014, 28, 1349–1358. [Google Scholar] [CrossRef]
- Gilani, A.H.; Rehman, N.U.; Mehmood, M.H.; Alkharfy, K.M. Species differences in the antidiarrheal and antispasmodic activities of Lepidium sativum and insight into underlying mechanisms. Phytother. Res. 2013, 27, 1086–1094. [Google Scholar] [CrossRef]
- Downie, J.W.; Twiddy, D.A.; Awad, S.A. Antimuscarinic and non-competitive antagonist properties of dicyclomine hydrochloride in isolated human and rabbit bladder muscle. J. Pharmacol. Exp. Ther. 1977, 201, 662–668. [Google Scholar]
- Boswell-Smith, V.; Spina, D.; Page, C.P. Phosphodiesterase inhibitors. Br. J. Pharmacol. 2006, 147 (Suppl. 1), S252–S257. [Google Scholar] [CrossRef] [PubMed]
- Choo, L.K.; Mitchelson, F. Antagonism of cholinomimetics by troxypyrrolidinium in guinea-pig atria and longitudinal ileal muscle: Comparison with hemicholinium-3. Eur. J. Pharmacol. 1978, 52, 313–322. [Google Scholar] [CrossRef]
- Kaneda, T.; Takeuchi, Y.; Matsui, H.; Shimizu, K.; Urakawa, N.; Nakajyo, S. Inhibitory mechanism of papaverine on carbachol-induced contraction in bovine trachea. J. Pharmacol. Sci. 2005, 98, 275–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, T.C.; Weir, S.W.; Weston, A.H. Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein. Br. J. Pharmacol. 1986, 88, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinh, T.H.; Nuidate, T.; Vuddhakul, V.; Rodkhum, C. Antibacterial Activity of Pyrogallol, a Polyphenol Compound against Vibrio parahaemolyticus Isolated from The Central Region of Thailand. Procedia Chem. 2016, 18, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.R.; Reddy, J.S.; Gopikrishna, G.; Solomon, K.A. GC–MS determination of bioactive constituents of Cycas beddomei cones. Int. J. Pharm. Bio. Sci. 2012, 3, 344–350. [Google Scholar]
S. No. | Compound Name | % Area | Retention Index | MoleculaR Weight | Molecular Formula | Chemical Structure | Cas No | Nature of Compound |
---|---|---|---|---|---|---|---|---|
1 | N,N-Dimethylglycine | 1.3 | 824 | 103 | C4H9NO2 | 1118-68-9 | Amino acid | |
2 | 4-methylbenzenethiol | 0.2 | 1082 | 124.21 | C7H8S | 106-45-6 | Thiol | |
3 | Pyrogallol | 64.0 | 1329 | 126.11 | C6H6O3 | 87-66-1 | Polyphenol | |
4 | 1,8,11-Heptadecatriene, (Z,Z)- | 0.6 | 1655 | 234.5 | C17H30 | 56134-03-3 | Fatty Acid | |
5 | 4-O methylmannose | 17.7 | 1714 | 194.18 | C7H14O6 | 27552-11-0 | Polysaccharide | |
6 | Hexadecanoic acid, methyl ester | 0.6 | 1905 | 270.5 | C17H34O2 | 112-39-0 | Fatty Acid ester | |
7 | 14,17-Octadecadienoic acid, methyl ester | 0.1 | 2075 | 294.5 | C19H34O2 | 56554-60-0 | Fatty Acid ester | |
8 | 9,12-Octadecadienoic acid (Z,Z)- | 6.8 | 2078 | 280.4 | C18H32O2 | 60-33-3 | Fatty Acid | |
9 | Methyl oleate | 1.9 | 2081 | 296.5 | C19H36O2 | 112-62-9 | Fatty Acid ester | |
10 | Methyl linoleate | 1.6 | 2092 | 294.5 | C19H34O2 | 112-63-0 | Fatty Acid ester | |
11 | Methyl 9-cis,11-trans-octadecadienoate | 0.2 | 2093 | 294.5 | C19H34O2 | 13058-52-1 | Fatty Acid | |
12 | Methyl stearate | 0.4 | 2099 | 298.5 | C19H38O2 | 112-61-8 | Fatty Acid | |
13 | 15-Hydroxypentadecanoic acid | 0.5 | 2111 | 258.4 | C15H30O3 | 4617-33-8 | Fatty Acid | |
14 | Glycedyl palmitate | 0.6 | 2241 | 312.5 | C19H36O3 | 7501-44-2 | Fatty Acid ester | |
15 | Oxiranyl methyl ester 9-octadecenoic acid | 0.7 | 2343 | 338.5 | C21H38O3 | 5431-33-4 | Carboxylic ester | |
16 | 9-Octadecenamide | 0.2 | 2375 | 281.5 | C18H35NO | 3322-62-1 | Fatty Acid | |
17 | Phthalic acid, bis(2-ethylhexyl) ester | 0.5 | 2507 | 390.5 | C24H38O4 | 117-81-7 | Carboxylic acid | |
18 | Ergosta-5,22-dien-3-ol, (3.beta.,22E)- | 0.2 | 3038 | 398.7 | C28H46O | 474-67-9 | Steroid | |
19 | Ergost-5-en-3-ol | 0.1 | 3099 | 400.7 | C28H48O | 474-62-4 | Steroid |
Treatment (p.o.), Dose (mg/kg) | No. of Mice with Diarrhea | % Protection |
---|---|---|
Saline (10 mL/kg) + Castor oil | 5/5 | 0 |
A. nilotica + Castor oil | ||
200 (mg/kg) + 10 (mL/kg) | 3 */5 | 40 |
400 (mg/kg) + 10 (mL/kg) | 1 */5 | 80 |
Loperamide (10 mg/kg) + Castor oil | 0 **/5 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, N.U.; Ansari, M.N.; Ahmad, W.; Amir, M. GC–MS Analysis and In Vivo and Ex Vivo Antidiarrheal and Antispasmodic Effects of the Methanolic Extract of Acacia nilotica. Molecules 2022, 27, 2107. https://doi.org/10.3390/molecules27072107
Rehman NU, Ansari MN, Ahmad W, Amir M. GC–MS Analysis and In Vivo and Ex Vivo Antidiarrheal and Antispasmodic Effects of the Methanolic Extract of Acacia nilotica. Molecules. 2022; 27(7):2107. https://doi.org/10.3390/molecules27072107
Chicago/Turabian StyleRehman, Najeeb Ur, Mohd Nazam Ansari, Wasim Ahmad, and Mohd Amir. 2022. "GC–MS Analysis and In Vivo and Ex Vivo Antidiarrheal and Antispasmodic Effects of the Methanolic Extract of Acacia nilotica" Molecules 27, no. 7: 2107. https://doi.org/10.3390/molecules27072107
APA StyleRehman, N. U., Ansari, M. N., Ahmad, W., & Amir, M. (2022). GC–MS Analysis and In Vivo and Ex Vivo Antidiarrheal and Antispasmodic Effects of the Methanolic Extract of Acacia nilotica. Molecules, 27(7), 2107. https://doi.org/10.3390/molecules27072107