Isolation and Structural Elucidation of Compounds from Pleiocarpa bicarpellata and Their In Vitro Antiprotozoal Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vitro Antiprotozoal Activity of the Extracts
2.2. LC-ESI-MS/MS Profiling
2.3. Structural Elucidation
2.4. Evaluation of the Antiprotozoal Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Spectral and Physical Data of Compounds 7 and 15
3.4.1. Nb-Methyl-Corynantheol (7)
3.4.2. (7S,15R,20R,21S)-Tubotaiwine (15)
3.5. MS Data Treatment, Molecular Network Generation, and Annotation
3.6. ECD Computational Details
3.7. Antitrypanosomal, Antileishmanial, Antiplasmodial, and Cytotoxicity Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- World Health Organization. World Malaria Report 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- World Health Organization. Artemisinin and Artemisinin-Based Combination Therapy Resistance: Status Report; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Omoyeni, O.A.; Hussein, A.A.; Iwuoha, E.; Green, I.R. A review of the ethnomedicinal uses, phytochemistry and pharmacology of the Pleiocarpa genus. Phytochem. Rev. 2016, 16, 97–115. [Google Scholar] [CrossRef]
- Addae-Kyereme, J.; Croft, S.; Kendrick, H.; Wright, C. Antiplasmodial activities of some Ghanaian plants traditionally used for fever/malaria treatment and of some alkaloids isolated from Pleiocarpa mutica; in vivo antimalarial activity of pleiocarpine. J. Ethnopharmacol. 2001, 76, 183–194. [Google Scholar] [CrossRef]
- Tsao, D.P.N.; Rosecrans, J.A.; Defeo, J.J.; Youngken, H.W. A note on the biological activity of root extracts from Pleiocarpa mutica Benth. (Apocynaceae). Econ. Bot. 1961, 15, 99–103. [Google Scholar] [CrossRef]
- Surur, A.S.; Huluka, S.A.; Mitku, M.L.; Asres, K. Indole: The after next scaffold of antiplasmodial agents? Drug Des. Devel. Ther. 2020, 14, 4855–4867. [Google Scholar] [CrossRef]
- Battaglia, S.; Boldrini, E.; Da Settimo, F.; Dondio, G.; La Motta, C.; Marini, A.M.; Primofiore, G. Indole amide derivatives: Synthesis, structure–activity relationships and molecular modelling studies of a new series of histamine H1-receptor antagonists. Eur. J. Med. Chem. 1999, 34, 93–105. [Google Scholar] [CrossRef]
- Przheval’skii, N.M.; Magedov, I.V.; Drozd, V.N. New derivatives of indole. Synthesis of s-(indolyl-3) diethyl dithiocarbamates. Chem. Heterocycl. Compd. 1997, 33, 1475–1476. [Google Scholar] [CrossRef]
- Al-Hiari, Y.M.; Qaisi, A.M.; El-Abadelah, M.M.; Voelter, W. Synthesis and antibacterial activity of some substituted 3-(aryl)- and 3-(heteroaryl)indoles. Monatsh. Chem. 2006, 137, 243–248. [Google Scholar] [CrossRef]
- Tan, D.X.; Manchester, L.C.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R.J. Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism. Molecules 2015, 20, 18886–18906. [Google Scholar] [CrossRef] [Green Version]
- Abele, E.; Abele, R.; Dzenitis, O.; Lukevics, E. Indole and isatin oximes: Synthesis, reactions, and biological activity. Chem. Heterocycl. Compd. 2003, 39, 3–35. [Google Scholar] [CrossRef]
- Suzen, S.; Buyukbingol, E. Evaluation of anti-HIV activity of 5-(2-phenyl-3′-indolal)-2-thiohydantoin. Il Farm. 1998, 53, 525–527. [Google Scholar] [CrossRef]
- El-Gendy, A.A.; Said, M.M.; Ghareb, N.; Mostafa, Y.M.; El-Ashry, E.S.H. Synthesis and biological activity of functionalized indole-2-carboxylates, triazino- and pyridazino-indoles. Arch. Pharm. 2008, 341, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Ndongo, J.T.; Mbing, J.N.; Monteillier, A.; Tala, M.F.; Rütten, M.; Mombers, D.; Cuendet, M.; Pegnyemb, D.E.; Dittrich, B.; Laatsch, H. Carbazole-, aspidofractinine-, and aspidocarpamine-type alkaloids from Pleiocarpa pycnantha. J. Nat. Prod. 2018, 81, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, A.A.M.; Abou-Zeid, L.A.; ElTahir, K.E.H.; Ayyad, R.R.; El-Sayed, M.A.A.; El-Azab, A.S. Synthesis, anti-inflammatory, analgesic, COX-1/2 inhibitory activities and molecular docking studies of substituted 2-mercapto-4(3H)-quinazolinones. Eur. J. Med. Chem. 2016, 121, 410–421. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Oreaic, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Ideker, T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics 2010, 27, 431–432. [Google Scholar] [CrossRef] [Green Version]
- Aron, A.T.; Gentry, E.C.; McPhail, K.L.; Nothias, L.F.; Nothias-Esposito, M.; Bouslimani, A.; Petras, D.; Gauglitz, J.M.; Sikora, N.; Vargas, F.; et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020, 15, 1954–1991. [Google Scholar] [CrossRef] [PubMed]
- Rutz, A.; Dounoue-Kubo, M.; Ollivier, S.; Bisson, J.; Bagheri, M.; Saesong, T.; Ebrahimi, S.N.; Ingkaninan, K.; Wolfender, J.L.; Allard, P.M. Taxonomically informed scoring enhances confidence in natural products annotation. Front. Plant Sci. 2019, 10, 1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.M.; Li, G.Y.; Fang, D.M.; Wu, Z.J.; Zhang, G.L. Analysis of monoterpenoid indole alkaloids using electrospray ionization tandem mass spectrometry. Chem. Nat. Compd. 2015, 51, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Quetin-Leclercq, J.; Angenot, L. 10-Hydroxy-Nb-methyl-corynantheol, a new quaternary alkaloid from the stem bark of Strychnos usambarensis. Phytochemistry 1988, 27, 1923–1926. [Google Scholar] [CrossRef]
- Kuehne, M.E.; Seaton, P.J. Studies in biomimetic alkaloid syntheses. 13. Total syntheses of racemic aspidofractine, pleiocarpine, pleiocarpinine, kopsinine, N-methylkopsanone, and kopsanone. J. Org. Chem. 1985, 50, 4790–4796. [Google Scholar] [CrossRef]
- Calis, I.; Sticher, O. Secoiridoid glucosides from Lonicera periclymenum. Phytochemistry 1984, 23, 2539–2540. [Google Scholar] [CrossRef]
- Coscia, C.J.; Guarnaccia, R. Natural occurrence and biosynthesis of a cyclopentanoid monoterpene carboxylic acid. Chem. Commun. 1968, 3, 138–140. [Google Scholar] [CrossRef]
- Tomita, H.; Mouri, Y. An iridoid glucoside from Dipsacus asperoides. Phytochemistry 1996, 42, 239–240. [Google Scholar] [CrossRef]
- Battersby, A.R.; Binks, R.; Hodson, H.F.; Yeowell, D.A. 368. Alkaloids of calabash-curare and Strychnos species. Part II. Isolation of new alkaloids. J. Chem. Soc. 1960, 1848–1854. [Google Scholar] [CrossRef]
- Wang, P.; Luo, J.; Wang, X.B.; Fan, B.Y.; Kong, L.Y. New indole glucosides as biosynthetic intermediates of camptothecin from the fruits of Camptotheca acuminata. Fitoterapia 2015, 103, 1–8. [Google Scholar] [CrossRef]
- Bartlett, M.F.; Korzun, B.; Sklar, R.; Smith, A.F.; Taylor, W.I. The alkaloids of Hunteria eburnea Pichon. II. The quaternary bases. J. Org. Chem. 1963, 28, 1445–1449. [Google Scholar] [CrossRef]
- Arbain, D.; Putra, D.; Sargent, M. The alkaloids of Ophiorrhiza filistipula. Aust. J. Chem. 1993, 46, 977–985. [Google Scholar] [CrossRef]
- Gilbert, B. The Alkaloids of Aspidosperma, Diplorrhyncus, Kopsia, Ochrosia, Pleiocarpa, and Related Genera. In The Alkaloids: Chemistry and Physiology; Academic Press; Elsevier: Cambridge, MA, USA; Amsterdam, The Netherlands, 1965; Volume 8, pp. 335–513. [Google Scholar]
- Su, D.M.; Wang, Y.H.; Yu, S.S.; Yu, D.Q.; Hu, Y.C.; Tang, W.Z.; Liu, G.T.; Wang, W.J. Glucosides from the roots of Capparis tenera. Chem. Biodivers. 2007, 4, 2852–2862. [Google Scholar] [CrossRef]
- Pinar, M.; Schmid, H. 3′-Methoxy-limaspermin, Limapodin, 3′-Methoxy-limapodin und Tubotaiwin aus Aspidosperma limae Woodson. Justus Liebigs Ann. der Chem. 1963, 668, 97–104. [Google Scholar] [CrossRef]
- Ghosh, B.P. Isolation of serpentine from Rauwolfia canescens root. Indian J. Pharm. 1958, 20, 69. [Google Scholar]
- Lopchuk, J.M. Chapter 1—Recent Advances in the Synthesis of Aspidosperma-Type Alkaloids. In Progress in Heterocyclic Chemistry; Gribble, G.W., Joule, J.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 23, pp. 1–25. [Google Scholar]
- Li, X.C.; Ferreira, D.; Ding, Y. Determination of absolute configuration of natural products: Theoretical calculation of electronic circular dichroism as a tool. Curr. Org. Chem. 2010, 14, 1678–1697. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Kitajima, M.; Kogure, N.; Wang, Y.; Zhang, R.; Takayama, H. Kopsiyunnanines F and isocondylocarpines: New tubotaiwine-type alkaloids from Yunnan Kopsia arborea. J. Nat. Med. 2009, 63, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Sosa, A.M.; Amaya, S.; Salamanca Capusiri, E.; Gilabert, M.; Bardón, A.; Giménez, A.; Vera, N.R.; Borkosky, S.A. Active sesquiterpene lactones against Leishmania amazonensis and Leishmania braziliensis. Nat. Prod. Res. 2016, 30, 2611–2615. [Google Scholar] [CrossRef] [PubMed]
- Reina, M.; Ruiz-Mesia, L.; Ruiz-Mesia, W.; Sosa-Amay, F.E.; Arevalo-Encinas, L.; González-Coloma, A.; Martínez-Díaz, R. Antiparasitic indole alkaloids from Aspidosperma desmanthum and A. spruceanum from the Peruvian Amazonia. Nat. Prod. Commun. 2014, 9, 1075–1080. [Google Scholar] [CrossRef] [Green Version]
- Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [Google Scholar] [CrossRef]
- Allard, P.M.; Péresse, T.; Bisson, J.; Gindro, K.; Marcourt, L.; Pham, V.C.; Roussi, F.; Litaudon, M.; Wolfender, J.L. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal. Chem. 2016, 88, 3317–3323. [Google Scholar] [CrossRef]
- Rutz, A.; Sorokina, M.; Galgonek, J.; Mietchen, D.; Willighagen, E.; Gaudry, A.; Graham, J.G.; Stephan, R.; Page, R.; Vondrášek, J.; et al. The LOTUS initiative for open natural products research: Knowledge management through wikidata. bioRxiv 2021. Available online: https://www.biorxiv.org/content/10.1101/2021.02.28.433265v2 (accessed on 25 January 2021). [CrossRef]
- Bernal, F.A.; Kaiser, M.; Wunsch, B.; Schmidt, T.J. Structure-activity relationships of cinnamate ester analogues as potent antiprotozoal agents. ChemMedChem 2020, 15, 68–78. [Google Scholar] [CrossRef] [Green Version]
Sample | Plant Extract | IC50 a (µM) | SI c | ||
---|---|---|---|---|---|
L. donovani | P. falciparum | Cytotoxicity b | |||
Root | Methanol: dichloromethane | >50 | 3.5 d | >100 d | |
Stem | Methanol | >50 | 34.2 d | >100 d | |
6 | >50 | 26.9 | 272.1 | 10.1 | |
11 | >50 | 26.6 | 155.5 | 5.8 | |
13 | >50 | 8.5 | 197.4 | 23.2 | |
16 | 25.3 | >50 | 293.7 | 11.6 | |
Miltefosine | 0.554 | ||||
Chloroquine | 0.006 | ||||
Podophyllotoxin | 0.027 |
Position | 7 | 15 | ||
---|---|---|---|---|
δH (J in Hz) | δC, Type | δH (J in Hz) | δC, Type | |
2 | 128.5, C | 176.1, C | ||
3 | 4.66, m | 65.9, CH | 2.05, m 2.95, m | 42.9, CH2 |
5 | 3.49, sept (3.6) | 59.5, CH2 | 3.23, s 3.50, s | 53.5, CH2 |
6 | 3.13, m 3.23, m | 18.0, CH2 | 3.00, m 3.38, m | 46.6, CH2 |
7 | 105.4, C | 54.6, C | ||
8 | 126.8, C | 135.7, C | ||
9 | 7.51, d (7.7) | 119.1, CH | 7.34, d (7.5) | 120.8, CH |
10 | 7.08, t (7.1) | 120.7, CH | 6.93, td (7.4) | 122.6, CH |
11 | 7.18, t (7.1) | 123.5, CH | 7.18, td (7.7) | 129.6, CH |
12 | 7.38, d (7.9) | 112.4, CH | 6.98, d (7.9) | 111.7, CH |
13 | 138.3, C | 145.6, C | ||
14 | 2.28, m 2.65, m | 30.9, CH2 | 1.95, m | 27.9, CH2 |
15 | 3.23, m | 30.4, CH | 3.22, s | 31.2, CH |
16 | 1.42, h 1.60, h | 35.4, CH2 | 96.4, C | |
17 | 3.79 (m) 3.86 (m) | 59.6, CH2 | 169.2, C | |
18 | 1.82, d (6.8) | 13.4, CH3 | 0.75, t (7.2) | 11.4, CH3 |
19 | 5.97, q (6.9) | 132.0, CH | 0.92, m | 24.3, CH2 |
20 | 129.0, C | 2.05, m | 41.3, CH | |
21 | 3.69, d (12.7) 4.35, d (12.8) | 63.8, CH2 | 4.40, s | 66.6, CH |
NCH3 | 3.18, s | 48.8 | ||
OCH3 | 3.79, s | 51.9, CH3 | ||
NH | 8.57, s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sevik Kilicaslan, O.; Cretton, S.; Quirós-Guerrero, L.; Bella, M.A.; Kaiser, M.; Mäser, P.; Ndongo, J.T.; Cuendet, M. Isolation and Structural Elucidation of Compounds from Pleiocarpa bicarpellata and Their In Vitro Antiprotozoal Activity. Molecules 2022, 27, 2200. https://doi.org/10.3390/molecules27072200
Sevik Kilicaslan O, Cretton S, Quirós-Guerrero L, Bella MA, Kaiser M, Mäser P, Ndongo JT, Cuendet M. Isolation and Structural Elucidation of Compounds from Pleiocarpa bicarpellata and Their In Vitro Antiprotozoal Activity. Molecules. 2022; 27(7):2200. https://doi.org/10.3390/molecules27072200
Chicago/Turabian StyleSevik Kilicaslan, Ozlem, Sylvian Cretton, Luis Quirós-Guerrero, Merveilles A. Bella, Marcel Kaiser, Pascal Mäser, Joseph T. Ndongo, and Muriel Cuendet. 2022. "Isolation and Structural Elucidation of Compounds from Pleiocarpa bicarpellata and Their In Vitro Antiprotozoal Activity" Molecules 27, no. 7: 2200. https://doi.org/10.3390/molecules27072200
APA StyleSevik Kilicaslan, O., Cretton, S., Quirós-Guerrero, L., Bella, M. A., Kaiser, M., Mäser, P., Ndongo, J. T., & Cuendet, M. (2022). Isolation and Structural Elucidation of Compounds from Pleiocarpa bicarpellata and Their In Vitro Antiprotozoal Activity. Molecules, 27(7), 2200. https://doi.org/10.3390/molecules27072200