Positive Association between Aqueous Humor Hydroxylinoleate Levels and Intraocular Pressure
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials, Subjects, and Methods
4.1. Materials
4.2. Subjects
4.3. AH Samples
4.4. Analysis of Oxidative Stress Markers
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burton, M.J.; Ramke, J.; Marques, A.P.; Bourne, R.R.A.; Congdon, N.; Jones, I.; Ah Tong, B.A.M.; Arunga, S.; Bachani, D.; Bascaran, C.; et al. The Lancet Global Health Commission on Global Eye Health: Vision beyond 2020. Lancet Glob. Health 2021, 9, e489–e551. [Google Scholar] [CrossRef]
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e1221–e1234. [Google Scholar] [CrossRef] [Green Version]
- Iwase, A.; Araie, M.; Tomidokoro, A.; Yamamoto, T.; Shimizu, H.; Kitazawa, Y. Prevalence and causes of low vision and blindness in a Japanese adult population: The Tajimi Study. Ophthalmology 2006, 113, 1354–1362. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Khaw, P.T. Primary open-angle glaucoma. Lancet 2004, 363, 1711–1720. [Google Scholar] [CrossRef]
- Lütjen-Drecoll, E.; Shimizu, T.; Rohrbach, M.; Rohen, J.W. Quantitative analysis of ‘plaque material’ in the inner- and outer wall of Schlemm’s canal in normal- and glaucomatous eyes. Exp. Eye Res. 1986, 42, 443–455. [Google Scholar] [CrossRef]
- Kahn, M.G.; Giblin, F.J.; Epstein, D.L. Glutathione in calf trabecular meshwork and its relation to aqueous humor outflow facility. Investig. Ophthalmol. Vis. Sci. 1983, 24, 1283–1287. [Google Scholar]
- Izzotti, A.; Sacca, S.C.; Longobardi, M.; Cartiglia, C. Mitochondrial damage in the trabecular meshwork of patients with glaucoma. Arch. Ophthalmol. 2010, 128, 724–730. [Google Scholar] [CrossRef] [Green Version]
- Sacca, S.C.; Izzotti, A.; Rossi, P.; Traverso, C. Glaucomatous outflow pathway and oxidative stress. Exp. Eye Res. 2007, 84, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Himori, N.; Yamamoto, K.; Maruyama, K.; Ryu, M.; Taguchi, K.; Yamamoto, M.; Nakazawa, T. Critical role of Nrf2 in oxidative stress-induced retinal ganglion cell death. J. Neurochem. 2013, 127, 669–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoyama, Y.; Maruyama, K.; Yamamoto, K.; Omodaka, K.; Yasuda, M.; Himori, N.; Ryu, M.; Nishiguchi, K.M.; Nakazawa, T. The role of calpain in an in vivo model of oxidative stress-induced retinal ganglion cell damage. Biochem. Biophys. Res. Commun. 2014, 451, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Inomata, Y.; Nakamura, H.; Tanito, M.; Teratani, A.; Kawaji, T.; Kondo, N.; Yodoi, J.; Tanihara, H. Thioredoxin inhibits NMDA-induced neurotoxicity in the rat retina. J. Neurochem. 2006, 98, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Munemasa, Y.; Ahn, J.H.; Kwong, J.M.; Caprioli, J.; Piri, N. Redox proteins thioredoxin 1 and thioredoxin 2 support retinal ganglion cell survival in experimental glaucoma. Gene Ther. 2009, 16, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.Y.; Liu, P.K.; Wen, Y.T.; Quinn, P.M.J.; Levi, S.R.; Wang, N.K.; Tsai, R.K. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration. Antioxidants 2021, 10, 1948. [Google Scholar] [CrossRef] [PubMed]
- Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Status of systemic oxidative stresses in patients with primary open-angle glaucoma and pseudoexfoliation syndrome. PLoS ONE 2012, 7, e49680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takayanagi, Y.; Takai, Y.; Kaidzu, S.; Tanito, M. Association between Systemic Antioxidant Capacity and Retinal Vessel Diameters in Patients with Primary-Open Angle Glaucoma. Life 2020, 10, 364. [Google Scholar] [CrossRef] [PubMed]
- Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Correlation between Systemic Oxidative Stress and Intraocular Pressure Level. PLoS ONE 2015, 10, e0133582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Association between systemic oxidative stress and visual field damage in open-angle glaucoma. Sci. Rep. 2016, 6, 25792. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, Y.; Niki, E. Detection of lipid peroxidation in vivo: Total hydroxyoctadecadienoic acid and 7-hydroxycholesterol as oxidative stress marker. Free Radic. Res. 2004, 38, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Hayakawa, M.; Niki, E. Total hydroxyoctadecadienoic acid as a marker for lipid peroxidation in vivo. Biofactors 2005, 24, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Kodai, S.; Takemura, S.; Minamiyama, Y.; Niki, E. Simultaneous measurement of F2-isoprostane, hydroxyoctadecadienoic acid, hydroxyeicosatetraenoic acid, and hydroxycholesterols from physiological samples. Anal. Biochem. 2008, 379, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yin, H.; Akazawa, Y.O.; Yoshida, Y.; Niki, E.; Porter, N.A. Ex vivo oxidation in tissue and plasma assays of hydroxyoctadecadienoates: Z,E/E,E stereoisomer ratios. Chem. Res. Toxicol. 2010, 23, 986–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umeno, A.; Biju, V.; Yoshida, Y. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer’s disease, Parkinson’s disease, and diabetes. Free Radic. Res. 2017, 51, 413–427. [Google Scholar] [CrossRef]
- Yoshida, Y.; Umeno, A.; Shichiri, M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J. Clin. Biochem. Nutr. 2013, 52, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umeno, A.; Tanito, M.; Kaidzu, S.; Takai, Y.; Horie, M.; Yoshida, Y. Comprehensive measurements of hydroxylinoleate and hydroxyarachidonate isomers in blood samples from primary open-angle glaucoma patients and controls. Sci. Rep. 2019, 9, 2171. [Google Scholar] [CrossRef]
- Umeno, A.; Tanito, M.; Kaidzu, S.; Takai, Y.; Yoshida, Y. Involvement of free radical-mediated oxidation in the pathogenesis of pseudoexfoliation syndrome detected based on specific hydroxylinoleate isomers. Free Radic. Biol. Med. 2020, 147, 61–68. [Google Scholar] [CrossRef]
- Takayanagi, Y.; Takai, Y.; Kaidzu, S.; Tanito, M. Evaluation of Redox Profiles of the Serum and Aqueous Humor in Patients with Primary Open-Angle Glaucoma and Exfoliation Glaucoma. Antioxidants 2020, 9, 1305. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Tezel, G.; Patil, R.V.; Romano, C.; Wax, M.B. Serum autoantibody against glutathione S-transferase in patients with glaucoma. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1273–1276. [Google Scholar]
- Tezel, G.; Seigel, G.M.; Wax, M.B. Autoantibodies to small heat shock proteins in glaucoma. Investig. Ophthalmol. Vis. Sci. 1998, 39, 2277–2287. [Google Scholar]
- Wax, M.B.; Tezel, G.; Saito, I.; Gupta, R.S.; Harley, J.B.; Li, Z.; Romano, C. Anti-Ro/SS-A positivity and heat shock protein antibodies in patients with normal-pressure glaucoma. Am. J. Ophthalmol. 1998, 125, 145–157. [Google Scholar] [CrossRef]
- Fan Gaskin, J.C.; Shah, M.H.; Chan, E.C. Oxidative Stress and the Role of NADPH Oxidase in Glaucoma. Antioxidants 2021, 10, 238. [Google Scholar] [CrossRef]
- Garcia-Medina, J.J.; Rubio-Velazquez, E.; Lopez-Bernal, M.D.; Cobo-Martinez, A.; Zanon-Moreno, V.; Pinazo-Duran, M.D.; Del-Rio-Vellosillo, M. Glaucoma and Antioxidants: Review and Update. Antioxidants 2020, 9, 1031. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Li, S.; Cao, W.; Sun, X. The Association of Oxidative Stress Status with Open-Angle Glaucoma and Exfoliation Glaucoma: A Systematic Review and Meta-Analysis. J. Ophthalmol. 2019, 2019, 1803619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzotti, A.; Longobardi, M.; Cartiglia, C.; Saccà, S.C. Mitochondrial damage in the trabecular meshwork occurs only in primary open-angle glaucoma and in pseudoexfoliative glaucoma. PLoS ONE 2011, 6, e14567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotella, J.A.; Greene, S.L.; Koutsogiannis, Z.; Graudins, A.; Hung Leang, Y.; Kuan, K.; Baxter, H.; Bourke, E.; Wong, A. Treatment for beta-blocker poisoning: A systematic review. Clin. Toxicol. 2020, 58, 943–983. [Google Scholar] [CrossRef] [PubMed]
- Takai, Y.; Tanito, M.; Ohira, A. Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Investig. Ophthalmol. Vis. Sci. 2012, 53, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Mean ± SD or N (%) | 95% CI or N (%) |
---|---|---|
Subjects (N = 41) | ||
Age, years | 77.3 ± 6.8 | 75.2, 79.5 |
Sex | Men, 15 (36.6) | Women, 26 (63.4) |
Disease type | Cataract, 32 (78.0) | Glaucoma, 9 (21.0) |
Eyes (N = 63) | ||
Age, years | 77.4 ± 6.8 | 75.6, 79.1 |
Sex | Men, 23 (36.5) | Women, 40 (63.5) |
Disease type | Cataract, 49 (77.8) | POAG, 14 (22.2) |
IOP, mmHg | 14.3 ± 3.1 | 13.5, 15.1 |
Parameter | Mean ± SD | 95% CI |
---|---|---|
9-(Z,E)-HODE/LA, µmol/mol | 243.0 ± 187.7 | 195.8, 290.3 |
9-(E,E)-HODE/LA, µmol/mol | 55.0 ± 55.7 | 41.0, 69.1 |
13-(Z,E)-HODE/LA, µmol /mol | 194.6 ± 198.3 | 144.7, 244.6 |
13-(E,E)-HODE/LA, µmol/mol | 30.2 ± 25.0 | 23.9, 36.5 |
t-HODE/LA, µmol/mol | 522.9 ± 413.6 | 418.7, 627.0 |
9-(Z,E)-HODE, nM | 0.89 ± 0.60 | 0.74, 1.04 |
9-(E,E)-HODE, nM | 0.20 ± 0.16 | 0.16, 0.24 |
13-(Z,E)-HODE, nM | 0.71 ± 0.68 | 0.54, 0.88 |
13-(E,E)-HODE, nM | 0.11 ± 0.08 | 0.09, 0.13 |
t-HODE, nM | 1.91 ± 1.26 | 1.57, 2.25 |
LA, mM | 0.0052 ± 0.0039 | 0.0042, 0.0062 |
AA, mM | 0.00044 ± 0.00036 | 0.00035, 0.00053 |
Parameter | Age, per Year | IOP, per mmHg | ||||
---|---|---|---|---|---|---|
Estimate | 95% CI | p Value | Estimate | 95% CI | p Value | |
9-(Z,E)-HODE/LA, µmol/mol | 2.2 | −4.9, 9.2 | 0.54 | 6.3 | −9.1, 21.7 | 0.42 |
9-(E,E)-HODE/LA, µmol/mol | 0.6 | −1.5, 2.7 | 0.58 | −0.8 | −5.4, 3.8 | 0.72 |
13-(Z,E)-HODE/LA, µmol /mol | 5.0 | −2.4, 12.3 | 0.18 | 14.6 | −1.3, 30.6 | 0.07 |
13-(E,E)-HODE/LA, µmol/mol | 0.7 | −0.2, 1.7 | 0.12 | 1.9 | −0.1, 3.9 | 0.06 |
t-HODE/LA, µmol/mol | 8.4 | −6.9, 23.8 | 0.28 | 22.0 | −11.6, 55.7 | 0.20 |
9-(Z,E)-HODE, nM | 0.00 | −0.02, 0.02 | >0.99 | 0.03 | −0.02, 0.08 | 0.25 |
9-(E,E)-HODE, nM | 0.00 | 0.00, 0.01 | 0.57 | −0.01 | −0.02, 0.01 | 0.42 |
13-(Z,E)-HODE, nM | 0.01 | −0.02, 0.03 | 0.61 | 0.07 | 0.01, 0.12 | 0.018 * |
13-(E,E)-HODE, nM | 0.00 | 0.00, 0.00 | 0.48 | 0.01 | 0.00, 0.01 | 0.021 * |
t-HODE, nM | 0.01 | −0.04, 0.06 | 0.71 | 0.10 | −0.01, 0.20 | 0.09 |
LA, mM | −0.0002 | −0.0003, −0.0000 | 0.034 * | −0.0001 | −0.0004, 0.0002 | 0.48 |
AA, mM | −0.00002 | −0.00003, −0.00001 | 0.0041 ** | 0.00000 | −0.00003, 0.00003 | 0.95 |
Parameter | Sex | Disease | ||||
---|---|---|---|---|---|---|
Men | Women | p Value | Cataract | Glaucoma | p Value | |
9-(Z,E)-HODE/LA, µmol/mol | 216.8 ± 178.0 | 258.1 ± 193.6 | 0.40 | 247.5 ± 171.7 | 227.5 ± 242.5 | 0.73 |
9-(E,E)-HODE/LA, µmol/mol | 46.6 ± 37.9 | 59.9 ± 63.7 | 0.37 | 57.6 ± 59.3 | 46.2 ± 41.3 | 0.51 |
13-(Z,E)-HODE/LA, µmol /mol | 189.6 ± 218.1 | 197.5 ± 188.8 | 0.88 | 183.9 ± 149.3 | 232.1 ± 321.4 | 0.43 |
13-(E,E)-HODE/LA, µmol/mol | 26.9 ± 21.5 | 32.0 ± 27.0 | 0.44 | 31.0 ± 23.2 | 27.3 ± 31.5 | 0.63 |
t-HODE/LA, µmol/mol | 480.0 ± 413.9 | 547.5 ± 416.7 | 0.54 | 519.9 ± 343.2 | 533.1 ± 617.2 | 0.92 |
9-(Z,E)-HODE, nM | 1.01 ± 0.74 | 0.82 ± 0.49 | 0.25 | 0.81 ± 0.53 | 1.18 ± 0.74 | 0.039 * |
9-(E,E)-HODE, nM | 0.23 ± 0.18 | 0.18 ± 0.15 | 0.23 | 0.19 ± 0.17 | 0.24 ± 0.16 | 0.32 |
13-(Z,E)-HODE, nM | 0.83 ± 0.85 | 0.64 ± 0.56 | 0.29 | 0.61 ± 0.53 | 1.08 ± 1.00 | 0.021 * |
13-(E,E)-HODE, nM | 0.12 ± 0.08 | 0.11 ± 0.08 | 0.56 | 0.10 ± 0.07 | 0.13 ± 0.10 | 0.21 |
t-HODE, nM | 2.19 ± 1.67 | 1.75 ± 1.13 | 0.22 | 1.71 ± 1.13 | 2.63 ± 1.82 | 0.023 * |
LA, mM | 0.0060 ± 0.0042 | 0.0047 ± 0.0037 | 0.23 | 0.0045 ± 0.0034 | 0.0076 ± 0.0047 | 0.0080 ** |
AA, mM | 0.00051 ± 0.00042 | 0.00040 ± 0.00032 | 0.24 | 0.00038 ± 0.00029 | 0.00067 ± 0.00047 | 0.0051 ** |
Parameter | Age, per Year | Sex, Men/Women | Disease, Glaucoma/Cataract | IOP, per mmHg | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Estimate | 95% CI | p Value | Estimate | 95% CI | p Value | Estimate | 95% CI | p Value | Estimate | 95% CI | p Value | |
9-(Z,E)-HODE/LA, µmol/mol | 2.8 | −6.4, 12.0 | 0.54 | −20.5 | −86.0, 44.9 | 0.53 | 8.9 | −62.7, 8.6 | 0.80 | 6.4 | −12.1, 24.9 | 0.49 |
9-(E,E)-HODE/LA, µmol/mol | 0.3 | −2.3, 2.9 | 0.80 | −4.9 | −23.4, 13.7 | 0.60 | −1.5 | −22.2, 19.2 | 0.89 | −0.5 | −5.8, 4.8 | 0.84 |
13-(Z,E)-HODE/LA, µmol /mol | 8.3 | −0.1, 16.8 | 0.05 | −16.6 | −77.5, 44.3 | 0.58 | 49.0 | −20.1, 118.1 | 0.16 | 18.3 | 0.6, 36.0 | 0.043 * |
13-(E,E)-HODE/LA, µmol/mol | 0.9 | −0.2, 2.0 | 0.11 | −3.1 | −11.2, 4.9 | 0.44 | 1.5 | −7.4, 10.4 | 0.74 | 2.4 | 0.1, 4.7 | 0.042 * |
t-HODE/LA, µmol/mol | 13.3 | −6.3, 32.9 | 0.18 | −39.6 | −179.6, 100.4 | 0.57 | 59.3 | −95.2, 213.7 | 0.44 | 24.4 | −15.4, 64.2 | 0.22 |
9-(Z,E)-HODE, nM | 0.02 | −0.01, 0.05 | 0.28 | 0.07 | −0.02, 0.28 | 0.52 | 0.21 | −0.02, 0.44 | 0.08 | 0.01 | −0.04, 0.07 | 0.62 |
9-(E,E)-HODE, nM | 0.00 | −0.00, 0.01 | 0.32 | 0.03 | −0.02, 0.09 | 0.21 | 0.03 | −0.03, 0.09 | 0.36 | −0.01 | −0.02, 0.01 | 0.30 |
13-(Z,E)-HODE, nM | 0.01 | −0.01, 0.03 | 0.19 | −0.07 | −0.21, 0.08 | 0.35 | 0.28 | 010, 0.45 | 0.0040 ** | 0.06 | 0.02, 0.11 | 0.0054 ** |
13-(E,E)-HODE, nM | 0.00 | −0.00, 0.01 | 0.13 | −0.00 | −0.03, 0.02 | 0.73 | 0.02 | −0.01, 0.05 | 0.15 | 0.01 | 0.00, 0.02 | 0.027 ** |
t-HODE, nM | 0.05 | −0.01, 0.12 | 0.10 | 0.14 | −0.33, 0.60 | 0.55 | 0.54 | 0.03, 1.05 | 0.040 * | 0.08 | −0.05, 0.21 | 0.22 |
LA, mM | −0.0001 | −0.0003, 0.0000 | 0.13 | 0.0005 | −0.0008, 0.0018 | 0.41 | 0.0000 | −0.0010, 0.0011 | 0.96 | −0.0002 | −0.0004, 0.0001 | 0.21 |
AA, mM | −0.00002 | −0.00003, 0.00000 | 0.05 | 0.00001 | −0.00010, 0.00012 | 0.84 | 0.00004 | −0.00004, 0.00013 | 0.32 | −0.00000 | −0.00002, 0.00002 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umeno, A.; Yoshida, Y.; Kaidzu, S.; Tanito, M. Positive Association between Aqueous Humor Hydroxylinoleate Levels and Intraocular Pressure. Molecules 2022, 27, 2215. https://doi.org/10.3390/molecules27072215
Umeno A, Yoshida Y, Kaidzu S, Tanito M. Positive Association between Aqueous Humor Hydroxylinoleate Levels and Intraocular Pressure. Molecules. 2022; 27(7):2215. https://doi.org/10.3390/molecules27072215
Chicago/Turabian StyleUmeno, Aya, Yasukazu Yoshida, Sachiko Kaidzu, and Masaki Tanito. 2022. "Positive Association between Aqueous Humor Hydroxylinoleate Levels and Intraocular Pressure" Molecules 27, no. 7: 2215. https://doi.org/10.3390/molecules27072215
APA StyleUmeno, A., Yoshida, Y., Kaidzu, S., & Tanito, M. (2022). Positive Association between Aqueous Humor Hydroxylinoleate Levels and Intraocular Pressure. Molecules, 27(7), 2215. https://doi.org/10.3390/molecules27072215