Quercetin-Ameliorated, Multi-Walled Carbon Nanotubes-Induced Immunotoxic, Inflammatory, and Oxidative Effects in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of the MWCNTs
2.3. Experimental Design
2.4. Sampling
2.5. Biochemical Assays
2.6. Oxidant and Antioxidant Assays in the Spleen
2.7. Real-Time PCR
2.8. Histopathology
2.9. Statistical Analysis
3. Results
3.1. Characterization of MWCNTs
3.2. Effect of MWCNTs and/or Quercetin on Body and Spleen Weight
3.3. Effect of MWCNTs and/or Quercetin on Total and Differential WBC Count
3.4. Effect of MWCNTs and/or Quercetin on IgG, IgM, IgA Serum Levels
3.5. Effect of MWCNTs and/or Quercetin on Splenic Antioxidants and Oxidative Stress Markers
3.6. Effect of MWCNTs and/or Quercetin on Inflammatory Cytokines in Spleen
3.7. Effect of MWCNTs and/or Quercetin on Immunomodulatory Genes in the Spleen
3.8. Effect of MWCNTs and/or Quercetin on Histology of Spleen
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Öner, D.; Ghosh, M.; Bové, H.; Moisse, M.; Boeckx, B.; Duca, R.C.; Poels, K.; Luyts, K.; Putzeys, E.; Van Landuydt, K. Differences in MWCNT-and SWCNT-induced DNA methylation alterations in association with the nuclear deposition. Part. Fibre Toxicol. 2018, 15, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ali, D.; Falodah, F.A.; Almutairi, B.; Alkahtani, S.; Alarifi, S. Assessment of DNA damage and oxidative stress in juvenile Channa punctatus (Bloch) after exposure to multi-walled carbon nanotubes. Environ. Toxicol. 2020, 35, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Badea, N.; Craciun, M.M.; Dragomir, A.S.; Balas, M.; Dinischiotu, A.; Nistor, C.; Gavan, C.; Ionita, D. Systems based on carbon nanotubes with potential in cancer therapy. Mater. Chem. Phys. 2020, 241, 122435. [Google Scholar] [CrossRef]
- Madannejad, R.; Shoaie, N.; Jahanpeyma, F.; Darvishi, M.H.; Azimzadeh, M.; Javadi, H. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem.-Biol. Interact. 2019, 307, 206–222. [Google Scholar] [CrossRef]
- Mercer, R.R.; Scabilloni, J.F.; Hubbs, A.F.; Wang, L.; Battelli, L.A.; McKinney, W.; Castranova, V.; Porter, D.W. Extrapulmonary transport of MWCNT following inhalation exposure. Part. Fibre Toxicol. 2013, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Sargent, L.M.; Hubbs, A.F.; Young, S.H.; Kashon, M.L.; Dinu, C.Z.; Salisbury, J.L.; Benkovic, S.A.; Lowry, D.T.; Murray, A.R.; Kisin, E.R.; et al. Single-walled carbon nanotube-induced mitotic disruption. Mutat. Res. 2012, 745, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Rittinghausen, S.; Hackbarth, A.; Creutzenberg, O.; Ernst, H.; Heinrich, U.; Leonhardt, A.; Schaudien, D. The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Part. Fibre Toxicol. 2014, 11, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Visalli, G.; Facciolà, A.; Currò, M.; Laganà, P.; La Fauci, V.; Iannazzo, D.; Pistone, A.; Di Pietro, A. Mitochondrial impairment induced by sub-chronic exposure to multi-walled carbon nanotubes. Int. J. Environ. Res. Public Health 2019, 16, 792. [Google Scholar] [CrossRef] [Green Version]
- Rahman, L.; Jacobsen, N.R.; Aziz, S.A.; Wu, D.; Williams, A.; Yauk, C.L.; White, P.; Wallin, H.; Vogel, U.; Halappanavar, S. Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: Investigating the mechanisms of pulmonary carcinogenesis. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2017, 823, 28–44. [Google Scholar] [CrossRef] [Green Version]
- Baghdadchi, Y.; Khoshkam, M.; Fathi, M.; Jalilvand, A.; Fooladsaz, K.; Ramazani, A. The assessment of metabolite alteration induced by -OH functionalized multi-walled carbon nanotubes in mice using NMR-based metabonomics. Bioimpacts 2018, 8, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Zamani, F.; Samiei, F.; Mousavi, Z.; Azari, M.R.; Seydi, E.; Pourahmad, J. Apigenin ameliorates oxidative stress and mitochondrial damage induced by multiwall carbon nanotubes in rat kidney mitochondria. J. Biochem. Mol. Toxicol. 2021, 35, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pescatori, M.; Bedognetti, D.; Venturelli, E.; Ménard-Moyon, C.; Bernardini, C.; Muresu, E.; Piana, A.; Maida, G.; Manetti, R.; Sgarrella, F.; et al. Functionalized carbon nanotubes as immunomodulator systems. Biomaterials 2013, 34, 4395–4403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, A.; Fujitani, T.; Ohyama, K.; Nakae, D.; Hirose, A.; Nishimura, T.; Ogata, A. Effects of sustained stimulation with multi-wall carbon nanotubes on immune and inflammatory responses in mice. J. Toxicol. Sci. 2012, 37, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Grecco, A.C.; Paula, R.F.; Mizutani, E.; Sartorelli, J.C.; Milani, A.M.; Longhini, A.L.; Oliveira, E.C.; Pradella, F.; Silva, V.D.; Moraes, A.S.; et al. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes. Nanotechnology 2011, 22, 265103. [Google Scholar] [CrossRef] [PubMed]
- Rasras, S.; Kalantari, H.; Rezaei, M.; Dehghani, M.A.; Zeidooni, L.; Alikarami, K.; Dehghani, F.; Alboghobeish, S. Single-walled and multiwalled carbon nanotubes induce oxidative stress in isolated rat brain mitochondria. Toxicol. Ind. Health 2019, 35, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Abu Gazia, M.; El-Magd, M.A. Effect of pristine and functionalized multiwalled carbon nanotubes on rat renal cortex. Acta Histochem. 2018, 121, 207–217. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, M.; Zhang, S.; Hu, Y.; Li, H.; Zhang, T.; Xue, Y.; Pu, Y. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study. Int. J. Nanomed. 2017, 12, 1539. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, L.A.; Lauer, F.T.; Burchiel, S.W.; McDonald, J.D. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat. Nanotechnol. 2009, 4, 451–456. [Google Scholar] [CrossRef]
- Mitchell, L.A.; Gao, J.; Wal, R.V.; Gigliotti, A.; Burchiel, S.W.; McDonald, J.D. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol. Sci. Off. J. Soc. Toxicol. 2007, 100, 203–214. [Google Scholar] [CrossRef]
- Park, E.-J.; Khaliullin, T.O.; Shurin, M.R.; Kisin, E.R.; Yanamala, N.; Fadeel, B.; Chang, J.; Shvedova, A.A. Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice. J. Immunotoxicol. 2018, 15, 12–23. [Google Scholar] [CrossRef]
- Park, E.J.; Cho, W.S.; Jeong, J.; Yi, J.; Choi, K.; Park, K. Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology 2009, 259, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Delogu, L.G.; Venturelli, E.; Manetti, R.; Pinna, G.A.; Carru, C.; Madeddu, R.; Murgia, L.; Sgarrella, F.; Dumortier, H.; Bianco, A. Ex vivo impact of functionalized carbon nanotubes on human immune cells. Nanomedicine 2012, 7, 231–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laverny, G.; Casset, A.; Purohit, A.; Schaeffer, E.; Spiegelhalter, C.; de Blay, F.; Pons, F. Immunomodulatory properties of multi-walled carbon nanotubes in peripheral blood mononuclear cells from healthy subjects and allergic patients. Toxicol. Lett. 2013, 217, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, E.; Tan, M.; Xin, J.; Sudarsanam, S.; Johnson, D.E. Interactions between traditional Chinese medicines and Western therapeutics. Curr. Opin. Drug Discov. Dev. 2010, 13, 50–65. [Google Scholar]
- Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega 2020, 5, 11849–11872. [Google Scholar] [CrossRef]
- Yang, H.; Yang, T.; Heng, C.; Zhou, Y.; Jiang, Z.; Qian, X.; Du, L.; Mao, S.; Yin, X.; Lu, Q. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother. Res. PTR 2019, 33, 3140–3152. [Google Scholar] [CrossRef]
- Di Petrillo, A.; Orrù, G.; Fais, A.; Fantini, M.C. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother. Res. PTR 2022, 36, 266–278. [Google Scholar] [CrossRef]
- Henidi, H.A.; Al-Abbasi, F.A.; El-Moselhy, M.A.; El-Bassossy, H.M.; Al-Abd, A.M. Despite Blocking Doxorubicin-Induced Vascular Damage, Quercetin Ameliorates Its Antibreast Cancer Activity. Oxid. Med. Cell. Longev. 2020, 2020, 8157640. [Google Scholar] [CrossRef]
- Sharma, A.; Kashyap, D.; Sak, K.; Tuli, H.S.; Sharma, A.K. Therapeutic charm of quercetin and its derivatives: A review of research and patents. Pharm. Pat. Anal. 2018, 7, 15–32. [Google Scholar] [CrossRef]
- Nair, M.P.; Kandaswami, C.; Mahajan, S.; Chadha, K.C.; Chawda, R.; Nair, H.; Kumar, N.; Nair, R.E.; Schwartz, S.A. The flavonoid, quercetin, differentially regulates Th-1 (IFNgamma) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Biochim. Biophys. Acta 2002, 1593, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Penissi, A.B.; Rudolph, M.I.; Piezzi, R.S. Role of mast cells in gastrointestinal mucosal defense. Biocell 2003, 27, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Gupta, M.; Sharma, R.; Sharma, N. Deltamethrin-Induced Immunotoxicity and its Protection by Quercetin: An Experimental Study. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 67–76. [Google Scholar] [CrossRef]
- Lu, N.; Sui, Y.; Zeng, L.; Tian, R.; Peng, Y.Y. Generation of a Diligand Complex of Bovine Serum Albumin with Quercetin and Carbon Nanotubes for the Protection of Bioactive Quercetin and Reduction of Cytotoxicity. J. Agric. Food Chem. 2018, 66, 8355–8362. [Google Scholar] [CrossRef] [PubMed]
- Safarova, K.; Dvorak, A.; Kubinek, R.; Vujtek, M.; Rek, A. Usage of AFM, SEM and TEM for the research of carbon nanotubes. Mod. Res. Educ. Top. Microsc. 2007, 1, 513–519. [Google Scholar]
- Khan, A.; Ali, T.; Rehman, S.U.; Khan, M.S.; Alam, S.I.; Ikram, M.; Muhammad, T.; Saeed, K.; Badshah, H.; Kim, M.O. Neuroprotective Effect of Quercetin Against the Detrimental Effects of LPS in the Adult Mouse Brain. Front. Pharmacol. 2018, 9, 1383. [Google Scholar] [CrossRef]
- El-Magd, M.A.; Kahilo, K.A.; Nasr, N.E.; Kamal, T.; Shukry, M.; Saleh, A.A. A potential mechanism associated with lead-induced testicular toxicity in rats. Andrologia 2016, 49, e12750. [Google Scholar] [CrossRef]
- Selim, N.M.; Elgazar, A.A.; Abdel-Hamid, N.M.; El-Magd, M.R.A.; Yasri, A.; Hefnawy, H.M.E.; Sobeh, M. Chrysophanol, Physcion, Hesperidin and Curcumin Modulate the Gene Expression of Pro-Inflammatory Mediators Induced by LPS in HepG2: In Silico and Molecular Studies. Antioxidants 2019, 8, 371. [Google Scholar] [CrossRef] [Green Version]
- Elgazar, A.A.; Selim, N.M.; Abdel-Hamid, N.M.; El-Magd, M.A.; El Hefnawy, H.M. Isolates from Alpinia officinarum Hance attenuate LPS induced inflammation in HepG2: Evidence from In Silico and In Vitro Studies. Phytother. Res. 2018, 32, 1273–1288. [Google Scholar] [CrossRef]
- Saleh, A.A.; Amber, K.; El-Magd, M.A.; Atta, M.S.; Mohammed, A.A.; Ragab, M.M.; Abd El-Kader, H. Integrative effects of feeding Aspergillus awamori and fructooligosaccharide on growth performance and digestibility in broilers: Promotion muscle protein metabolism. Biomed. Res. Int. 2014, 2014, 946859. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; He, Y.; Qin, Y.; Wang, B.; Zhang, H.; Ding, S. Exposure to a combination of MWCNTs and DBP causes splenic toxicity in mice. Toxicology 2022, 465, 153057. [Google Scholar] [CrossRef]
- Umeda, Y.; Kasai, T.; Saito, M.; Kondo, H.; Toya, T.; Aiso, S.; Okuda, H.; Nishizawa, T.; Fukushima, S. Two-week Toxicity of Multi-walled Carbon Nanotubes by Whole-body Inhalation Exposure in Rats. J. Toxicol. Pathol. 2013, 26, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, G.; Yin, L.; Zhang, J.; Liu, R.; Zhang, T.; Ye, B.; Pu, Y. Effects of subchronic exposure to multi-walled carbon nanotubes on mice. J. Toxicol. Environ. Health. Part A 2010, 73, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, H.W., Jr.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Qu, L.; Yan, S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int. 2015, 15, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemnitz, J.M.; Driesen, J.; Classen, S.; Riley, J.L.; Debey, S.; Beyer, M.; Popov, A.; Zander, T.; Schultze, J.L. Prostaglandin E2 impairs CD4+ T cell activation by inhibition of lck: Implications in Hodgkin’s lymphoma. Cancer Res. 2006, 66, 1114–1122. [Google Scholar] [CrossRef] [Green Version]
- Freire-de-Lima, C.G.; Xiao, Y.Q.; Gardai, S.J.; Bratton, D.L.; Schiemann, W.P.; Henson, P.M. Apoptotic cells, through transforming growth factor-beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J. Biol. Chem. 2006, 281, 38376–38384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zedan, A.M.G.; Sakran, M.I.; Bahattab, O.; Hawsawi, Y.M.; Al-Amer, O.; Oyouni, A.A.A.; Nasr Eldeen, S.K.; El-Magd, M.A. Oriental Hornet (Vespa orientalis) Larval Extracts Induce Antiproliferative, Antioxidant, Anti-Inflammatory, and Anti-Migratory Effects on MCF7 Cells. Molecules 2021, 26, 3303. [Google Scholar] [CrossRef]
- Mohamed, A.E.; El-Magd, M.A.; El-Said, K.S.; El-Sharnouby, M.; Tousson, E.M.; Salama, A.F. Potential therapeutic effect of thymoquinone and/or bee pollen on fluvastatin-induced hepatitis in rats. Sci. Rep. 2021, 11, 15688. [Google Scholar] [CrossRef]
- Elmoslemany, A.M.; El-Magd, M.A.; Ghamry, H.I.; Alshahrani, M.Y.; Zidan, N.S.; Zedan, A.M.G. Avocado Seeds Relieve Oxidative Stress-Dependent Nephrotoxicity but Enhance Immunosuppression Induced by Cyclosporine in Rats. Antioxidants 2021, 10, 1194. [Google Scholar] [CrossRef]
- Farshad, O.; Heidari, R.; Zamiri, M.J.; Retana-Márquez, S.; Khalili, M.; Ebrahimi, M.; Jamshidzadeh, A.; Ommati, M.M. Spermatotoxic effects of single-walled and multi-walled carbon nanotubes on male mice. Front. Vet. Sci. 2020, 1007. [Google Scholar] [CrossRef]
- Martínez, G.; Merinero, M.; Pérez-Aranda, M.; Pérez-Soriano, E.M.; Ortiz, T.; Villamor, E.; Begines, B.; Alcudia, A. Environmental impact of nanoparticles’ application as an emerging technology: A review. Materials 2020, 14, 166. [Google Scholar] [CrossRef] [PubMed]
- Shukry, M.; Kamal, T.; Ali, R.; Farrag, F.; Almadaly, E.; Saleh, A.A.; Abu El-Magd, M. Pinacidil and levamisole prevent glutamate-induced death of hippocampal neuronal cells through reducing ROS production. Neurol. Res. 2015, 37, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Elkeiy, M.; Khamis, A.; El-Gamal, M.; Abo Gazia, M.; Zalat, Z.; El-Magd, M. Chitosan nanoparticles from Artemia salina inhibit progression of hepatocellular carcinoma in vitro and in vivo. Environ. Sci. Pollut. Res. Int. 2018, 27, 19016–19028. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, D.; Roza, J.M. Assessment of anti-inflammatory and antioxidant activity of quercetin-rutin blend (SophorOx™)—An invitro cell based assay. J. Complement. Integr. Med. 2022. [Google Scholar] [CrossRef]
- Lee, H.N.; Shin, S.A.; Choo, G.S.; Kim, H.J.; Park, Y.S.; Kim, B.S.; Kim, S.K.; Cho, S.D.; Nam, J.S.; Choi, C.S.; et al. Anti-inflammatory effect of quercetin and galangin in LPS-stimulated RAW264.7 macrophages and DNCB-induced atopic dermatitis animal models. Int. J. Mol. Med. 2018, 41, 888–898. [Google Scholar] [CrossRef]
- Lin, R.; Piao, M.; Song, Y.; Liu, C. Quercetin Suppresses AOM/DSS-Induced Colon Carcinogenesis through Its Anti-Inflammation Effects in Mice. J. Immunol. Res. 2020, 2020, 9242601. [Google Scholar] [CrossRef]
- Desai, D.; Kumar, A.; Bose, D.; Datta, M. Ultrasensitive sensor for detection of early stage chronic kidney disease in human. Biosens. Bioelectron. 2018, 105, 90–94. [Google Scholar] [CrossRef]
Gene | Forward Primer | Reverse Primer |
---|---|---|
TNFα | GACAAGGCTGCCCCGACTACG | CTTGGGGCAGGGGCTCTTGAC |
IL1ß | AAATCTCGCAGCAGCACATCAA | CCACGGGAAAGACACAGGTAGC |
IL6 | TCCAGTTGCCTTCTTGGGAC | GTACTCCAGAAGACCAGAGG |
TGFß | GCAACATGTGGAACTCTACCAGA | GACGTCAAAAGACAGCCACTCA |
COX2 | CAAGGGAGTCTGGAACATTG | ACCCAGGTCCTCGCTTATGA |
IL10 | CGGGAAGACAATAACTGCACCC | CGGTTAGCAGTATGTTGTCCAGC |
B-actin | ACTATTGGCAACGAGCGGTT | CAGGATTCCATACCCAAGAAGGA |
Groups | Initial Body Weight (g) | Final Body Weight (g) | Spleen Absolute Weight (mg) | Spleen Relative Weight (mg/g) |
---|---|---|---|---|
Cnt | 23.28 ± 1.06 | 25.39 ± 1.72 | 82.56 ± 4.48 c | 3.25 ± 0.13 c |
Que | 23.19 ± 0.89 | 26.26 ± 2.09 | 83.04 ± 5.22 c | 3.16 ± 0.12 c |
MWC-L | 23.05 ± 0.93 | 25.47 ± 1.60 | 112.73 ± 5.91 b | 4.43 ± 0.22 b |
MWC-H | 23.38 ± 1.15 | 25.08 ± 1.93 | 138.85 ± 7.42 a | 5.54 ± 0.26 a |
MWC-L+Que | 23.65 ± 0.76 | 26.11 ± 2.16 | 104.56 ± 5.37 b | 4.00 ± 0.19 b |
MWC-H+Que | 23.77 ± 0.62 | 25.67 ± 1.55 | 117.30 ± 4.68 b | 4.57 ± 0.20 b |
Groups | WBC (103/µL) | LYM (%) | NEU (%) | MON (%) | BAS (%) | EOS (%) |
---|---|---|---|---|---|---|
Cnt | 5.73 ± 0.23 a | 76.18 ± 2.35 a | 22.33 ± 1.06 a | 1.15 ± 0.16 | 0.35 ± 0.03 | 0.22 ± 0.02 |
Que | 5.96 ± 0.26 a | 77.04 ± 2.70 a | 21.80 ± 1.10 a | 1.30 ± 0.29 | 0.33 ± 0.03 | 0.25 ± 0.02 |
MWC-L | 4.80 ± 0.21 b | 69.35 ± 2.03 b | 19.27 ± 0.69 ab | 0.92 ± 0.24 | 0.43 ± 0.04 | 0.18 ± 0.02 |
MWC-H | 4.35 ± 0.22 b | 65.50 ± 1.96 b | 18.41 ± 0.83 b | 0.80 ± 0.20 | 0.49 ± 0.05 | 0.16 ± 0.03 |
MWC-L+Que | 5.62 ±0.28 a | 74.08 ± 1.88 a | 20.53 ± 0.81 a | 1.06 ± 0.25 | 0.39 ± 0.04 | 0.20 ± 0.03 |
MWC-H+Que | 5.36 ± 0.27 a | 74.57 ± 1.67 a | 19.68 ± 0.74 ab | 0.97 ± 0.28 | 0.44 ± 0.05 | 0.18 ± 0.02 |
Groups | IgG (µg/mL) | IgM (µg/mL) | IgA (µg/mL) |
---|---|---|---|
Cnt | 1651.67 ± 70.79 a | 305.00 ± 12.96 a | 338.80 ± 11.17 a |
Que | 1694.63 ± 67.32 a | 316.53 ± 10.47 a | 325.06 ± 10.35 a |
MWC-L | 1378 ± 69.51 c | 201.67 ± 6.13 c | 229.00 ± 8.17 c |
MWC-H | 1170.5 ± 58.91 d | 188.35 ± 7.15 d | 201.38 ± 7.22 d |
MWC-L+Que | 1424.67 ±53.48 b | 249.33 ± 9.52 b | 266.63 ± 8.32 b |
MWC-H+Que | 1345.67 ± 64.35 c | 213.43 ± 8.59 c | 231.33 ± 9.76 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sallam, A.A.; Ahmed, M.M.; El-Magd, M.A.; Magdy, A.; Ghamry, H.I.; Alshahrani, M.Y.; Abou El-Fotoh, M.F. Quercetin-Ameliorated, Multi-Walled Carbon Nanotubes-Induced Immunotoxic, Inflammatory, and Oxidative Effects in Mice. Molecules 2022, 27, 2117. https://doi.org/10.3390/molecules27072117
Sallam AA, Ahmed MM, El-Magd MA, Magdy A, Ghamry HI, Alshahrani MY, Abou El-Fotoh MF. Quercetin-Ameliorated, Multi-Walled Carbon Nanotubes-Induced Immunotoxic, Inflammatory, and Oxidative Effects in Mice. Molecules. 2022; 27(7):2117. https://doi.org/10.3390/molecules27072117
Chicago/Turabian StyleSallam, Amira A., Mona M. Ahmed, Mohammed A. El-Magd, Ahmed Magdy, Heba I. Ghamry, Mohammad Y. Alshahrani, and Magdy F. Abou El-Fotoh. 2022. "Quercetin-Ameliorated, Multi-Walled Carbon Nanotubes-Induced Immunotoxic, Inflammatory, and Oxidative Effects in Mice" Molecules 27, no. 7: 2117. https://doi.org/10.3390/molecules27072117
APA StyleSallam, A. A., Ahmed, M. M., El-Magd, M. A., Magdy, A., Ghamry, H. I., Alshahrani, M. Y., & Abou El-Fotoh, M. F. (2022). Quercetin-Ameliorated, Multi-Walled Carbon Nanotubes-Induced Immunotoxic, Inflammatory, and Oxidative Effects in Mice. Molecules, 27(7), 2117. https://doi.org/10.3390/molecules27072117