Anti-Biofilms’ Activity of Garlic and Thyme Essential Oils against Salmonella typhimurium
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Salmonella Species in the Examined Abattoir Samples
2.2. Virulence Gene Detection and Antibiotic Susceptibility of S. typhimurium Isolates
2.3. Chemical Composition and Antibiofilm Activity of EOS
3. Discussion
3.1. Prevalence of SalmonellaSpecies in the Examined Abattoir Samples
3.2. Molecular Characterization of S. typhimurium Virulence Genes
3.3. Antibiotic Susceptibility of Salmonella typhimurium Isolates
3.4. Salmonella Typhimurium Biofilm Formation
3.5. Chemical Compositions and Antibiofilm Activity of Garlic and Thyme Essential Oils
4. Materials and Methods
4.1. Samples Collection
4.2. Salmonella Isolation and Identification
4.3. Antibiogram Analysis
4.4. MicrotiterPlate Assay (MTP) Investigation of Biofilm
4.5. Gas Chromatography/Mass Spectrometry (GC/MS) Analysis of EOs
4.6. Measuring the Minimal Inhibitory Concentration (MIC) of the Investigated EOs
4.7. Anti-Biofilm Efficiency of Essential Oils versus S. typhimurium Isolates
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Nouichi, S.; Hamdi, T.M. Superficial bacterial contamination of ovine and bovine carcasses at El-Harrach slaughterhouse (Algeria). Eur. J. Sci. Res. 2009, 38, 474–485. [Google Scholar]
- Allerberger, F.; Liesegang, A.; Grif, K.; Khaschabi, D.; Prager, R.; Danzl, J.; Höck, F.; Öttl, J.; Dierich, M.P.; Berghold, C. Occurrence of Salmonella enterica serovar Dublin in Austria. Wien. Med. Wochenschr. Suppl. 2003, 153, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Boadi, K.O.; Kuitunen, M. Municipal solid waste management in the Accra Metropolitan Area, Ghana. Environmentalist 2003, 23, 211–218. [Google Scholar] [CrossRef]
- Miranda, J.; Mondragón, A.; Martinez, B.; Guarddon, M.; Rodriguez, J. Prevalence and antimicrobial resistance patterns of Salmonella from different raw foods in Mexico. J. Food Prot. 2009, 72, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Srey, S.; Jahid, I.K.; Ha, S.-D. Biofilm formation in food industries: A food safety concern. Food Control 2013, 31, 572–585. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Hemati, M.; Dehkordi, S.H.; Bahadoran, S.; Khoshnood, S.; Khubani, S.; Faraj, M.D.; Alni, R.H. Chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of animal bacterial pathogens. Jundishapur J. Nat. Pharm. Prod. 2014, 9, e14298. [Google Scholar] [CrossRef] [Green Version]
- Tursi, S.A.; Puligedda, R.D.; Szabo, P.; Nicastro, L.K.; Miller, A.L.; Qiu, C.; Gallucci, S.; Relkin, N.R.; Buttaro, B.A.; Dessain, S.K. Salmonella typhimurium biofilm disruption by a human antibody that binds a pan-amyloid epitope on curli. Nat. Commun. 2020, 11, 1007. [Google Scholar] [CrossRef] [Green Version]
- Bansal, M.; Nannapaneni, R.; Kode, D.; Chang, S.; Sharma, C.S.; McDaniel, C.; Kiess, A. Rugose morphotype in Salmonella typhimurium and Salmonella Heidelberg induced by sequential exposure to subinhibitory sodium hypochlorite aids in biofilm tolerance to lethal sodium hypochlorite on polystyrene and stainless steel surfaces. Front. Microbiol. 2019, 10, 2704. [Google Scholar] [CrossRef] [Green Version]
- Borges, A.; Abreu, A.C.; Dias, C.; Saavedra, M.J.; Borges, F.; Simões, M. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules 2016, 21, 877. [Google Scholar] [CrossRef]
- Cepas, V.; López, Y.; Muñoz, E.; Rolo, D.; Ardanuy, C.; Martí, S.; Xercavins, M.; Horcajada, J.P.; Bosch, J.; Soto, S.M. Relationship between biofilm formation and antimicrobial resistance in gram-negative bacteria. Microb. Drug Resist. 2019, 25, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, H.; Xing, T.; Wu, N.; Xu, X.; Zhou, G. Removal of Salmonella biofilm formed under meat processing environment by surfactant in combination with bio-enzyme. LWT 2016, 66, 298–304. [Google Scholar] [CrossRef]
- Manafi, L.; Aliakbarlu, J.; DastmalchiSaei, H. Antibiotic resistance and biofilm formation ability of Salmonella serotypes isolated from beef, mutton, and meat contact surfaces at retail. J. Food Sci. 2020, 85, 2516–2522. [Google Scholar] [CrossRef] [PubMed]
- Steenackers, H.; Hermans, K.; Vanderleyden, J.; de Keersmaecker, S.C. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Int. Food Res. J. 2012, 45, 502–531. [Google Scholar] [CrossRef]
- Kim, S.-H.; Jyung, S.; Kang, D.-H. Comparative study of Salmonella typhimurium biofilms and their resistance depending on cellulose secretion and maturation temperatures. LWT 2022, 154, 112700. [Google Scholar] [CrossRef]
- Crump, J.A.; Heyderman, R.S. A perspective on invasive Salmonella disease in Africa. Clin. Infect. Dis. 2015, 61, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, A. Effect of Lettuce, Marjoram and Cumin Essential Oils on the Quality and Shelf Life of Minced Meat during Refrigerated Storage. Zagazig Vet. J. 2019, 47, 288–297. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Desai, M.A.; Soni, K.A.; Nannapaneni, R.; Schilling, M.W.; Silva, J.L. Reduction of Listeria monocytogenes biofilms on stainless steel and polystyrene surfaces by essential oils. J. Food Prot. 2012, 75, 1332–1337. [Google Scholar] [CrossRef]
- Marinas, I.C.; Oprea, E.; Buleandra, M.; Badea, I.A.; Tihauan, B.M.; Marutescu, L.; Angheloiu, M.; Matei, E.; Chifiriuc, M.C. Chemical Composition, Antipathogenic and Cytotoxic Activity of the Essential Oil Extracted from Amorphafruticosa Fruits. Molecules 2021, 26, 3146. [Google Scholar] [CrossRef]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.; Horhat, F. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 7, 56. [Google Scholar]
- Ikram, R.; Low, K.H.; Hashim, N.B.; Ahmad, W.; Nasharuddin, M.N.A. Characterization of sulfur-compounds as chemotaxonomic markers in the essential oils of Allium species by solvent-free microwave extraction and gas chromatography-mass spectrometry. Anal. Lett. 2019, 52, 563–574. [Google Scholar] [CrossRef]
- Cock, I.E.; van Vuuren, S.F. The traditional use of southern African medicinal plants in the treatment of viral respiratory diseases: A review of the ethnobotany and scientific evaluations. J. Ethnopharmacol. 2020, 262, 113194. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, D.A.C.; Campanerut-Sá, P.A.Z.; da Silva, A.F.; Batista, A.F.P.; Seixas, F.A.V.; Peralta, R.M.; de Sá-Nakanishi, A.B.; de Abreu Filho, B.A.; Junior, M.M.; Mikcha, J.M.G. Action of carvacrol in Salmonella typhimurium biofilm: A proteomic study. J. Appl. Biomed. 2020, 18, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Basavegowda, N.; Patra, J.K.; Baek, K.-H. Essential oils and mono/bi/tri-metallic nanocomposites as alternative sources of antimicrobial agents to combat multidrug-resistant pathogenic microorganisms: An overview. Molecules 2020, 25, 1058. [Google Scholar] [CrossRef] [Green Version]
- Puvača, N.; Milenković, J.; Galonja Coghill, T.; Bursić, V.; Petrović, A.; Tanasković, S.; Pelić, M.; LjubojevićPelić, D.; Miljković, T. Antimicrobial activity of selected essential oils against selected pathogenic bacteria: In vitro study. Antibiotics 2021, 10, 546. [Google Scholar] [CrossRef]
- Andrade-Ochoa, S.; Chacón-Vargas, K.F.; Sánchez-Torres, L.E.; Rivera-Chavira, B.E.; Nogueda-Torres, B.; Nevárez-Moorillón, G.V. Differential antimicrobial effect of essential oils and their main components: Insights based on the cell membrane and external structure. Membranes 2021, 11, 405. [Google Scholar] [CrossRef]
- Mahmoud, A.F.A.; Elshopary, N.; El-Naby, G.H.; El Bayomi, R. Reduction of biogenic amines production in chilled minced meat using antimicrobial seasonings. J. Microbiol. Biotechnol. Food Sci. 2021, 10, e3663. [Google Scholar]
- El Bayomi, R.M.; Hebishy, R.M.; Darwish, W.S.; El-Atabany, A.I.M.; Mahmoud, A.F.A. Mould contamination of some meat products with reference to decontamination trials of Aspergillus flavus using essential oils. Slov.Vet.Res. 2021, 58, 363–372. [Google Scholar]
- Mnayer, D.; Fabiano-Tixier, A.-S.; Petitcolas, E.; Hamieh, T.; Nehme, N.; Ferrant, C.; Fernandez, X.; Chemat, F. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules 2014, 19, 20034–20053. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.S. Allicin and other functional active components in garlic: Health benefits and bioavailability. Int. J. Food Prop. 2007, 10, 245–268. [Google Scholar] [CrossRef]
- Aljabeili, H.S.; Barakat, H.; Abdel-Rahman, H.A. Chemical composition, antibacterial and antioxidant activities of thyme essential oil (Thymus vulgaris). Food Sci. Nutr. 2018, 9, 433. [Google Scholar]
- Morshdy, A.E.M.; Nahla, B.M.; Shafik, S.; Hussein, M.A. Antimicrobial Effect of Essential Oils on Multidrug-Resistant Salmonella typhimurium in Chicken Fillets. Pak. Vet. J. 2021, 41, 545–551. [Google Scholar] [CrossRef]
- Oussalah, M.; Caillet, S.; Saucier, L.; Lacroix, M. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157: H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 2007, 18, 414–420. [Google Scholar] [CrossRef]
- Fadil, M.; Fikri-Benbrahim, K.; Rachiq, S.; Ihssane, B.; Lebrazi, S.; Chraibi, M.; Haloui, T.; Farah, A. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology. Eur. J. Pharm.Biopharm. 2018, 126, 211–220. [Google Scholar] [CrossRef]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Tosi, G.; Massi, P.; Pistelli, L.; Mancianti, F. In vitro antimicrobial activity of essential oils against Salmonella enterica serotypes enteritidis and typhimurium strains isolated from poultry. Molecules 2019, 24, 900. [Google Scholar] [CrossRef] [Green Version]
- Faleke, O.O.; Jolayemi, K.O.; Igoh, Y.O.; Jibril, A.H.; Ayedun, J.O. Salmonella species on meat contact surfaces and processing water in Sokoto main market and abattoir, Nigeria. Maced. Vet. Rev. 2017, 40, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Kore, K.; Asrade, B.; Demissie, K.; Aragaw, K. Characterization of Salmonella isolated from apparently healthy slaughtered cattle and retail beef in Hawassa, southern Ethiopia. Prev. Vet. Med. 2017, 147, 11–16. [Google Scholar] [CrossRef]
- Shaibu, A.O.; Okolocha, E.C.; Maikai, B.V.; Olufemi, O.T. Isolation and antibiogram of Salmonella species from slaughtered cattle and the processing environment in Abuja abattoirs, Nigeria. Food Control 2021, 125, 107972. [Google Scholar] [CrossRef]
- El-Gohary, F.A.; Abdel-Hafez, L.J.M.; Zakaria, A.I.; Shata, R.R.; Tahoun, A.; El-Mleeh, A.; Elfadl, E.A.A.; Elmahallawy, E.K. Enhanced Antibacterial Activity of Silver Nanoparticles Combined with Hydrogen Peroxide Against Multidrug-Resistant Pathogens Isolated from Dairy Farms and Beef Slaughterhouses in Egypt. Infect. Drug Resist. 2020, 13, 3485–3499. [Google Scholar] [CrossRef]
- Elsharawy, N.T.; Mahran, H.A. Determination of hygienic condition of municipal slaughterhouse and its microbial effect on the meat quality. Alex. J. Vet. Sci. 2018, 59, 11–18. [Google Scholar] [CrossRef]
- Kikuvi, G.; Ombui, J.; Mitema, E.; Schwarz, S. Antimicrobial resistance in Salmonella serotypes isolated from slaughter animals in Kenya. East Afr. Med. J. 2007, 84, 233–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saad, S.M.; Edris, A.; Hassan, M.A.; Sabike, I.I.A. Enterobacteriacae in slaughtered animals with particular reference to pathogenic strains. Benha Vet. Med. J. 2011, 1, 146–152. [Google Scholar]
- Chong, E.S.; Bidin, Z.; Bakar, N.; Zulfakar, S.S. Bacterial contamination on beef carcass at selected abattoirs located in Selangor, Malaysia. Malays. Appl. Biol. 2017, 46, 37–43. [Google Scholar]
- Narvaez-Bravo, C.; Miller, M.; Jackson, T.; Jackson, S.; Rodas-Gonzalez, A.; Pond, K.; Echeverry, A.; Brashears, M. Salmonella and Escherichia coli O157: H7 prevalence in cattle and on carcasses in a vertically integrated feedlot and harvest plant in Mexico. J. Food Prot. 2013, 76, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Iroha, I.; Eromonsele, O.; Moses, I.; Afiukwa, F.; Nwakaeze, A.; Ejikeugwu, P. In vitro antibiogram of multidrug resistant bacteria isolated from Ogbete abattoir effluent in Enugu State, Nigeria. Int. J. Environ. Res. Public Health 2016, 3, 1–6. [Google Scholar]
- Onuoha, S.; Eluu, S.; Okata, M. In-vitro antimicrobial resistance of Shigella and Salmonella species recovered from abattoir effluent in Afikpo, South Eastern Nigeria. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 488–497. [Google Scholar] [CrossRef]
- Abdalla, M.; Suliman, S.; Ahmed, D.; Bakhiet, A. Estimation of bacterial contamination of indigenous bovine carcasses in Khartoum (Sudan). Afr. J. Microbiol. Res. 2009, 3, 882–886. [Google Scholar]
- Bhandare, S.G.; Paturkar, A.M.; Waskar, V.S.; Zende, R.J. Prevalence of microorganisms of hygienic interest in an organized abattoir in Mumbai, India. J. Infect. Dev. Ctries. 2010, 4, 454–458. [Google Scholar] [CrossRef] [Green Version]
- FAO. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/3/x6557e/x6557e02.htm (accessed on 9 December 2021).
- Das, A.; Hari, S.S.; Shalini, U.; Ganeshkumar, A.; Karthikeyan, M. Molecular screening of virulence genes from Salmonella enterica isolated from commercial food stuffs. Biosci. Biotech. Res. Asia 2012, 9, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.A.; Nawaz, M.S.; Khan, S.A.; Cerniglia, C.E. Detection of multidrug-resistant Salmonella typhimurium DT104 by multiplex polymerase chain reaction. FEMS Microbiol. Lett. 2000, 182, 355–360. [Google Scholar] [CrossRef]
- Rabins, S.L.; Bhattacharya, A.; Kumar, V.A.; Antony, P.; Rekha, V.; Perumal, S. An exploration on animal and public health significance of Salmonella from major meat sources in Puducherry, India. J. Entomol. Zool. Stud. 2018, 6, 1691–1699. [Google Scholar]
- Zadernowska, A.; Chajęcka-Wierzchowska, W. Prevalence, biofilm formation and virulence markers of Salmonella sp. and Yersinia enterocolitica in food of animal origin in Poland. LWT 2017, 75, 552–556. [Google Scholar] [CrossRef]
- Singh, Y.; Tiwari, A.; Kumar, R.; Saxena, M. Cloning, Sequencing and Phylogenetic Analysis of stn gene of Salmonella typhimurium. Biosci. Biotech. Res. Asia 2017, 14, 1387–1393. [Google Scholar] [CrossRef]
- Thung, T.Y.; Radu, S.; Mahyudin, N.A.; Rukayadi, Y.; Zakaria, Z.; Mazlan, N.; Tan, B.H.; Lee, E.; Yeoh, S.L.; Chin, Y.Z. Prevalence, virulence genes and antimicrobial resistance profiles of Salmonella serovars from retail beef in Selangor, Malaysia. Front. Microbiol. 2018, 8, 2697. [Google Scholar] [CrossRef] [Green Version]
- Da Re, S.; Ghigo, J.-M. A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli. J. Bacteriol. 2006, 188, 3073–3087. [Google Scholar] [CrossRef] [Green Version]
- Culler, H.F.; Couto, S.C.; Higa, J.S.; Ruiz, R.M.; Yang, M.J.; Bueris, V.; Franzolin, M.R.; Sircili, M.P. Role of SdiA on biofilm formation by atypical enteropathogenic Escherichia coli. Genes 2018, 9, 253. [Google Scholar] [CrossRef] [Green Version]
- Jennings, L.K.; Storek, K.M.; Ledvina, H.E.; Coulon, C.; Marmont, L.S.; Sadovskaya, I.; Secor, P.R.; Tseng, B.S.; Scian, M.; Filloux, A. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc. Natl. Acad. Sci. USA 2015, 112, 11353–11358. [Google Scholar] [CrossRef] [Green Version]
- Conceição, R.d.C.d.S.d.; Sturbelle, R.T.; Timm, C.D.; Leite, F.P.L. Inducers and autoinducers on Salmonella enterica serovar typhimurium motility, growth and gene expression. Ciênc. Rural 2015, 45, 2201–2206. [Google Scholar] [CrossRef] [Green Version]
- Yin, B.; Zhu, L.; Zhang, Y.; Dong, P.; Mao, Y.; Liang, R.; Niu, L.; Luo, X. The characterization of biofilm formation and detection of biofilm-related genes in Salmonella isolated from beef processing plants. Foodborne Pathog. Dis. 2018, 15, 660–667. [Google Scholar] [CrossRef]
- Turki, Y.; Mehr, I.; Ouzari, H.; Khessairi, A.; Hassen, A. Molecular typing, antibiotic resistance, virulence gene and biofilm formation of different Salmonella enterica serotypes. J. Gen. Appl. Microbiol. 2014, 60, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Ed-Dra, A.; Filali, F.R.; Karraouan, B.; El Allaoui, A.; Aboulkacem, A.; Bouchrif, B. Prevalence, molecular and antimicrobial resistance of Salmonella isolated from sausages in Meknes, Morocco. Microb. Pathog. 2017, 105, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Alni, R.H.; Ghorban, K.; Dadmanesh, M. Combined effects of Allium sativum and Cuminum cyminum essential oils on planktonic and biofilm forms of Salmonella typhimurium isolates. 3 Biotech. 2020, 10, 315. [Google Scholar] [CrossRef] [PubMed]
- Abd El Tawab, A.A.; El-Hofy, F.I.; Maarouf, A.A.; El-Said, A.A. Bacteriological studies on some food borne bacteria isolated from Chicken meat and meat products in Kaliobia Governorate. Benha Vet. Med. J. 2015, 29, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Gebremedhin, E.Z.; Soboka, G.T.; Borana, B.M.; Marami, L.M.; Sarba, E.J.; Tadese, N.D.; Ambecha, H.A. Prevalence, Risk Factors, and Antibiogram of Nontyphoidal Salmonella from Beef in Ambo and Holeta Towns, Oromia Region, Ethiopia. Int. J. Microbiol. 2021, 2021, 6626373. [Google Scholar] [CrossRef] [PubMed]
- Gutema, F.D.; Abdi, R.D.; Agga, G.E.; Firew, S.; Rasschaert, G.; Mattheus, W.; Crombe, F.; Duchateau, L.; Gabriël, S.; de Zutter, L. Assessment of beef carcass contamination with Salmonella and E. coli O 157 in slaughterhouses in Bishoftu, Ethiopia. IInt. J. Food Contam. 2021, 8, 3. [Google Scholar] [CrossRef]
- Jaja, I.F.; Bhembe, N.L.; Green, E.; Oguttu, J.; Muchenje, V. Molecular characterisation of antibiotic-resistant Salmonella enterica isolates recovered from meat in South Africa. Acta Trop. 2019, 190, 129–136. [Google Scholar] [CrossRef]
- Mohamed, M.; Mohamed, R.; Gharieb, R.; Amin, M.; Ahmed, H. Antimicrobial Resistance, Virulence Associated Genes and Biofilm Formation of Salmonella Species Isolated from Different Sources. Zagazig Vet. J. 2021, 49, 94–108. [Google Scholar] [CrossRef]
- Tambekar, D.; Dhanorkar, D.; Gulhane, S.; Khandelwal, V.; Dudhane, M. Antibacterial susceptibility of some urinary tract pathogens to commonly used antibiotics. Afr. J. Biotechnol. 2006, 5, 1562–1565. [Google Scholar]
- Bonsaglia, E.; Silva, N.; Júnior, A.F.; Júnior, J.A.; Tsunemi, M.; Rall, V. Production of biofilm by Listeria monocytogenes in different materials and temperatures. Food Control 2014, 35, 386–391. [Google Scholar] [CrossRef]
- Borges, K.A.; Furian, T.Q.; Souza, S.N.; Menezes, R.; Tondo, E.C.; Salle, C.T.; Moraes, H.L.; Nascimento, V.P. Biofilm formation capacity of Salmonella serotypes at different temperature conditions. Pesqui Vet. Bras. 2018, 38, 71–76. [Google Scholar] [CrossRef]
- Chelvam, K.K.; Chai, L.C.; Thong, K.L. Variations in motility and biofilm formation of Salmonella enterica serovar Typhi. Gut Pathog. 2014, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Dong, Y.; Wang, G.; Xu, X.; Zhou, G. Effect of growth media on gene expression levels in Salmonella typhimurium biofilm formed on stainless steel surface. Food Control 2016, 59, 546–552. [Google Scholar] [CrossRef]
- Lamas, A.; Miranda, J.; Vázquez, B.; Cepeda, A.; Franco, C. Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions. Int. J. Food Microbiol. 2016, 238, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Wei, C.-I. Biofilm formation by multidrug-resistant Salmonella enterica serotype typhimurium phage type DT104 and other pathogens. J. Food Prot. 2007, 70, 22–29. [Google Scholar] [CrossRef]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef] [Green Version]
- Ghasemmahdi, H.; Tajik, H.; Moradi, M.; Mardani, K.; Modaresi, R.; Badali, A.; Dilmaghani, M. Antibiotic resistance pattern and biofilm formation ability of clinically isolates of Salmonella enterica serotype typhimurium. Int. J. Enteric Pathog. 2015, 3, e27372. [Google Scholar] [CrossRef]
- Wang, H.; Ye, K.; Wei, X.; Cao, J.; Xu, X.; Zhou, G. Occurrence, antimicrobial resistance and biofilm formation of Salmonella isolates from a chicken slaughter plant in China. Food Control 2013, 33, 378–384. [Google Scholar] [CrossRef]
- Stewart, P.S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 2002, 292, 107–113. [Google Scholar] [CrossRef]
- Zhang, L.; Guan, P.; Zhanga, Z.; Daib, Y.; Hao, L. Physicochemical characteristics of complexes between amylose and garlic bioactive components generated by milling activating method. Food Res. Int. 2018, 105, 499–506. [Google Scholar] [CrossRef]
- Somrani, M.; Inglés, M.-C.; Debbabi, H.; Abidi, F.; Palop, A. Garlic, onion, and cinnamon essential oil anti-biofilms’ effect against Listeria monocytogenes. Foods 2020, 9, 567. [Google Scholar] [CrossRef]
- Martins, N.; Petropoulos, S.; Ferreira, I.C. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre-and post-harvest conditions: A review. Food Chem. 2016, 211, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santurio, D.F.; de Jesus, F.P.K.; Zanette, R.A.; Schlemmer, K.B.; Fraton, A.; Fries, L.L.M. Antimicrobial activity of the essential oil of thyme and of thymol against Escherichia coli strains. Acta Sci. Vet. 2014, 42, 1–4. [Google Scholar]
- ŠegvićKlarić, M.; Kosalec, I.; Mastelić, J.; Piecková, E.; Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 2007, 44, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Imelouane, B.; Amhamdi, H.; Wathelet, J.-P.; Ankit, M.; Khedid, K.; El Bachiri, A. Chemical composition and antimicrobial activity of essential oil of thyme (Thymus vulgaris) from Eastern Morocco. Int. J. Agric. Biol. 2009, 11, 205–208. [Google Scholar]
- Ballester-Costa, C.; Sendra, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical composition and in vitro antibacterial properties of essential oils of four Thymus species from organic growth. Ind. Crops Prod. 2013, 50, 304–311. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Kim, Y.S.; Kyung, K.H. Inhibitory activity of essential oils of garlic and onion against bacteria and yeasts. J. Food Prot. 2004, 67, 499–504. [Google Scholar] [CrossRef]
- El-Sayed, H.S.; Chizzola, R.; Ramadan, A.A.; Edris, A.E. Chemical composition and antimicrobial activity of garlic essential oils evaluated in organic solvent, emulsifying, and self-microemulsifying water based delivery systems. Food Chem. 2017, 221, 196–204. [Google Scholar] [CrossRef]
- Custódio, J.B.; Ribeiro, M.V.; Silva, F.S.; Machado, M.; Sousa, M.C. The essential oils component p-cymene induces proton leak through Fo-ATP synthase and uncoupling of mitochondrial respiration. J. Exp. Pharmacol. 2011, 3, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, B.K.; Valdramidis, V.P.; O’Donnell, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P. Application of natural antimicrobials for food preservation. J. Agric. Food Chem. 2009, 57, 5987–6000. [Google Scholar] [CrossRef] [Green Version]
- El-Azzouny, M.M.; El-Demerdash, A.S.; Seadawy, H.G.; Abou-Khadra, S.H. Antimicrobial effect of garlic (Allium sativum) and thyme (Zataria multiflora Boiss) extracts on some foodborne pathogens and their effect on virulence gene expression. Cell. Mol. Biol. 2018, 64, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Miladi, H.; Mili, D.; Slama, R.B.; Zouari, S.; Ammar, E.; Bakhrouf, A. Antibiofilm formation and anti-adhesive property of three mediterranean essential oils against a foodborne pathogen Salmonella strain. Microb. Pathog. 2016, 93, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Alibi, S.; Selma, W.B.; Ramos-Vivas, J.; Smach, M.A.; Touati, R.; Boukadida, J.; Navas, J.; Mansour, H.B. Anti-oxidant, antibacterial, anti-biofilm, and anti-quorum sensing activities of four essential oils against multidrug-resistant bacterial clinical isolates. Curr. Res. Transl. Med. 2020, 68, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Guillín, Y.; Cáceres, M.; Torres, R.; Stashenko, E.; Ortiz, C. Effect of Essential Oils on the Inhibition of Biofilm and Quorum Sensing in Salmonella enteritidis 13076 and Salmonellatyphimurium 14028. Antibiotics 2021, 10, 1191. [Google Scholar] [CrossRef]
- Axmann, S.; Schorpp, A.; Strassgüttl, J.; Aumiller, T. Effects of phytogenic substances on growth and biofilm formation of and field isolates. Bodenkult. J. Land Manag. Food Environ. 2021, 72, 1–8. [Google Scholar] [CrossRef]
- ISO-6579. Microbiology— Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Salmonella spp.; ISO: Geneva, Switzerland, 2002. [Google Scholar]
- Mac Faddin, J.F. Biochemical Tests for Identification of Medical Bacteria; Williams and Wilkins: Philadelphia, PA, USA, 2000; p. 113. [Google Scholar]
- Kauffman, G. Kauffmann white scheme. J. Acta Path Microbiol. Sci. 1974, 61, 385. [Google Scholar]
- Halatsi, K.; Oikonomou, I.; Lambiri, M.; Mandilara, G.; Vatopoulos, A.; Kyriacou, A. PCR detection of Salmonella spp. using primers targeting the quorum sensing gene sdiA. FEMS Microbiol. Lett. 2006, 259, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Makino, S.-I.; Kurazono, H.; Chongsanguam, M.; Hayashi, H.; Cheun, H.-I.; Suzuki, S.; Shirahata, T. Establishment of the PCR system specific to Salmonella spp. and its application for the inspection of food and fecal samples. J. Vet. Med. Sci. 1999, 61, 1245–1247. [Google Scholar] [CrossRef] [Green Version]
- Rahn, K.; de Grandis, S.; Clarke, R.; McEwen, S.; Galan, J.; Ginocchio, C.; Curtiss Iii, R.; Gyles, C. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes 1992, 6, 271–279. [Google Scholar] [CrossRef]
- Baur, A.; Kirby, W.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Nair, A.; Rawool, D.B.; Doijad, S.; Poharkar, K.; Mohan, V.; Barbuddhe, S.B.; Kolhe, R.; Kurkure, N.V.; Kumar, A.; Malik, S. Biofilm formation and genetic diversity of Salmonella isolates recovered from clinical, food, poultry and environmental sources. Infect. Genet. Evol. 2015, 36, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Ćirković, I.; Ranin, L.; Svabić-Vlahović, M. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett. Appl. Microbiol. 2004, 38, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.; Alves, A.C.; Ferreira, S.; Silva, F.; Domingues, F.C. Resveratrol inclusion complexes: Antibacterial and anti-biofilm activity against Campylobacter spp. and Arcobacter butzleri. Int. Food Res. J. 2015, 77, 244–250. [Google Scholar] [CrossRef]
- Sharifi, A.; Mohammadzadeh, A.; Zahraei Salehi, T.; Mahmoodi, P. Antibacterial, antibiofilm and antiquorum sensing effects of Thymus daenensis and Satureja hortensis essential oils against Staphylococcus aureus isolates. J. Appl. Microbiol. 2018, 124, 379–388. [Google Scholar] [CrossRef] [PubMed]
Serotypes | Samples (20 for Each) | Total | ||||
---|---|---|---|---|---|---|
Rump | Brisket | Abattoir Effluents | Floors | Walls | ||
S. typhimurium | - | - | 2 (10%) | 1 (5%) | 2 (10%) | 5 (5%) |
S. enteritidis | - | - | 1 (5%) | 2 (10%) | - | 3 (3%) |
S. tsevie | - | - | - | 1 (5%) | 2 (10%) | 3 (3%) |
S. montevideo | - | - | 1 (5%) | 1 (5%) | - | 2 (2%) |
S. infantis | - | - | 1 (5%) | - | - | 1 (1%) |
S. shubra | - | - | 1 (5%) | - | - | 1 (1%) |
S. shangani | - | - | - | 1 (5%) | - | 1 (1%) |
S. tamale | - | - | - | - | 1 (5%) | 1 (1%) |
Antimicrobial Agents | Concentration (μg/Disc) | Sensitive | Intermediate | Resistant | ||||
---|---|---|---|---|---|---|---|---|
Number | % | Number | % | Number | % | |||
Erythromycin (E) | 15 | - | - | - | - | 5 | 100 | |
Oxacillin (OX) | 1 | - | - | 1 | 20 | 4 | 80 | |
Clindamycin (CL) | 10 | 2 | 40 | - | - | 3 | 60 | |
Tetracycline (T) | 30 | 1 | 20 | 1 | 20 | 3 | 60 | |
Nalidixic acid (NA) | 30 | 3 | 60 | - | - | 2 | 40 | |
Sulphamethoxazol (SXT) | 25 | 3 | 60 | - | - | 2 | 40 | |
Amikacin (AK) | 30 | 3 | 60 | - | - | 2 | 40 | |
Kanamycin (K) | 30 | 3 | 60 | 1 | 20 | 1 | 20 | |
Ampicillin (AM) | 10 | 3 | 60 | 1 | 20 | 1 | 20 | |
Cefotaxime (CF) | 30 | 3 | 60 | 1 | 20 | 1 | 20 | |
Ciprofloxacin (CP) | 5 | 4 | 80 | - | - | 1 | 20 | |
Amoxycillin (AMX) | 30 | 4 | 80 | - | - | 1 | 20 | |
Gentamicin (G) | 10 | 4 | 80 | - | - | 1 | 20 | |
Meropenem (M) | 10 | 3 | 60 | 1 | 20 | 1 | 20 | |
Cefazolin (CZ) | 30 | 3 | 60 | - | - | 2 | 40 | |
Ipipenem (IPM) | 10 | 4 | 80 | - | - | 1 | 20 | |
Isolates | Resistance profile | Number of antibiotics | Number isolates (%) | MAR index | ||||
Source | Pattern | |||||||
Abattoir effluents | I | E, OX, CL, T, NA, SXT, AK, K, AM, CF, CP, AMX, G, M, CZ, IPM | 16 | 1 (20%) | 1 | |||
Walls | II | E, OX, CL, T, NA, SXT, AK, K, AM, CF, CP, AMX | 12 | 1 (20%) | 0.750 | |||
Floors | III | E, OX, CL, T, NA, SXT | 6 | 1 (20%) | 0.375 | |||
Abattoir effluents | IV | E, OX, CL | 3 | 1 (20%) | 0.188 | |||
Walls | V | E, OX | 2 | 1 (20%) | 0.125 | |||
Average | 0.49 |
No | Allium sativum | Thymus vulgaris | ||||
---|---|---|---|---|---|---|
Compound | Content * (%) | RT | Compound | Content * (%) | RT | |
1 | 1,2-Dithiolane | 0.57 | 3.156 | Propyl acetate | 1.60 | 3.923 |
2 | Diallyl sulfide | 0.49 | 3.391 | α-Pinene | 2.70 | 6.389 |
3 | Allyl methyl disulfide | 1.76 | 4.661 | Camphene | 1.19 | 6.755 |
4 | 1,2-Dithiacyclopentene | 1.44 | 5.805 | β-Pinene | 1.95 | 7.436 |
5 | Diallyl disulfide | 21.55 | 10.217 | β-Myrcene | 0.93 | 7.768 |
6 | Allyl (E)-1-Propenyl disulfide | 0.88 | 10.623 | p-Cymene | 34.25 | 8.741 |
7 | Allyl (Z)-1-Propenyl disulfide | 3.47 | 10.858 | D-Limonene | 1.02 | 8.815 |
8 | Allyl methyl trisulfide | 7.34 | 12.002 | Eucalyptol | 1.95 | 8.884 |
9 | 3-Vinyl-1,2-dithi-4-ene | 2.95 | 13.513 | γ-Terpinene | 1.41 | 9.610 |
10 | 4H-1,2,3-Trithiine | 4.79 | 13.719 | Linalool | 3.10 | 10.715 |
11 | 2-Vinyl-4H-1,3-dithiine | 7.77 | 14.343 | Camphor | 1.61 | 12.620 |
12 | Allyl trisulfide | 36.35 | 16.958 | Terpinene-4-ol | 1.45 | 12.935 |
13 | Allyl propyl trisulfide | 0.71 | 17.249 | Methyl thymol | 2.80 | 14.497 |
14 | 5-Methyl-1,2,3,4-tetrathiane | 1.44 | 18.508 | Methyl carvacrol | 1.74 | 14.754 |
15 | 1,2-Dithiole | 1.78 | 19.584 | Anethole | 4.51 | 15.905 |
16 | Diallyl tetrasulfide | 2.40 | 22.960 | Thymol | 28.86 | 16.065 |
17 | Octathiocane | 3.10 | 32.951 | Carvacrol | 5.52 | 16.294 |
18 | 3,11a-Dimethylhexadecahydro-3H-naphtho [2′,1′:4,5] indenol[1,7a–c] furan-1-one | 1.21 | 46.226 | β-Caryophyllene | 2.11 | 19.498 |
19 | - | Caryophyllene oxide | 1.30 | 23.492 | ||
Total | 100% | Total | 100% |
Groups | Degree of Biofilm Production | Control (Untreated Group) | GEO-Treated Group | TEO-Treated Group | ||||
---|---|---|---|---|---|---|---|---|
MIC/2 | MIC/4 | MIC/8 | MIC/2 | MIC/4 | MIC/8 | |||
Non-producer No (%) Average OD ± SD | - | 3(60%) 0.048 ± 0.002 | 2(40%) 0.075 ± 0.01 | 2(40%) 0.080 ± 0.01 | 2(40%) 0.083 ± 0.02 | - | - | - |
Biofilm producer No (%) Average OD ± SD | Weak | - | - | - | - | 2(40%) 0.473 ± 0.05 | 2(40%) 0.485 ± 0.06 | 2(40%) 0.496 ± 0.06 |
Moderate | 2(40%) 0.24 5 ± 0.008 | - | - | - | - | - | - | |
Strong | - | - | - | - | - | - | - | |
Overall biofilm producers at 4 °C/24 h incubation | 2(40%) | - | - | - | 2(40%) | 2(40%) | 2(40%) |
Groups | Degree of Biofilm Production | Control (Untreated Group) | GEO-Treated Group | TEO-Treated Group | ||||
---|---|---|---|---|---|---|---|---|
MIC/2 | MIC/4 | MIC/8 | MIC/2 | MIC/4 | MIC/8 | |||
Non-producer No (%) Average OD ± SD | - | 1(20%) 0.06 ± 0.007 | 4(80%) 0.055 ± 0.001 | 4(80%) 0.065 ± 0.01 | 4(80%) 0.074 ± 0.01 | 1(20%) 0.411 ± 0.61 | 1(20%) 0.428 ± 0.61 | 1(20%) 0.437 ± 0.61 |
Biofilm producer No (%) Average OD ± SD | Weak | 1(20%) 0.12 ± 0.035 | - | - | - | 3(60%) 0.732 ± 0.09 | 3(60%) 0.743 ± 0.09 | 3(60%) 0.748 ± 0.09 |
Moderate | 2(40%) 0.246 ± 0.013 | - | - | - | - | - | - | |
Strong | 1(20%) 0.311 ± 0.034 | - | - | - | - | - | - | |
Overall biofilm producers at 37 °C/24 h incubation | 4(80%) | - | - | - | 3(60%) | 3(60%) | 3(60%) |
Isolates | Virulence Genes | Antibiotic Resistance (No) | Degree of Biofilm Formation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control (Untreated) | GEO | TEO | |||||||||
No. | Source | InvA | SdiA | Stn | 4 °C | 37 °C | 4 °C | 37 °C | 4 °C | 37 °C | |
1 | Abattoir effluents | + | + | − | 16 | Moderate | Strong | Non-producer | Non-producer | Weak | Weak |
2 | Walls | + | + | + | 12 | Moderate | Moderate | Non-producer | Non-producer | Weak | Weak |
3 | Floors | + | + | + | 6 | Non-producer | Moderate | - | Non-producer | - | Weak |
4 | Abattoir effluents | + | + | + | 3 | Non-producer | weak | - | Non-producer | - | Non-producer |
5 | Walls | + | − | − | 2 | Non-producer | Non-producer | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morshdy, A.E.M.A.; El-tahlawy, A.S.; Qari, S.H.; Qumsani, A.T.; Bay, D.H.; Sami, R.; Althubaiti, E.H.; Mansour, A.M.A.; Aljahani, A.H.; Hafez, A.E.-S.E.; et al. Anti-Biofilms’ Activity of Garlic and Thyme Essential Oils against Salmonella typhimurium. Molecules 2022, 27, 2182. https://doi.org/10.3390/molecules27072182
Morshdy AEMA, El-tahlawy AS, Qari SH, Qumsani AT, Bay DH, Sami R, Althubaiti EH, Mansour AMA, Aljahani AH, Hafez AE-SE, et al. Anti-Biofilms’ Activity of Garlic and Thyme Essential Oils against Salmonella typhimurium. Molecules. 2022; 27(7):2182. https://doi.org/10.3390/molecules27072182
Chicago/Turabian StyleMorshdy, Alaa Eldin M. A., Ahmed S. El-tahlawy, Sameer H. Qari, Alaa T. Qumsani, Daniyah Habiballah Bay, Rokayya Sami, Eman Hillal Althubaiti, Ahmed M. A. Mansour, Amani H. Aljahani, Abd El-Salam E. Hafez, and et al. 2022. "Anti-Biofilms’ Activity of Garlic and Thyme Essential Oils against Salmonella typhimurium" Molecules 27, no. 7: 2182. https://doi.org/10.3390/molecules27072182
APA StyleMorshdy, A. E. M. A., El-tahlawy, A. S., Qari, S. H., Qumsani, A. T., Bay, D. H., Sami, R., Althubaiti, E. H., Mansour, A. M. A., Aljahani, A. H., Hafez, A. E. -S. E., Mahmoud, A. F. A., El Bayomi, R. M., & Hussein, M. A. (2022). Anti-Biofilms’ Activity of Garlic and Thyme Essential Oils against Salmonella typhimurium. Molecules, 27(7), 2182. https://doi.org/10.3390/molecules27072182