Evaluating Tannins and Flavonoids from Traditionally Used Medicinal Plants with Biofilm Inhibitory Effects against MRGN E. coli
Abstract
:1. Introduction
2. Results and Discussion
2.1. Tannin and Flavonoid Content
2.2. Antimicrobial Activity
2.2.1. Agar Diffusion Test
2.2.2. Anti-Biofilm Activity
2.3. Correlation Analysis
2.4. HPLC Fingerprint Analysis
3. Materials and Methods
3.1. Plant Material
3.2. Extraction
3.3. Determination of Tannins
3.4. Determination of Flavonoids
3.5. Agar Diffusion Test
3.6. Biofilm Assay
3.7. Correlation Analysis: Tannins and Flavonoids vs. Biological Activity
3.8. HPLC Fingerprints
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Maechler, F.; Geffers, C.; Schwab, F.; Peña Diaz, L.-A.; Behnke, M.; Gastmeier, P. Entwicklung der Resistenzsituation in Deutschland: Wo stehen wir wirklich? Med. Klin. Intensivmed. Und Notf. 2017, 112, 186–191. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 3 September 2021).
- Raorane, C.J.; Lee, J.-H.; Kim, Y.-G.; Rajasekharan, S.K.; García-Contreras, R.; Lee, J. Antibiofilm and Antivirulence Efficacies of Flavonoids and Curcumin against Acinetobacter baumannii. Front. Microbiol. 2019, 10, 990. [Google Scholar] [CrossRef]
- Redfern, J.; Enright, M.C. Further understanding of Pseudomonas aeruginosa’s ability to horizontally acquire virulence: Possible intervention strategies. Expert Rev. Anti-Infect. Ther. 2020, 18, 539–549. [Google Scholar] [CrossRef]
- Gato, E.; Rosalowska, A.; Martínez-Guitián, M.; Lores, M.; Bou, G.; Pérez, A. Anti-adhesive activity of a Vaccinium corymbosum polyphenolic extract targeting intestinal colonization by Klebsiella pneumoniae. Biomed. Pharmacother. 2020, 132, 110885. [Google Scholar] [CrossRef]
- Liu, W.; Lu, H.; Chu, X.; Lou, T.; Zhang, N.; Zhang, B.; Chu, W. Tea polyphenols inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances resistance to Klebsiella pneumoniae infection in Caenorhabditis elegans model. Microb. Pathog. 2020, 147, 104266. [Google Scholar] [CrossRef]
- Rumbaugh, K.P.; Ahmad, I. (Eds.) Antibiofilm Agents: From Diagnosis to Treatment and Prevention; Springer: Berlin, Germany, 2014; ISBN 9783642538322. [Google Scholar]
- Matilla-Cuenca, L.; Toledo-Arana, A.; Valle, J. Anti-biofilm molecules targeting functional amyloids. Antibiotics 2021, 10, 795. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lee, S.M.; Dykes, G.A. Potential mechanisms for the effects of tea extracts on the attachment, biofilm formation and cell size of Streptococcus mutans. Biofouling 2013, 29, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Chrubasik, C.; Li, G.; Chrubasik, S. The clinical effectiveness of chokeberry: A systematic review. Phytother. Res. 2010, 24, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa Products and By-Products for Health and Nutrition: A Review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Bräunlich, M.; Økstad, O.A.; Slimestad, R.; Wangensteen, H.; Malterud, K.E.; Barsett, H. Effects of Aronia melanocarpa constituents on biofilm formation of Escherichia coli and Bacillus cereus. Molecules 2013, 18, 14989–14999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olennikov, D.N. Ellagitannins and Other Phenolic Compounds from Comarum palustre. Chem. Nat. Compd. 2016, 52, 721–723. [Google Scholar] [CrossRef]
- Radojević, I.D.; Branković, S.N.; Vasić, S.N.; Ćirić, A.R.; Topuzović, M.D.; Čomić, L.R. Phytochemical Profiles, Antioxidant and Antimicrobial with Antibiofilm Activities of Wild Growing Potentilla visianii Extracts. Nat. Prod. Commun. 2018, 13, 851–854. [Google Scholar] [CrossRef] [Green Version]
- Birnesser, H.; Stolt, P. The Homeopathic Antiarthitic Preparation Zeel comp. N: A Review of Molecular and Clinical Data. Explore 2007, 3, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Vollmann, C.; Schultze, W. Composition of the root essential oils of severalGeum species and related members of the subtribus geinae (rosaceae). Flavour Fragr. J. 1995, 10, 173–178. [Google Scholar] [CrossRef]
- Fontaine, B.M.; Nelson, K.; Lyles, J.T.; Jariwala, P.B.; García-Rodriguez, J.M.; Quave, C.L.; Weinert, E.E. Identification of Ellagic Acid Rhamnoside as a Bioactive Component of a Complex Botanical Extract with Anti-Biofilm Activity. Front. Microbiol. 2017, 8, 193. [Google Scholar] [CrossRef] [PubMed]
- Sivasankar, C.; Maruthupandiyan, S.; Balamurugan, K.; James, P.B.; Krishnan, V.; Pandian, S.K. A combination of ellagic acid and tetracycline inhibits biofilm formation and the associated virulence of Propionibacterium acnes in vitro and in vivo. Biofouling 2016, 32, 397–410. [Google Scholar] [CrossRef]
- Orlova, A.A.; Whaley, A.K.; Ponkratova, A.O.; Balabas, O.A.; Smirnov, S.N.; Povydysh, M.N. Two new flavonol-bis-3,7-glucuronides from Geum rivale L. Phytochem. Lett. 2021, 42, 41–44. [Google Scholar] [CrossRef]
- European Scientific Cooperative on Phytotherapy. Filipendulae Ulmariae Herba: Meadowsweet; European Scientific Cooperative on Phytotherapy: Exeter, UK, 2015. [Google Scholar]
- Chen, X.; Shang, F.; Meng, Y.; Li, L.; Cui, Y.; Zhang, M.; Qi, K.; Xue, T. Ethanol extract of Sanguisorba officinalis L. inhibits biofilm formation of methicillin-resistant Staphylococcus aureus in an ica-dependent manner. J. Dairy Sci. 2015, 98, 8486–8491. [Google Scholar] [CrossRef]
- Vignault, A.; González-Centeno, M.R.; Pascual, O.; Gombau, J.; Jourdes, M.; Moine, V.; Iturmendi, N.; Canals, J.M.; Zamora, F.; Teissedre, P.-L. Chemical characterization, antioxidant properties and oxygen consumption rate of 36 commercial oenological tannins in a model wine solution. Food Chem. 2018, 268, 210–219. [Google Scholar] [CrossRef]
- Shukla, V.; Bhathena, Z. Broad Spectrum Anti-Quorum Sensing Activity of Tannin-Rich Crude Extracts of Indian Medicinal Plants. Scientifica 2016, 2016, 5823013. [Google Scholar] [CrossRef] [Green Version]
- Çepnİ Yüzbaşıoğlu, E.; Bona, M.; Şerbetçi, T.; Gürel, F. Evaluation of quorum sensing modulation by plant extracts originating from Turkey. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2018, 152, 376–385. [Google Scholar] [CrossRef]
- Klug, T.V.; Novello, J.; Laranja, D.C.; Aguirre, T.A.S.; de Oliveira Rios, A.; Tondo, E.C.; Santos, R.P.d.; Bender, R.J. Effect of Tannin Extracts on Biofilms and Attachment of Escherichia coli on Lettuce Leaves. Food Bioprocess. Technol. 2017, 10, 275–283. [Google Scholar] [CrossRef]
- Schaufler, K.; Semmler, T.; Pickard, D.J.; de Toro, M.; de La Cruz, F.; Wieler, L.H.; Ewers, C.; Guenther, S. Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does Not Reduce Fitness but Enhances Virulence in Some Strains of Pandemic E. coli Lineages. Front. Microbiol. 2016, 7, 336. [Google Scholar] [CrossRef]
- Corradini, E.; Foglia, P.; Giansanti, P.; Gubbiotti, R.; Samperi, R.; Laganà, A. Flavonoids: Chemical properties and analytical methodologies of identification and quantitation in foods and plants. Nat. Prod. Res. 2011, 25, 469–495. [Google Scholar] [CrossRef] [PubMed]
- Arbenz, A.; Averous, L. Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem. 2015, 17, 2626–2646. [Google Scholar] [CrossRef] [Green Version]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Lopes, L.A.A.; Dos Santos Rodrigues, J.B.; Magnani, M.; de Souza, E.L.; de Siqueira-Júnior, J.P. Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. Microb. Pathog. 2017, 107, 193–197. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, F.; Feng, W.; Qui, X.; Liu, Y.; Yang, B.; Chen, Y.; Xia, P. Hyperoside inhibits biofilm formation of Pseudomonas aeruginosa. Exp. Ther. Med. 2017, 14, 1647–1652. [Google Scholar] [CrossRef] [Green Version]
- GraphPad Software. GraphPad Prism; GraphPad Software: San Diego, CA, USA, 2015. [Google Scholar]
- Overholser, B.R.; Sowinski, K.M. Biostatistics primer: Part 2. Nutr. Clin. Pract. 2008, 23, 76–84. [Google Scholar] [CrossRef]
- Vladimirovič, A.L.; Budancev, A.L. (Eds.) Illjustrirovannyj Opredelitelʹ Rastenij Karelʹskogo Peresejka; SPECLIT Izd-vo SPKhFA: Sankt-Peterburg, Russia, 2000; ISBN 5-299-00031-6. [Google Scholar]
- European Directorate for the Quality of Medicines and HealthCare. Europäisches Arzneibuch 10.0, Grundwerk; Deutscher Apotheker Verlag: Stuttgart, Germany, 2020; ISBN 978-3-7692-7515-5. [Google Scholar]
- European Directorate for the Quality of Medicines and HealthCare. Europäisches Arzneibuch 9.7, Grundwerk; Deutscher Apotheker Verlag: Stuttgart, Germany, 2019; ISBN 978-3-7692-7515-5. [Google Scholar]
- Melo, P.d.C.; Ferreira, L.M.; Nader Filho, A.; Zafalon, L.F.; Vicente, H.I.G.; Souza, V.d. Comparison of methods for the detection of biofilm formation by Staphylococcus aureus isolated from bovine subclinical mastitis. Braz. J. Microbiol. 2013, 44, 119–124. [Google Scholar] [CrossRef] [Green Version]
Plant (Organ) | Extract Yield (%) | Content (% DW, Mean ± Range) | ||||
---|---|---|---|---|---|---|
DCM | MeOH | Water | Tannins | Flavonoids (Boric Acid Method) | Flavonoid (AlCl3 Method) | |
A. melanocarpa1 (fruit) | 4.89 | 65.14 | 3.85 | 3.37 ± 0.09 | 0.32 ± 0.06 | 0.09 ± 0.06 |
A. uva-ursi2 (leaves) | 12.92 | 51.42 | 3.27 | 7.68 ± 0.67 | 1.20 ± 0.01 | 0.82 ± 0.01 |
Cinchona sp. 2 (bark) | 0.35 | 19.83 | 2.66 | 2.15 ± 0.25 | 0.32 ± 0.10 | 0.03 ± 0.01 |
C. paulstre1 (herb) | 8.10 | 20.13 | 7.20 | 5.26 ± 0.09 | 1.06 ± 0.21 | 0.31 ± 0.02 |
C. palustre1 (rhizome) | 0.91 | 12.89 | 3.06 | 2.56 ± 0.19 | 0.09 ± 0.01 | 0.00 ± 0.02 |
E. angustifolium1 (leaves) | 4.71 | 38.44 | 8.40 | 10.41 ± 0.78 | 1.92 ± 0.29 | 1.86 ± 0.11 |
F. ulmaria1 (herb) | 3.00 | 47.63 | 7.74 | 7.57 ± 1.42 | 1.90 ± 0.00 | 1.28 ± 0.19 |
G. rivale1 (herb) | 4.45 | 18.77 | 13.55 | 3.73 ± 0.48 | 0.60 ± 0.04 | 0.26 ± 0.04 |
H. virginiana2 (leaves) | 2.62 | 19.84 | 3.79 | 5.30 ± 0.13 | 0.87 ± 0.00 | 1.59 ± 0.05 |
K. lappacea2 (root) | 4.15 | 13.26 | 2.20 | 4.07 ± 0.28 | 0.14 ± 0.02 | 0.03 ± 0.00 |
P. bistorta1 (rhizome) | 0.50 | 31.23 | 5.49 | 7.36 ± 0.80 | 0.02 ± 0.02 | 0.00 ± 0.00 |
Quercus sp. 2 (bark) | 2.49 | 10.42 | 2.71 | 3.01 ± 0.05 | 0.10 ± 0.01 | 0.06 ± 0.01 |
R. chamaemorus1 (leaves) | 5.50 | 29.04 | 10.07 | 8.96 ± 0.26 | 1.17 ± 0.45 | 0.37 ± 0.03 |
S. officinalis1 (root & rhizome) | 0.85 | 28.42 | 7.48 | 8.26 ± 0.87 | 0.15 ± 0.05 | 0.04 ± 0.03 |
Extract | DCM | MeOH | Water | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test Organism | B. subtilis | S. aureus | E. coli | P. aeruginosa | C. maltosa | E. coli PBio 729 | E. coli PBio 730 | B. subtilis | S. aureus | E. coli | P. aeruginosa | C. maltosa | E. coli PBio 729 | E. coli PBio 730 | B. subtilis | S. aureus | E. coli | P. aeruginosa | C. maltosa | E. coli PBio 729 | E. coli PBio 730 |
Plant (Organ) | Inhibition Diameter (mm) | Inhibition Diameter (mm) | Inhibition Diameter (mm) | ||||||||||||||||||
A. melanocarpa (fruit) | - | 7 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
A. uva-ursi (leaves) | 9 | - | - | - | 9.5 | - | - | 8 | 11 | 8 | - | 8 | - | - | 7 | - | 8 | - | - | - | - |
Cinchona sp. (bark) | 8 | - | - | 10 | 9 | - | - | 8 | - | 8 | - | - | - | - | - | - | - | 8 | 9,5 | - | - |
C. palustre (herb) | 10 | 7 | - | - | - | - | - | - | 11 | - | - | 16 | - | - | - | 10 | - | - | 10 | - | - |
C. palustre (rhizome) | - | 9 | - | 8 | - | - | - | - | 11 | - | - | 15 | - | - | - | - | - | - | 12 | - | - |
E. angustifolium (leaves) | - | - | - | - | - | - | - | - | 10 | 13 | 12 | 25 | - | - | - | 14 | 11 | - | 18 | - | - |
F. ulmaria (herb) | - | 14 | - | - | - | - | - | - | 10 | - | - | 17 | - | - | - | - | - | - | 9.5 | - | - |
G. rivale (herb) | - | - | - | - | - | - | - | - | 9.5 | 9 | - | 19 | - | - | - | - | - | - | 12 | - | - |
H. virginiana (leaves) | - | - | 9.5 | - | - | - | - | 8 | 12 | 10 | 12 | 8 | - | - | - | 8.5 | 8 | - | - | - | - |
K. lappacea (root) | 11 | 11 | 8.5 | - | 9.5 | - | - | 9.5 | 9 | 8.5 | - | 14 | - | - | - | - | - | - | - | - | - |
P. bistorta (rhizome) | - | - | - | - | - | - | - | - | 12 | - | - | 12 | - | - | - | - | - | - | 8 | - | - |
Quercus sp. (bark) | 8 | 9 | 10 | - | - | - | - | 6.5 | 10 | - | - | - | - | - | - | 9 | - | - | - | - | - |
R. chamaemorus (leaves) | - | - | - | - | - | - | - | - | 12 | - | - | 16 | - | - | - | 9.5 | - | - | 10 | - | - |
S. officinalis (root & rhizome) | - | - | - | - | - | - | - | - | 12 | 8 | - | 18 | - | - | 10 | 9 | - | - | 16 | - | - |
Extract | DCM | MeOH | Water | |||
---|---|---|---|---|---|---|
Test Organism | E. coli PBio 729 | E. coli PBio 730 | E. coli PBio 729 | E. coli PBio 730 | E. coli PBio 729 | E. coli PBio 730 |
Plant (Organ) | µg | µg | µg | |||
A. melanocarpa (fruit) | - | - | - | - | n.t. | n.t. |
A. uva-ursi (leaves) | - | - | 20 | 50 | 200 | 200 |
Cinchona sp. (bark) | - | - | - | 200 | - | - |
C. palustre (herb) | - | - | 30 | 50 | 100 | 100 |
C. palustre (rhizome) | - | - | 50 | 80 | 200 | 200 |
E. angustifolium (leaves) | - | - | 50 | 50 | 100 | 100 |
F. ulmaria (herb) | - | - | 30 | 30 | 200 | 200 |
G. rivale (herb) | - | - | 65 | 100 | 200 | 200 |
H. virginiana (leaves) | - | - | 20 | 50 | - | - |
K. lappacea (root) | - | - | 200 | - | n.t. | n.t. |
P. bistorta (rhizome) | - | - | 10 | 10 | - | - |
Quercus sp. (bark) | - | - | 30 | 50 | 100 | 100 |
R. chamaemorus (leaves) | - | - | 20 | 50 | 100 | 100 |
S. officinale (root & rhizome) | - | - | 20 | 40 | 200 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neumann, N.; Honke, M.; Povydysh, M.; Guenther, S.; Schulze, C. Evaluating Tannins and Flavonoids from Traditionally Used Medicinal Plants with Biofilm Inhibitory Effects against MRGN E. coli. Molecules 2022, 27, 2284. https://doi.org/10.3390/molecules27072284
Neumann N, Honke M, Povydysh M, Guenther S, Schulze C. Evaluating Tannins and Flavonoids from Traditionally Used Medicinal Plants with Biofilm Inhibitory Effects against MRGN E. coli. Molecules. 2022; 27(7):2284. https://doi.org/10.3390/molecules27072284
Chicago/Turabian StyleNeumann, Niclas, Miriam Honke, Maria Povydysh, Sebastian Guenther, and Christian Schulze. 2022. "Evaluating Tannins and Flavonoids from Traditionally Used Medicinal Plants with Biofilm Inhibitory Effects against MRGN E. coli" Molecules 27, no. 7: 2284. https://doi.org/10.3390/molecules27072284
APA StyleNeumann, N., Honke, M., Povydysh, M., Guenther, S., & Schulze, C. (2022). Evaluating Tannins and Flavonoids from Traditionally Used Medicinal Plants with Biofilm Inhibitory Effects against MRGN E. coli. Molecules, 27(7), 2284. https://doi.org/10.3390/molecules27072284