Natural Phenolic Compounds as Modifiers for Epoxidized Natural Rubber/Silica Hybrids
Abstract
:1. Introduction
2. Materials and Methods
- RTS (%)—effectiveness of reprocessing calculated using tensile strength results [%],
- TSafter reprocessing—tensile strength of material after reprocessing [MPa],
- TSpristine—tensile strength of pristine material [MPa].
- REb (%)—effectiveness of reprocessing [%],
- Ebafter reprocessing—elongation at break of material after reprocessing [%],
- Ebpristine—elongation at break of pristine material [%].
- Δa—difference of a parameter between samples with natural additive and pure ENR/silica hybrid;
- Δb—difference of b parameter between samples with natural additive and pure ENR/silica hybrid
- ΔL—difference of L parameter between samples with natural additive and pure ENR/silica hybrid.
3. Results and Discussion
3.1. Curing Characteristics
3.2. Mechanical and Reprocessing Properties
3.3. Chemical Structure Analysis
3.4. Color Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Magaña, I.; Georgouvelas, D.; Handa, R.; Velázquez, N.M.G.; López González, H.R.; Enríquez Medrano, F.J.; Díaz de León, R.; Valencia, L. Fully Bio-Based Elastomer Nanocomposites Comprising Polyfarnesene Reinforced with Plasma-Modified Cellulose Nanocrystals. Polymers 2021, 13, 2810. [Google Scholar] [CrossRef] [PubMed]
- Głowińska, E.; Kasprzyk, P.; Datta, J. The Green Approach to the Synthesis of Bio-Based Thermoplastic Polyurethane Elastomers with Partially Bio-Based Hard Blocks. Materials 2021, 14, 2334. [Google Scholar] [CrossRef] [PubMed]
- Masek, A.; Cichosz, S. Biocomposites of Epoxidized Natural Rubber/Poly (Lactic Acid) Modified with Natural Substances: Influence of Biomolecules on the Aging Properties (Part II). Polymers 2021, 13, 1677. [Google Scholar] [CrossRef]
- Miedzianowska, J.; Masłowski, M.; Rybiński, P.; Strzelec, K. Modified Nanoclays/Straw Fillers as Functional Additives of Natural Rubber Biocomposites. Polymers 2021, 13, 799. [Google Scholar] [CrossRef] [PubMed]
- Intapun, J.; Rungruang, T.; Suchat, S.; Cherdchim, B.; Hiziroglu, S. The Characteristics of Natural Rubber Composites with Klason Lignin as a Green Reinforcing Filler: Thermal Stability, Mechanical and Dynamical Properties. Polymers 2021, 13, 1109. [Google Scholar] [CrossRef] [PubMed]
- Algaily, B.; Kaewsakul, W.; Sarkawi, S.S.; Kalkornsurapranee, E. Enabling reprocessability of ENR-based vulcanisates by thermochemically exchangeable ester crosslinks. Plast. Rubber Compos. 2021, 50, 315–328. [Google Scholar] [CrossRef]
- Masek, A.; Zaborski, M.; Piotrowska, M. Controlled degradation of biocomposites ENR/PCL containing natural antioxidants. Comptes Rendus Chim. 2014, 17, 1128–1135. [Google Scholar] [CrossRef]
- Masek, A.; Cichosz, S.; Piotrowska, M. Biocomposites of Epoxidized Natural Rubber/Poly (Lactic Acid) Modified with Natural Fillers (Part I). Int. J. Mol. Sci. 2021, 22, 3150. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Jia, Z.; Wang, S.; Chen, Y.; Luo, Y.; Jia, D.; Peng, Z. Self-crosslinkable epoxidized natural rubber–silica hybrids. J. Appl. Polym. Sci. 2017, 134, 10. [Google Scholar] [CrossRef]
- Li, K.; Yang, H.; Yan, H.; Sun, Y.; Chen, X.; Guo, J.; Yue, J.; Huang, C. Quercetin as a simple but versatile primer in dentin bonding. RSC Adv. 2007, 7, 36392–36402. [Google Scholar] [CrossRef] [Green Version]
- Parhi, B.; Bharatiya, D.; Swain, S.K. Application of quercetin flavonoid based hybrid nanocomposites: A review. Saudi Pharm. J. 2020, 28, 1719–1732. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Khan, I.A.; ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phyther. Res. 2018, 32, 2109–2130. [Google Scholar] [CrossRef]
- Masek, A.; Latos, M.; Piotrowska, M.; Zaborski, M. The potential of quercetin as an effective natural antioxidant and indicator for packaging materials. Food Packag. Shelf Life 2018, 16, 51–58. [Google Scholar] [CrossRef]
- Ding, X.M.; Chen, L.; Guo, D.M.; Liu, B.W.; Luo, X.; Lei, Y.F.; Zhong, H.Y.; Wang, Y.Z. Controlling Cross-Linking Networks with Different Imidazole Accelerators toward High-Performance Epoxidized Soybean Oil-Based Thermosets. ACS Sustain. Chem. Eng. 2021, 9, 3267–3277. [Google Scholar] [CrossRef]
- Masek, A.; Zaborski, M. ENR/PCL Polymer biocomposites from renewable resources. Comptes Rendus Chim. 2014, 17, 944–951. [Google Scholar] [CrossRef]
- Quiles-Carrillo, L.; Montava-Jordà, S.; Boronat, T.; Sammon, C.; Balart, R.; Torres-Giner, S. On the use of gallic acid as a potential natural antioxidant and ultraviolet light stabilizer in cast-extruded bio-based high-density polyethylene films. Polymers 2020, 12, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczmarek, B.; Olha, M. Collagen-Based Materials Modified by Phenolic. Materials 2020, 13, 3641. [Google Scholar] [CrossRef] [PubMed]
- Jimtaisong, A.; Saewan, N. Plant-derived polyphenols as potential cross-linking agents for methylcellulose-chitosan biocomposites. Solid State Phenom. 2018, 283, 140–146. [Google Scholar] [CrossRef]
- Aouf, C.; Nouailhas, H.; Fache, M.; Caillol, S.; Boutevin, B.; Fulcrand, H. Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin. Eur. Polym. J. 2013, 49, 1185–1195. [Google Scholar] [CrossRef]
- Kharouf, N.; Haikel, Y.; Ball, V. Polyphenols in dental applications. Bioengineering 2020, 7, 72. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, E.Y.; Lee, J. Non-toxic nanoparticles from phytochemicals: Preparation and biomedical application. Bioprocess Biosyst. Eng. 2014, 37, 983–989. [Google Scholar] [CrossRef]
- Kaczmarek, B. Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview. Materials 2020, 13, 3224. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Xu, Y.; Rao, W.; Luo, X.; Chen, L.; Wang, Y. Epoxidized soybean oil cured with tannic acid for fully bio-based epoxy resin. RSC Adv. 2018, 8, 26948–26958. [Google Scholar] [CrossRef] [Green Version]
- Olejnik, O.; Masek, A.; Szynkowska-Jóźwik, M.I. Self-Healable Biocomposites Crosslinked with a Combination of Silica and Quercetin. Materials 2021, 14, 4028. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Olejar, K.J.; Parpinello, G.P.; Kilmartin, P.A.; Versari, A. Application of Fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Appl. Spectrosc. Rev. 2015, 50, 407–442. [Google Scholar] [CrossRef]
- Catauro, M.; Papale, F.; Bollino, F.; Piccolella, S.; Marciano, S.; Nocera, P.; Pacifico, S. Silica/quercetin sol–gel hybrids as antioxidant dental implant materials. Sci. Technol. Adv. Mater. 2015, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kannan, R.R.R.; Arumugam, R.; Anantharaman, P. Fourier Transform Infrared Spectroscopy Analysis of Seagrass Polyphenols. Curr. Bioact. Compd. 2011, 7, 118–125. [Google Scholar] [CrossRef]
- Pardeshi, S.; Dhodapkar, R.; Kumar, A. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 116, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Miller, J.D. Carboxyl stretching vibrations of spontaneously adsorbed and LB-transferred calcium carboxylates as determined by FTIR internal reflection spectroscopy. J. Colloid Interface Sci. 2002, 256, 41–52. [Google Scholar] [CrossRef]
Sample | TS of Pristine Sample [MPa] | TS of Reprocessed Sample at 160 °C [MPa] | RTS of Reprocessed Sample at 160 °C [%] | TS of Reprocessed Sample at 180 °C [MPa] | RTS of Reprocessed Sample at 180 °C [%] |
---|---|---|---|---|---|
ENR/SIL | 2.65 ± 0.08 | 2.8 ± 0.1 | 105 | 1.9 ± 0.4 | 71 |
ENR/SIL/QUE | 5.8 ± 0.2 | 2.5 ± 0.9 | 42 | 5.5 ± 0.6 | 95 |
ENR/SIL/TA | 5.70 ± 0.18 | 3.7 ± 0.8 | 65 | 6.0 ± 0.7 | 106 |
ENR/SIL/GA | 9.5 ± 0.3 | 1.21 ± 1.24 | 13 | 1.5 ± 0.5 | 16 |
Sample | Eb of Pristine Sample [MPa] | Eb of Reprocessed Sample at 160 °C [MPa] | REb of Reprocessed Sample at 160 °C [%] | Eb of Reprocessed Sample at 180 °C [MPa] | REb of Reprocessed Sample at 180 °C [%] |
---|---|---|---|---|---|
ENR/SIL | 301 ± 7 | 270 ± 20 | 90 | 150 ± 70 | 49 |
ENR/SIL/QUE | 500 ± 20 | 120 ± 50 | 24 | 230 ± 30 | 46 |
ENR/SIL/TA | 368 ± 4 | 140 ± 40 | 39 | 190 ± 20 | 52 |
ENR/SIL/GA | 357 ± 14 | 33 ± 19 | 9 | 40 ± 11 | 11 |
Sample | Storage Modulus Changes in Temperature | Tmax E″ [°C] | Tmax tanδ (Tg) [°C] | |||||
---|---|---|---|---|---|---|---|---|
E′−60 [MPa] | E′−40 [MPa] | E′−20 [MPa] | E′0 [MPa] | E′20 [MPa] | E′40 [MPa] | |||
ENR/SIL | 4083.0 | 3779.5 | 1473.5 | 42.4 | 13.7 | 8.8 | −20.3 | −9.7 |
ENR/SIL/QUE | 5176.3 | 4777.5 | 2764.1 | 107.5 | 22.4 | 12.2 | −16.8 | −5.4 |
ENR/SIL/TA | 4593.4 | 4267.3 | 1990.4 | 72.5 | 17.3 | 9.5 | −19.1 | −7.7 |
ENR/SIL/GA | 5979.7 | 5543.2 | 3844.3 | 185.8 | 26.3 | 9.5 | −14.0 | −1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olejnik, O.; Masek, A. Natural Phenolic Compounds as Modifiers for Epoxidized Natural Rubber/Silica Hybrids. Molecules 2022, 27, 2214. https://doi.org/10.3390/molecules27072214
Olejnik O, Masek A. Natural Phenolic Compounds as Modifiers for Epoxidized Natural Rubber/Silica Hybrids. Molecules. 2022; 27(7):2214. https://doi.org/10.3390/molecules27072214
Chicago/Turabian StyleOlejnik, Olga, and Anna Masek. 2022. "Natural Phenolic Compounds as Modifiers for Epoxidized Natural Rubber/Silica Hybrids" Molecules 27, no. 7: 2214. https://doi.org/10.3390/molecules27072214
APA StyleOlejnik, O., & Masek, A. (2022). Natural Phenolic Compounds as Modifiers for Epoxidized Natural Rubber/Silica Hybrids. Molecules, 27(7), 2214. https://doi.org/10.3390/molecules27072214