FDA-Approved Small Molecule Compounds as Drugs for Solid Cancers from Early 2011 to the End of 2021
Abstract
:1. Introduction
2. Various Protein Kinase Inhibitors as Anticancer Agents
2.1. Tyrosine Kinase (TK) Inhibitors
No | Generic Name of Drug | Brand Name and Company | First FDA/EMA Approval Date | Structure | Molecular Target | Route of Administration | Indication | Adverse Effects | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Mobocertinib | EXKIVITY Takeda Pharmaceuticals America, Inc., Deerfield, IL, USA | FDA: 15 September 2021 EMA: Not approved | EGFR 1 | Oral | Non-Small Cell Lung Cancer | Diarrhea, rash, stomatitis, vomiting, decreased appetite, nausea, paronychia, musculoskeletal pain, dry skin, fatigue, decreased hemoglobin, decreased lymphocytes, increased creatinine, amylase, and lipase, decreased potassium, and magnesium | [39] | |
2 | Infigratinib | TRUSELTIQ BridgeBio Pharma, Inc., Palo Alto, CA, USA | FDA: 28 May 2021 EMA: 21 August 2020 | FGFRs 2 | Oral | Cholangiocarcinoma | Nail toxicity, stomatitis, dry eye, fatigue, increased creatinine, phosphate, alkaline phosphate, and alanine aminotransferase, decreased phosphate, and hemoglobin | [40,41] | |
3 | Tivozanib | FOTIVDA AVEO Oncology, Boston, MA, USA; Eusa Pharma (Netherlands) B.V., Schiphol-Rijk | FDA: 10 March 2021 EMA: 24 August 2017 | VEGFRs 3 | Oral | Renal Cell Carcinoma | Fatigue, hypertension, diarrhea, decreased appetite, nausea, dysphonia, hypothyroidism, cough, stomatitis, sodium decreased, lipase increased, and phosphate decreased | [38,42,43] | |
4 | Tepotinib | TEPMETKO EMD Serono, Inc., Darmstadt, Germany. | FDA: 3 February 2021 EMA: Not approved | MET 4 | Oral | Non-Small Cell Lung Cancer | Peripheral edema, diarrhea, fatigue, nausea, decreased appetite, increased blood creatinine levels, hypoalbuminemia, increased amylase levels | [44] | |
5 | Pralsetinib | GAVRETO Genentech, Inc., South San Francisco, CA, USA | FDA: 4 September 2020 EMA: 18 November 2021 | RET 5 | Oral | Non-Small Cell Lung Cancer | Fatigue, constipation, musculoskeletal pain, hypertension | [45,46] | |
6 | Capmatinib | TABRECTA Novartis Pharmaceuticals Corporation, Basel, Switzerland | FDA: 6 May 2020 EMA: Not approved | MET 4 | Oral | Non-Small Cell Lung Cancer | Peripheral edema, nausea, fatigue, vomiting, dyspnea, decreased appetite | [47] | |
7 | Pemigatinib | PEMAZYRE Incyte Corporation, Wilmington, DE, USA | FDA: 17 April 2020 EMA: March 26, 2021 | FGFRs 2 | Oral | Cholangiocarcinoma | Hyperphosphatasemia, alopecia, diarrhea, fatigue, dyspepsia | [48,49] | |
8 | Tucatinib | TUKYSA Seattle Genetics, Inc., Bothell, WA, USA | FDA: 17 April 2020 EMA: 11 February 2021 | HER2 6 | Oral | Breast Cancer | Diarrhea, palmar–plantar erythrodysesthesia syndrome, decreased hemoglobin or phosphate, nausea | [50,51] | |
9 | Neratinib | NERLYNX Puma Biotechnology, Inc., Los Angeles, CA, USA | FDA: 17 July 2017 EMA: 31 August 2018 | EGFR 1, HER2 6, HER4 7 | Oral | Breast Cancer | Diarrhea | [52,53] | |
10 | Osimertinib | TAGRISSO AstraZeneca, Cambridge, UK | FDA: 13 November 2015 EMA: 24 April 2017 | EGFR 1 | Oral | Non-Small Cell Lung Cancer | Diarrhea, rash, dry skin, nail toxicity | [54,55] | |
11 | Ceritinib | ZYKADIA Novartis Pharmaceuticals Corporation, Basel, Switzerland | FDA: 29 April 2014 EMA: 6 May 2015 | ALK 8 | Oral | Non-Small Cell Lung Cancer | Diarrhea, nausea, vomiting, abdominal pain | [56,57] |
2.2. Cyclin-Dependent Kinase (CDK) Inhibitors
2.3. Multi-Kinase Inhibitors
No. | Generic Name of Drug | Brand Name and Company | First FDA/EMA Approval Date | Structure | Molecular Target | Route of Administration | Indication | Adverse Effects | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Ripretinib | QINLOCK Deciphera Pharmaceuticals, Inc., Waltham, MA, USA | FDA: 15 May 2020 EMA: 18 November 2021 | c-Kit 1, PDGFRA 2 | Oral | Gastrointestinal Stromal Tumor | Alopecia, fatigue, nausea, abdominal pain, constipation, myalgia, diarrhea, decreased appetite, palmar–plantar erythrodysesthesia syndrome, vomiting | [99,100] | |
2 | Selpercatinib | RETEVMO Eli Lilly and Company, Indianapolis, IN, USA | FDA: 8 May 2020 EMA: 11 February 2021 | RET 3 | Oral | Non-Small Cell Lung Cancer, Thyroid Cancer | Increased AST levels, increased glucose levels, decreased albumin levels, decreased leukocyte levels, decreased calcium levels, increased creatinine levels, dry mouth, diarrhea, increased alkaline phosphatase levels, hypertension, fatigue, decreased platelet levels, edema, increased total cholesterol levels, decreased sodium levels, rash, constipation, decreased magnesium levels, increased potassium levels, increased bilirubin levels, headache, decreased glucose levels, nausea, abdominal pain, cough, prolonged QT interval, dyspnea, vomiting, hemorrhage | [101,102] | |
3 | Selumetinib | KOSELUGO AstraZeneca, Cambridge, UK | FDA: 13 April 2020 EMA: 17 June 2021 | MEK1 4, MEK2 5 | Oral | Neurofibromatosis Type 1 | Vomiting, rash, abdominal pain, diarrhea, nausea, dry skin, musculoskeletal pain, fatigue, pyrexia, stomatitis, acneiform rash, headache, paronychia, pruritus, dermatitis, constipation, hair changes, epistaxis, hematuria, proteinuria, decreased appetite, decreased cardiac ejection fraction, edema, sinus tachycardia, skin infection | [103,104] | |
4 | Avapritinib | AYVAKIT Blueprint Medicines Corporation, Cambridge, MA, USA | FDA: 9 January 2020 EMA: 24 September 2020 | c-Kit 1, PDGFRA 2 | Oral | Gastrointestinal Stromal Tumor | Edema, nausea, fatigue/asthenia, cognitive impairment, vomiting, decreased appetite, diarrhea, increased lacrimation, abdominal pain | [105,106] | |
5 | Entrectinib | ROZLYTREK Genentech, Inc., South San Francisco, CA, USA | FDA: 15 August 2019 EMA: 31 July 2020 | TRK 6, ROS1 7, ALK 8 | Oral | Solid Tumors, Non-Small Cell Lung Cancer | Dysgeusia, fatigue, dizziness, constipation, nausea, diarrhea, increased weight, paresthesia, increased blood creatinine, myalgia, peripheral edema, vomiting, anemia, arthralgia, increased aspartate aminotransferase (AST) | [107,108] | |
6 | Pexidartinib | TURALIO Daiichi Sankyo, Tokyo, Japan | FDA: 2 August 2019 EMA: Not approved | CSF1R 9, c-Kit 1, FLT3 10 | Oral | Tenosynovial Giant Cell Tumor | Hair color changes (depigmentation), fatigue, increased AST, increased alanine aminotransferase (ALT), dysgeusia, vomiting, periorbital edema, abdominal pain, decreased appetite, pruritus, hypertension, increased alkaline phosphatase | [109,110] | |
7 | Erdafitinib | BALVERSA Janssen Pharmaceuticals, Inc., Raritan (HQ), NJ, USA | FDA: 12 April 2019 EMA: Not approved | FGFRs 11 (1, 2, 3, 4) | Oral | Urothelial Carcinoma | Increased phosphate levels, stomatitis, fatigue, diarrhea, dry mouth, onycholysis, decreased appetite, dysgeusia, dry skin, dry eye, alopecia, palmar–plantar erythrodysaesthesia syndrome, constipation, abdominal pain, nausea, musculoskeletal pain | [78] | |
8 | Larotrectinib | VITRAKVI Loxo Oncology, Inc., Stamford, CT, USA | FDA: 26 November 2018 EMA: 19 September 2019 | TRK 6 | Oral | TRK Fusion Cancers | Fatigue, nausea, dizziness, vomiting, anemia, increased transaminase levels, cough, constipation, diarrhea | [111,112] | |
9 | Lorlatinib | LORBRENA Pfizer Inc., New York City, NY, USA | FDA: 2 November 2018 EMA: 6 May 2019 | ALK 8, ROS1 7 | Oral | Non-Small Cell Lung Cancer | Hypercholesterolemia, hypertriglyceridemia, edema, peripheral neuropathy | [113,114] | |
10 | Dacomitinib | VIZIMPRO Pfizer Inc., New York City, NY, USA | FDA: 27 September 2018 EMA: 2 April 2019 | EGFR 12, HER2 13, HER4 14 | Oral | Non-Small Cell Lung Cancer | Diarrhea, paronychia, dermatitis acneiform, stomatitis, decreased appetite | [115,116] | |
11 | Encorafenib | BRAFTOVI Pfizer Inc., New York City, NY, USA | FDA: 27 June 2018 EMA: 20 September 2018 | B-Raf 15 | Oral | Melanoma Metastatic, Colorectal Cancer | Nausea, diarrhea, vomiting, fatigue, arthralgia | [117,118] | |
12 | Binimetinib | MEKTOVI Array BioPharma Inc., Boulder, CO, USA | FDA: 27 June 2018 EMA: 20 September 2018 | MEK1 4, MEK2 5 | Oral | Melanoma Metastatic | Nausea, diarrhea, vomiting, fatigue, arthralgia | [117,119] | |
13 | Brigatinib | ALUNBRIG Takeda Pharmaceuticals America, Inc., Deerfield, IL, USA | FDA: 28 April 2017 EMA: 22 November 2018 | ALK 8, EGFR 12 | Oral | Non-Small Cell Lung Cancer | Nausea, diarrhea, fatigue, cough, headache, CPK elevation, pancreatic enzyme elevation, hyperglycemia | [120,121] | |
14 | Alectinib | ALECENSA Genentech, Inc., South San Francisco, CA, USA | FDA: 11 December 2015 EMA: 16 February 2017 | ALK 8 | Oral | Non-Small Cell Lung Cancer | Constipation, nausea, diarrhea, vomiting, edema, increased levels of bilirubin, AST and ALT, myalgia, rash, anemia, increase in bodyweight | [122,123] | |
15 | Cobimetinib | COTELLIC Genentech, Inc., South San Francisco, CA, USA | FDA: 10 November 2015: EMA: 20 November 2015. | MEK1 4, MEK2 5 | Oral | Melanoma Metastatic | Diarrhea, nausea, rash, arthralgia, fatigue, increased creatine phosphokinase levels | [124,125] | |
16 | Lenvatinib | LENVIMAEisai Inc., Tokyo, Japan, U.S. Corporate Headquarters in Nutley, NJ, USA | FDA: 13 February 2015 EMA: 28 May 2015 | VEGFRs 16 (1, 2, 3), FGFR 11 (1, 2, 3, 4), PDGFRA 2, RET 3, c-Kit 1 | Oral | Thyroid Cancer, Renal Cell Carcinoma, Hepatocellular Carcinoma, Endometrial Cancer | Hypertension, diarrhea, fatigue or asthenia, decreased appetite, bodyweight decreased, nausea, stomatitis, palmar–plantar erythrodysethaesia syndrome, proteinuria | [126,127] | |
17 | Afatinib | GILOTRIF Boehringer Ingelheim Pharmaceuticals, Inc., Ingelheim, Germany | FDA: 12 July 2013 EMA: 25 September 2013 | EGFR 12, HER2 13, HER4 14 | Oral | Non-Small Cell Lung Cancer | Diarrhea, rash/acne, stomatitis/mucositis, paronychia, dry skin, decreased appetite, pruritus, nausea, fatigue, vomiting, epistaxis, cheilitis | [128,129] | |
18 | Trametinib | MEKINIST GlaxoSmithKline, London, UK | FDA: 29 May 2013 EMA: 30 June 2014 | MEK1 4, MEK2 5 | Oral | Melanoma, Metastatic, Non-Small Cell Lung Cancer, Thyroid Cancer | Rash, diarrhea, fatigue, nausea/vomiting, peripheral edema | [130,131] | |
19 | Dabrafenib | TAFINLAR GlaxoSmithKline, London, UK | FDA: 29 May 2013 EMA: 26 August 2013 | B-Raf 15 | Oral | Melanoma, Metastatic, Non-Small Cell Lung Cancer, Thyroid Cancer | Alopecia, arthralgia, back pain, constipation, cough, erythrodysaesthesia, fever, headache, hyperkeratosis, muscle pain, nasopharyngitis, papilloma, squamous cell cancer | [132,133] | |
20 | Cabozantinib | CABOMETYX Exelixis, Inc., Alameda, CA, USA | FDA: 25 April 2016 EMA: 9 September 2016 | MET 17, RET 3, VEGFRs 16 (1, 2, 3), c-Kit 1, FLT-3 10, TIE2 18, TRKB 19, AXL 20 | Oral | Renal Cell Carcinoma, Hepatocellular Carcinoma | Diarrhea, fatigue, nausea, vomiting, decreased appetite, hypertension, palmar–plantar erythrodysesthesia syndrome | [134,135,136] | |
21 | Cabozantinib | COMETRIQ Exelixis, Inc., Alameda, CA, USA | FDA: 29 November 2012 EMA: 21 March 2014 | MET 17, RET 3, VEGFRs 16 (1, 2, 3), c-Kit 1, FLT-3 10, TIE2 18, TRKB 19, AXL 20 | Oral | Thyroid Cancer | Diarrhea, stomatitis, palmar–plantar erythrodysesthesia syndrome, decreased weight, decreased appetite, nausea, fatigue, oral pain, hair color changes, dysgeusia, hypertension, abdominal pain, constipation, increased AST, increased ALT, lymphopenia, increased alkaline phosphatase, hypocalcemia, neutropenia, thrombocytopenia, hypophosphatemia, and hyperbilirubinemia | [137,138,139] | |
22 | Regorafenib | STIVARGA Bayer HealthCare Pharmaceuticals Inc., Whippany, NJ, USA | FDA: 27 September 2012 EMA: 26 August 2013 | VEGFRs 16 (1, 2, 3), RET 3, c-Kit 1, PDGFRs 21 (A, B), FGFRs 11 (1, 2), TIE2 18, B-Raf 15, RAF-1 22 | Oral | Colorectal Cancer, Gastrointestinal Stromal Tumor, Hepatocellular Carcinoma | Asthenia/fatigue, decreased appetite and food intake, hand-foot skin reaction, palmar–plantar erythrodysesthesia, diarrhea, mucositis, weight loss, infection, hypertension, dysphonia | [140,141,142] | |
23 | Axitinib | INLYTA Pfizer Inc., New York City, NY, USA | FDA: 27 January 2012 EMA: 3 September 2012 | VEGFRs 16 (1, 2, 3), c-Kit 1, PDGFRs 21 (A, B) | Oral | Renal Cell Carcinoma | Diarrhea, hypertension, fatigue, decreased appetite, nausea, dysphonia, palmar–plantar erythrodysesthesia (hand-foot) syndrome, weight decreased, vomiting, asthenia, constipation | [143,144,145] | |
24 | Crizotinib | XALKORI Pfizer Inc., New York City, NY, USA | FDA: 26 August 2011 EMA: 23 October 2012 | ALK 8, MET 17, ROS1 7 | Oral | Non-Small Cell Lung Cancer | Vision disorders, nausea, diarrhea, vomiting, edema, constipation, elevated transaminases, fatigue, decreased appetite, upper respiratory infection, dizziness, neuropathy | [146,147,148] | |
25 | Vemurafenib | ZELBORAF Genentech, Inc., South San Francisco, CA, USA | FDA: 17 August 2011 EMA: 17 February 2012 | B-Raf 15 | Oral | Melanoma Metastatic | Arthralgia, rash, alopecia, fatigue, photosensitivity reaction, nausea, | [149,150,151] | |
26 | Vandetanib | CAPRELSA AstraZeneca, Cambridge, UK | FDA: 6 April 2011 EMA: 17 February 2012 | VEGFR-2 23, EGFR 12, RET 3 | Oral | Thyroid Cancer | Diarrhea, rash, nausea, hypertension, fatigue, headache, decreased appetite, acne, dermatitis acneiform, dry skin, photosensitivity reaction, erythema | [152,153] |
3. Phosphatidylinositol 3-Kinase α Inhibitors as Anticancer Agents
4. KRAS Inhibitors as Anticancer Agents
5. Various Enzymes Inhibitors as Anticancer Agents
5.1. Steroid 17alpha-Monooxygenase Inhibitors
5.2. Poly (ADP-Ribose) Polymerases Inhibitors
5.3. Topoisomerase I Inhibitors
5.4. Enhancer of Zeste Homolog 2 Inhibitors
No. | Generic Name of Drug | Brand Name and Company | First FDA/EMA Approval Date | Structure | Molecular Target | Route of Administration | Indication | Adverse Effects | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Tazemetostat | TAZVERIK Epizyme, Inc., Cambridge, MA, USA | FDA: 23 January 2020 EMA: Not approved | EZH2 1 | Oral | Epithelioid Sarcoma | Pain, fatigue, nausea, decreased appetite, vomiting, constipation | [186] | |
2 | Talazoparib | TALZENNA Pfizer Inc., New York City, NY, USA | FDA: 16 October 2018 EMA: 20 June 2019 | PARPs 2 (1, 2) | Oral | Breast Cancer | Anemia | [187,188] | |
3 | Niraparib | ZEJULA GlaxoSmithKline, London, UK | FDA: 27 March 2017 EMA: 16 November 2017 | PARPs 2 (1, 2) | Oral | Ovarian Cancer, Fallopian Tube Cancer, Peritoneal Cancer | Hematological abnormalities, palpitations, gastrointestinal events, mucositis/stomatitis, dry mouth, fatigue/asthenia, urinary tract infection, aminotransferase enzyme elevations, myalgia, back pain, arthralgia, headache, dizziness, dysgeusia, insomnia, anxiety, nasopharyngitis, dyspnea, cough, rash, hypertension | [189,190] | |
4 | Rucaparib (as camsylate) | RUBRACA Clovis Oncology, Inc., Boulder, CO, USA | FDA: 19 December 2016 EMA: 24 May 2018 | PARPs 2 (1, 2, 3) | Oral | Ovarian Cancer, Prostate Cancer | Nausea, fatigue (including asthenia), vomiting, anemia, abdominal pain, dysgeusia, constipation, decreased appetite, diarrhea, thrombocytopenia, dyspnea, increase in creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and cholesterol, decrease in hemoglobin, lymphocytes, platelets and neutrophils | [191,192] | |
5 | Irinotecan | ONIVYDE Merrimack Pharmaceuticals, Inc., Cambridge, MA, USA | FDA: 22 October 2015 EMA: 14 October 2016 | TOP1 3 | Injection | Pancreatic Cancer | Diarrhea, fatigue, vomiting, nausea, decreased appetite, stomatitis, fever, lymphopenia, neutropenia | [193,194,195] | |
6 | Olaparib | LYNPARZA AstraZeneca, Cambridge, Great Britain | FDA: 19 December 2014 EMA: 16 December 2014. | PARPs 2 (1, 2) | Oral | Ovarian Cancer, Fallopian Tube Cancer, Peritoneal Cancer, Breast Cancer, Pancreatic Cancer, Prostate Cancer | Nausea, fatigue, vomiting, anemia | [196,197,198] | |
7 | Abiraterone acetate | ZYTIGA Janssen Biotech, Inc., Horsham, PA, USA | FDA: 28 April 2011 EMA: 5 September 2011 | CYP17A1 4 | Oral | Prostate Cancer | Joint swelling or discomfort, hypokalemia, edema, muscle discomfort, hot flush, diarrhea, urinary tract infection, cough, hypertension, arrhythmia, urinary frequency, nocturia, dyspepsia, upper respiratory tract infection | [199,200,201] |
6. Various Receptors Antagonists as Anticancer Agents
6.1. Smoothed Receptor Antagonists
6.2. Androgen Receptor Antagonists
6.3. Gonadotropin-Releasing Hormone Receptor Antagonist
No. | Generic Name of Drug | Brand Name and Company | First FDA/EMA Approval Date | Structure | Molecular Target | Route of Administration | Indication | Adverse Effects | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Relugolix | ORGOVYX Myovant Sciences, Inc., Brisbane, CA, USA | FDA: 18 December 2020 EMA: Not approved | GnRH-r 1 | Oral | Prostate Cancer | Metrorrhagia, hot flush, viral upper respiratory tract infection, menorrhagia headache, bone density decreased/bone resorption increased | [217] | |
2 | Darolutamide | NUBEQA Bayer HealthCare Pharmaceuticals Inc., Whippany, NJ, USA | FDA: 30 July 2019EMA: 27 March 2020 | AR 2 | Oral | Prostate Cancer | Fatigue, extreme pain, rash | [220,221] | |
3 | Apalutamide | ERLEADA Janssen Products, LP, Horsham, PA, USA | FDA: 14 February 2018 EMA: 14 January 2019 | AR 2 | Oral | Prostate Cancer | Fatigue, high blood pressure, rash, diarrhea, nausea, weight loss, arthralgia, falls, hot flush, decreased appetite, fractures peripheral edema | [222,223] | |
4 | Sonidegib | ODOMZO Novartis Pharmaceuticals Corporation, Basel, Switzerland | FDA: 24 July 2015 EMA: 14 August 2015 | SMO 3 receptor | Oral | Basal Cell Carcinoma | Muscle spasms, alopecia, dysgeusia, fatigue, nausea, musculoskeletal pain, diarrhea, decreased weight, decreased appetite, myalgia, abdominal pain, headache, pain, vomiting, pruritus | [224,225] | |
5 | Enzalutamide | XTANDI Astellas Pharma US, Northbrook, IL, USA | FDA: 31 August 2012 EMA: 21 June 2013 | AR 2 | Oral | Prostate Cancer | Asthenia/fatigue, back pain, diarrhea, arthralgia, hot flush, peripheral edema, musculoskeletal pain, headache, upper respiratory infection, muscular weakness, dizziness, insomnia, lower respiratory infection, spinal cord compression and cauda equina syndrome, hematuria, paresthesia, anxiety, hypertension | [226,227,228] | |
6 | Vismodegib | ERIVEDGE Genentech, Inc., South San Francisco, CA, USA | FDA: 30 January 2012 EMA: 12 July 2013 | SMO 3 receptor | Oral | Basal Cell Carcinoma | Muscle spasms, alopecia, dysgeusia, weight loss, fatigue, nausea, diarrhea, decreased appetite, constipation, arthralgia, vomiting, ageusia | [229,230,231] |
7. Transcription Inhibitors as Anticancer Agents
No. | Generic Name of Drug | Brand Name and Company | First FDA/EMA Approval Date | Structure | Molecular Target | Route of Administration | Indication | Adverse Effects | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Lurbinectedin | ZEPZELCA PharmaMar (Colmenar Viejo, Spain) and Jazz Pharmaceuticals plc, Dublin, Ireland | FDA: 15 June 2020 EMA: Not approved | DNA 1, RNA 2 | Injection | Small Cell Lung Cancer | Myelosuppression, fatigue, increased creatinine, increased alanine aminotransferase, increased glucose, nausea, decreased appetite, musculoskeletal pain, decreased albumin, constipation, dyspnea, decreased sodium, increased aspartate aminotransferase, vomiting, cough, decreased magnesium and diarrhea | [243] | |
2 | Mitomycin | JELMYTO UroGen Pharma Ltd., New York, NY, USA | FDA: 15 April 2020 EMA: Not approved | DNA 1 | Standard Ureteral Catheters | Urothelial Carcinoma | Ureteric obstruction, flank pain, urinary tract infection, hematuria, renal dysfunction, fatigue, nausea, abdominal pain, dysuria, vomiting | [244] | |
3 | Trabectedin | YONDELIS Janssen Biotech, Inc., Horsham, PA, USA | FDA: 23 October 2015 EMA: 17 September 2007 | DNA 1, RNA 2 | Injection | Soft Tissue Sarcoma | Nausea, fatigue, vomiting, constipation, decreased appetite, diarrhea, peripheral edema, dyspnea, headache, neutropenia, increased ALT, thrombocytopenia, anemia, increased AST, increased creatine phosphokinase | [245,246,247] |
8. Therapeutic Radiopharmaceuticals as Anticancer Agents
No. | Generic Name of Drug | Brand Name and Company | First FDA/EMA Approval Date | Structure | Molecular Target | Route of Administration | Indication | Adverse Effects | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Iobenguane I 131 | AZEDRA Progenics Pharmaceuticals, Inc., New York, NY, USA | FDA: 30 July 2018 EMA: Nationally authorized | DNA 1 | Injection | Pheochromocytoma, Paraganglioma | Lymphopenia, neutropenia, thrombocytopenia, fatigue, anemia, increased international normalized ratio, nausea, dizziness, hypertension, vomiting | [257,258] | |
2 | Lutetium Lu 177 dotatate | LUTATHERA Advanced Accelerator Applications S.A., Saint-Genis-Pouilly, France | FDA: 26 January 2018 EMA: 26 September 2017 | SSTRs 2 | Injection | Gastroenteropancreatic Neuroendocrine Tumors | Lymphopenia, increased gamma-glutamyltransferase, vomiting, nausea, increased AST, increased ALT, hyperglycemia, hypokalemia | [252,259,260] | |
3 | Radium-223 dichloride | XOFIGO Bayer HealthCare Pharmaceuticals Inc., Whippany, NJ, USA | FDA: 15 May 2013 EMA: 13 November 2013 | 223RaCl2 | DNA 1 | Injection | Prostate Cancer | Nausea, diarrhea, vomiting, peripheral edema | [261,262] |
9. Fixed-Dose Combination Drugs as Anticancer Agents
10. Potential Anticancer Drugs in the Pipeline
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Cormier, J.N.; Pollock, R.E. Soft tissue sarcomas. CA Cancer J. Clin. 2004, 54, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Kramer, I. Chapter 1—Prologue: Signal Transduction from an Historical Perspective. In Signal Transduction, 3rd ed.; Kramer, I., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 1–51. [Google Scholar] [CrossRef]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef]
- Najafi, M.; Majidpoor, J.; Toolee, H.; Mortezaee, K. The current knowledge concerning solid cancer and therapy. J. Biochem. Mol. Toxicol. 2021, 35, e22900. [Google Scholar] [CrossRef] [PubMed]
- Pottier, C.; Fresnais, M.; Gilon, M.; Jérusalem, G.; Longuespée, R.; Sounni, N.E. Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers 2020, 12, 731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase—Role and significance in Cancer. Int. J. Med. Sci. 2004, 1, 101–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madhusudan, S.; Ganesan, T.S. Tyrosine kinase inhibitors in cancer therapy. Clin. Biochem. 2004, 37, 618–635. [Google Scholar] [CrossRef]
- Nilsson, M.; Heymach, J.V. Vascular endothelial growth factor (VEGF) pathway. J. Thorac. Oncol. 2006, 1, 768–770. [Google Scholar] [CrossRef]
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018, 5, 77–106. [Google Scholar] [CrossRef]
- Huang, L.; Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm. Sin. B 2015, 5, 390–401. [Google Scholar] [CrossRef] [Green Version]
- Seebacher, N.A.; Stacy, A.E.; Porter, G.M.; Merlot, A.M. Clinical development of targeted and immune based anti-cancer therapies. J. Exp. Clin. Cancer Res. 2019, 38, 156. [Google Scholar] [CrossRef] [PubMed]
- Pacini, L.; Jenks, A.D.; Lima, N.C.; Huang, P.H. Targeting the Fibroblast Growth Factor Receptor (FGFR) Family in Lung Cancer. Cells 2021, 10, 1154. [Google Scholar] [CrossRef] [PubMed]
- Puccini, A.; Marín-Ramos, N.I.; Bergamo, F.; Schirripa, M.; Lonardi, S.; Lenz, H.J.; Loupakis, F.; Battaglin, F. Safety and Tolerability of c-MET Inhibitors in Cancer. Drug Saf. 2019, 42, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Cascetta, P.; Sforza, V.; Manzo, A.; Carillio, G.; Palumbo, G.; Esposito, G.; Montanino, A.; Costanzo, R.; Sandomenico, C.; De Cecio, R.; et al. RET Inhibitors in Non-Small-Cell Lung Cancer. Cancers 2021, 13, 4415. [Google Scholar] [CrossRef]
- Rotow, J.; Bivona, T. Understanding and targeting resistance mechanisms in NSCLC. Nat. Rev. Cancer 2017, 17, 637–658. [Google Scholar] [CrossRef]
- Friboulet, L.; Li, N.; Katayama, R.; Lee, C.C.; Gainor, J.F.; Crystal, A.S.; Michellys, P.Y.; Awad, M.M.; Yanagitani, N.; Kim, S.; et al. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov. 2014, 4, 662–673. [Google Scholar] [CrossRef] [Green Version]
- ZYKADIA (Ceritinib). Prescribing Information. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/205755s000lbl.pdf (accessed on 7 February 2022).
- Kang, C.H.; Kim, E.Y.; Kim, H.R.; Lee, C.O.; Lee, H.K.; Jeong, H.G.; Choi, S.U.; Yun, C.S.; Hwang, J.Y.; Lee, J.Y.; et al. Minor modifications to ceritinib enhance anti-tumor activity in EML4-ALK positive cancer. Cancer Lett. 2016, 374, 272–278. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef]
- Zhou, W.; Ercan, D.; Chen, L.; Yun, C.H.; Li, D.; Capelletti, M.; Cortot, A.B.; Chirieac, L.; Iacob, R.E.; Padera, R.; et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 2009, 462, 1070–1074. [Google Scholar] [CrossRef] [Green Version]
- Gonzalvez, F.; Vincent, S.; Baker, T.E.; Gould, A.E.; Li, S.; Wardwell, S.D.; Nadworny, S.; Ning, Y.; Zhang, S.; Huang, W.S.; et al. Targeted Inhibitor of EGFR Exon 20 Insertion Mutants in Non-Small Cell Lung Cancer. Cancer Discov. 2021, 11, 1672–1687. [Google Scholar] [CrossRef]
- Vansteenkiste, J.F.; Van De Kerkhove, C.; Wauters, E.; Van Mol, P. Capmatinib for the treatment of non-small cell lung cancer. Expert Rev. Anticancer Ther. 2019, 19, 659–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; et al. Tepotinib in Non-Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. N. Engl. J. Med. 2020, 383, 931–943. [Google Scholar] [CrossRef] [PubMed]
- NERLYNX (Neratinib). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208051s005s006lbl.pdf (accessed on 15 February 2022).
- TUKYSA (Tucatinib). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213411s000lbl.pdf (accessed on 15 February 2022).
- Saura, C.; Oliveira, M.; Feng, Y.H.; Dai, M.S.; Chen, S.W.; Hurvitz, S.A.; Kim, S.B.; Moy, B.; Delaloge, S.; Gradishar, W.; et al. Neratinib Plus Capecitabine Versus Lapatinib Plus Capecitabine in HER2-Positive Metastatic Breast Cancer Previously Treated With ≥2 HER2-Directed Regimens: Phase III NALA Trial. J. Clin. Oncol. 2020, 38, 3138–3149. [Google Scholar] [CrossRef] [PubMed]
- Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2020, 382, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Kulukian, A.; Lee, P.; Taylor, J.; Rosler, R.; de Vries, P.; Watson, D.; Forero-Torres, A.; Peterson, S. Preclinical Activity of HER2-Selective Tyrosine Kinase Inhibitor Tucatinib as a Single Agent or in Combination with Trastuzumab or Docetaxel in Solid Tumor Models. Mol. Cancer Ther. 2020, 19, 976–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabindran, S.K.; Discafani, C.M.; Rosfjord, E.C.; Baxter, M.; Floyd, M.B.; Golas, J.; Hallett, W.A.; Johnson, B.D.; Nilakantan, R.; Overbeek, E.; et al. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 2004, 64, 3958–3965. [Google Scholar] [CrossRef] [Green Version]
- Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncol. 2020, 21, 671–684. [Google Scholar] [CrossRef]
- Javle, M.; Roychowdhury, S.; Kelley, R.K.; Sadeghi, S.; Macarulla, T.; Weiss, K.H.; Waldschmidt, D.T.; Goyal, L.; Borbath, I.; El-Khoueiry, A.; et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: Mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol. Hepatol. 2021, 6, 803–815. [Google Scholar] [CrossRef]
- PEMAZYRE (Pemigatinib). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213736s000lbl.pdf (accessed on 15 February 2022).
- TRUSELTIQ (Infigratinib). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214622s000lbl.pdf (accessed on 15 February 2022).
- Aziz, S.A.; Sznol, J.; Adeniran, A.; Colberg, J.W.; Camp, R.L.; Kluger, H.M. Vascularity of primary and metastatic renal cell carcinoma specimens. J. Transl. Med. 2013, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Jamil, M.O.; Hathaway, A.; Mehta, A. Tivozanib: Status of Development. Curr. Oncol. Rep. 2015, 17, 24. [Google Scholar] [CrossRef]
- Rini, B.I.; Pal, S.K.; Escudier, B.J.; Atkins, M.B.; Hutson, T.E.; Porta, C.; Verzoni, E.; Needle, M.N.; McDermott, D.F. Tivozanib versus sorafenib in patients with advanced renal cell carcinoma (TIVO-3): A phase 3, multicentre, randomised, controlled, open-label study. Lancet Oncol. 2020, 21, 95–104. [Google Scholar] [CrossRef]
- FOTIVDA (Tivozanib). Prescribing Information. Available online: https://www.aveooncology.com/fotivdapi.pdf (accessed on 17 February 2022).
- Markham, A. Mobocertinib: First Approval. Drugs 2021, 81, 2069–2074. [Google Scholar] [CrossRef] [PubMed]
- Kang, C. Infigratinib: First Approval. Drugs 2021, 81, 1355–1360. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Infigratinib for the Treatment of Cholangiocarcinoma. Available online: https://www.ema.europa.eu/en/documents/orphan-designation/eu/3/20/2329-public-summary-opinion-orphan-designation-infigratinib-treatment-cholangiocarcinoma_en.pdf (accessed on 9 February 2022).
- Kim, E.S. Tivozanib: First Global Approval. Drugs 2017, 77, 1917–1923. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Fotivda: EPAR—Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/fotivda-epar-product-information_en.pdf (accessed on 9 February 2022).
- Markham, A. Tepotinib: First Approval. Drugs 2020, 80, 829–833. [Google Scholar] [CrossRef]
- Markham, A. Pralsetinib: First Approval. Drugs 2020, 80, 1865–1870. [Google Scholar] [CrossRef]
- European Medicines Agency. Gavreto: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/gavreto-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- Dhillon, S. Capmatinib: First Approval. Drugs 2020, 80, 1125–1131. [Google Scholar] [CrossRef]
- Hoy, S.M. Pemigatinib: First Approval. Drugs 2020, 80, 923–929. [Google Scholar] [CrossRef]
- European Medicines Agency. Pemazyre: EPAR—Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/pemazyre-epar-product-information_en.pdf (accessed on 9 February 2022).
- Lee, A. Tucatinib: First Approval. Drugs 2020, 80, 1033–1038. [Google Scholar] [CrossRef]
- European Medicines Agency. Tukysa: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/tukysa-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- Deeks, E.D. Neratinib: First Global Approval. Drugs 2017, 77, 1695–1704. [Google Scholar] [CrossRef]
- European Medicines Agency. Nerlynx: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/nerlynx-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- Greig, S.L. Osimertinib: First Global Approval. Drugs 2016, 76, 263–273. [Google Scholar] [CrossRef]
- European Medicines Agency. Tagrisso: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/tagrisso-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- Dhillon, S.; Clark, M. Ceritinib: First Global Approval. Drugs 2014, 74, 1285–1291. [Google Scholar] [CrossRef]
- European Medicines Agency. Zykadia: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/zykadia-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- Roskoski, R. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol. Res. 2019, 139, 471–488. [Google Scholar] [CrossRef]
- Sánchez-Martínez, C.; Lallena, M.J.; Gutiérrez Sanfeliciano, S.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015–2019). Bioorganic Med. Chem. Lett. 2019, 29, 126637. [Google Scholar] [CrossRef]
- Schelttini, F.; De Santo, I.; Rea, C.G.; De Placido, P.; Formisano, L.; Giuliano, M.; Arpino, G.; De Laurentiis, M.; Puglisi, F.; De Placido, S.; et al. CDK 4/6 Inhibitors as Single Agent in Advanced Solid Tumors. Front. Oncol. 2018, 8, 608. [Google Scholar] [CrossRef] [Green Version]
- Beaver, J.A.; Amiri-Kordestani, L.; Charlab, R.; Chen, W.; Palmby, T.; Tilley, A.; Fourie Zirkelbach, J.; Yu, J.; Liu, Q.; Zhao, L.; et al. FDA Approval: Palbociclib for the Treatment of Postmenopausal Patients with Estrogen Receptor–Positive, HER2-Negative Metastatic Breast Cancer. Clin. Cancer Res. 2015, 21, 4760–4766. [Google Scholar] [CrossRef] [Green Version]
- Walker, A.J.; Wedam, S.; Amiri-Kordestani, L.; Bloomquist, E.; Tang, S.; Sridhara, R.; Chen, W.; Palmby, T.R.; Fourie Zirkelbach, J.; Fu, W.; et al. FDA Approval of Palbociclib in Combination with Fulvestrant for the Treatment of Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer. Clin Cancer Res. 2016, 22, 4968–4972. [Google Scholar] [CrossRef] [Green Version]
- O’Shaughnessy, J.; Petrakova, K.; Sonke, G.S.; Conte, P.; Arteaga, C.L.; Cameron, D.A.; Hart, L.L.; Villanueva, C.; Jakobsen, E.; Beck, J.T.; et al. Ribociclib plus letrozole versus letrozole alone in patients with de novo HR+, HER2− advanced breast cancer in the randomized MONALEESA-2 trial. Breast Cancer Res. Treat 2018, 168, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, A.; Rosen, L.S.; Tolaney, S.M.; Tolcher, A.W.; Goldman, J.W.; Gandhi, L.; Papadopoulos, K.P.; Beeram, M.; Rasco, D.W.; Hilton, J.F.; et al. Efficacy and Safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Raub, T.J.; Wishart, G.N.; Kulanthaivel, P.; Staton, B.A.; Ajamie, R.T.; Sawada, G.A.; Gelbert, L.M.; Shannon, H.E.; Sanchez-Martinez, C.; De Dios, A. Brain exposure of two selective dual CDK4 and CDK6 inhibitors and the antitumor activity of CDK4 and CDK6 inhibition in combination with temozolomide in an intracranial glioblastoma xenograft. Drug Metab. Dispos. 2015, 43, 1360–1371. [Google Scholar] [CrossRef] [Green Version]
- Tolaney, S.M.; Sahebjam, S.; Le Rhun, E.; Bachelot, T.; Kabos, P.; Awada, A.; Yardley, D.; Chan, A.; Conte, P.; Diéras, V.; et al. A Phase II Study of Abemaciclib in Patients with Brain Metastases Secondary to Hormone Receptor–Positive Breast Cancer. Clin. Cancer Res. 2020, 26, 5310–5319. [Google Scholar] [CrossRef]
- Kim, E.S. Abemaciclib: First Global Approval. Drugs 2017, 77, 2063–2070. [Google Scholar] [CrossRef]
- European Medicines Agency. Verzenios: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/verzenios-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- Syed, Y.Y. Ribociclib: First Global Approval. Drugs 2017, 77, 799–807. [Google Scholar] [CrossRef]
- European Medicines Agency. Kisqali: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/kisqali-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- Dhillon, S. Palbociclib: First Global Approval. Drugs 2015, 75, 543–551. [Google Scholar] [CrossRef]
- European Medicines Agency. Ibrance: EPAR—Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/ibrance-epar-product-information_en.pdf (accessed on 9 February 2022).
- Krug, M.; Hilgeroth, A. Recent advances in the development of multi-kinase inhibitors. Mini Rev. Med. Chem. 2008, 8, 1312–1327. [Google Scholar] [CrossRef]
- Broekman, F.; Giovannetti, E.; Peters, G.J. Tyrosine kinase inhibitors: Multi-targeted or single-targeted? World J. Clin. Oncol. 2011, 2, 80–93. [Google Scholar] [CrossRef]
- Ardini, E.; Menichincheri, M.; Banfi, P.; Bosotti, R.; De Ponti, C.; Pulci, R.; Ballinari, D.; Ciomei, M.; Texido, G.; Degrassi, A.; et al. Entrectinib, a Pan–TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol. Cancer Ther. 2016, 15, 628–639. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Li, J. Second-generation EGFR and ErbB tyrosine kinase inhibitors as first-line treatments for non-small cell lung cancer. Onco Targets Ther. 2019, 12, 6535–6548. [Google Scholar] [CrossRef]
- Loriot, Y.; Necchi, A.; Park, S.H.; Garcia-Donas, J.; Huddart, R.; Burgess, E.; Fleming, M.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2019, 381, 338–348. [Google Scholar] [CrossRef]
- Markham, A. Erdafitinib: First Global Approval. Drugs 2019, 79, 1017–1021. [Google Scholar] [CrossRef]
- Tap, W.D.; Wainberg, Z.A.; Anthony, S.P.; Ibrahim, P.N.; Zhang, C.; Healey, J.H.; Chmielowski, B.; Staddon, A.P.; Cohn, A.L.; Shapiro, G.I.; et al. Structure-Guided Blockade of CSF1R Kinase in Tenosynovial Giant-Cell Tumor. N. Engl. J. Med. 2015, 373, 428–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menzies, A.M.; Long, G.V.; Murali, R. Dabrafenib and its potential for the treatment of metastatic melanoma. Drug Des. Dev. Ther. 2012, 6, 391–405. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zager, J.S.; Eroglu, Z. Encorafenib/binimetinib for the treatment of BRAF-mutant advanced, unresectable, or metastatic melanoma: Design, development, and potential place in therapy. Onco Targets Ther. 2018, 11, 9081–9089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dummer, R.; Ascierto, P.A.; Gogas, H.J.; Arance, A.; Mandala, M.; Liszkay, G.; Garbe, C.; Schadendorf, D.; Krajsova, I.; Gutzmer, R.; et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018, 19, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Roskoski, R., Jr. Targeting oncogenic Raf protein-serine/threonine kinases in human cancers. Pharmacol. Res. 2018, 135, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.M.; Wolters, P.L.; Dombi, E.; Baldwin, A.; Whitcomb, P.; Fisher, M.J.; Weiss, B.; Kim, A.; Bornhorst, M.; Shah, A.C.; et al. Selumetinib in Children with Inoperable Plexiform Neurofibromas. N. Engl. J. Med. 2020, 382, 1430–1442; Erratum in N. Engl. J. Med. 2020, 383, 1290. [Google Scholar] [CrossRef]
- Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer. N. Engl. J. Med. 2019, 381, 1632–1643. [Google Scholar] [CrossRef] [Green Version]
- Strumberg, D.; Schultheis, B. Regorafenib for cancer. Expert Opin. Investig. Drugs 2012, 21, 879–889. [Google Scholar] [CrossRef]
- Blay, J.Y.; Serrano, C.; Heinrich, M.C.; Zalcberg, J.; Bauer, S.; Gelderblom, H.; Schöffski, P.; Jones, R.L.; Attia, S.; D’Amato, G.; et al. Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2020, 21, 923–934. [Google Scholar] [CrossRef]
- Smith, B.D.; Kaufman, M.D.; Lu, W.P.; Gupta, A.; Leary, C.B.; Wise, S.C.; Rutkoski, T.J.; Ahn, Y.M.; Al-Ani, G.; Bulfer, S.L.; et al. Ripretinib (DCC-2618) Is a Switch Control Kinase Inhibitor of a Broad Spectrum of Oncogenic and Drug-Resistant KIT and PDGFRA Variants. Cancer Cell. 2019, 35, 738–751.e9. [Google Scholar] [CrossRef]
- Cabanillas, M.E.; Ryder, M.; Jimenez, C. Targeted Therapy for Advanced Thyroid Cancer: Kinase Inhibitors and Beyond. Endocr. Rev. 2019, 40, 1573–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N. Engl. J. Med. 2020, 383, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; Cabanillas, M.E.; Urbanowitz, G.; et al. Dabrafenib and Trametinib Treatment in Patients with Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J. Clin. Oncol. 2018, 36, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laetsch, T.W.; Hawkins, D.S. Larotrectinib for the treatment of TRK fusion solid tumors. Expert Rev. Anticancer Ther. 2019, 19, 1–10. [Google Scholar] [CrossRef]
- Berger, S.; Martens, U.M.; Bochum, S. Larotrectinib (LOXO-101). Recent Results Cancer Res. 2018, 211, 141–151. [Google Scholar] [CrossRef]
- Drilon, A.; Siena, S.; Ou, S.I.; Patel, M.; Ahn, M.J.; Lee, J.; Bauer, T.M.; Farago, A.F.; Wheler, J.J.; Liu, S.V.; et al. Safety and Antitumor Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib: Combined Results from Two Phase I Trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017, 7, 400–409. [Google Scholar] [CrossRef] [Green Version]
- Cabanillas, M.E.; Habra, M.A. Lenvatinib: Role in thyroid cancer and other solid tumors. Cancer Treat. Rev. 2016, 42, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Chau, V.; Bilusic, M. Pembrolizumab in Combination with Axitinib as First-Line Treatment for Patients with Renal Cell Carcinoma (RCC): Evidence to Date. Cancer Manag. Res. 2020, 12, 7321–7330. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Larkin, J.; Oya, M.; Thistlethwaite, F.; Martignoni, M.; Nathan, P.; Powles, T.; McDermott, D.; Robbins, P.B.; Chism, D.D.; et al. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): An open-label, dose-finding and dose-expansion, phase 1b trial. Lancet Oncol. 2018, 19, 451–460. [Google Scholar] [CrossRef]
- Sonpavde, G.; Hutson, T.E.; Rini, B.I. Axitinib for renal cell carcinoma. Expert Opin. Investig. Drugs 2008, 17, 741–748. [Google Scholar] [CrossRef]
- Dhillon, S. Ripretinib: First Approval. Drugs 2020, 80, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Qinlock: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/qinlock-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- Markham, A. Selpercatinib: First Approval. Drugs 2020, 80, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Retsevmo: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/retsevmo-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- Markham, A.; Keam, S.J. Selumetinib: First Approval. Drugs 2020, 80, 931–937. [Google Scholar] [CrossRef]
- European Medicines Agency. Koselugo: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/koselugo-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- Dhillon, S. Avapritinib: First Approval. Drugs 2020, 80, 433–439. [Google Scholar] [CrossRef]
- European Medicines Agency. Ayvakyt: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/ayvakyt-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- Al-Salama, Z.T.; Keam, S.J. Entrectinib: First Global Approval. Drugs 2019, 79, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Rozlytrek: EPAR—Overview. Available online: https://www.ema.europa.eu/en/documents/overview/rozlytrek-epar-overview_en.pdf (accessed on 9 February 2022).
- Lamb, Y.N. Pexidartinib: First Approval. Drugs 2019, 79, 1805–1812. [Google Scholar] [CrossRef]
- European Medicines Agency. Refusal of the Marketing Authorisation for Turalio (Pexidartinib). Available online: https://www.ema.europa.eu/en/documents/smop-initial/questions-answers-refusal-marketing-authorisation-turalio-pexidartinib_en.pdf (accessed on 9 February 2022).
- Scott, L.J. Larotrectinib: First Global Approval. Drugs 2019, 79, 201–206. [Google Scholar] [CrossRef]
- European Medicines Agency. Vitrakvi: EPAR—Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/vitrakvi-epar-product-information_en.pdf (accessed on 9 February 2022).
- Syed, Y.Y. Lorlatinib: First Global Approval. Drugs 2019, 79, 93–98. [Google Scholar] [CrossRef]
- European Medicines Agency. Lorviqua: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/lorviqua-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- Shirley, M. Dacomitinib: First Global Approval. Drugs 2018, 78, 1947–1953. [Google Scholar] [CrossRef]
- European Medicines Agency. Vizimpro: EPAR—Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/vizimpro-epar-product-information_en.pdf (accessed on 9 February 2022).
- Shirley, M. Encorafenib and Binimetinib: First Global Approvals. Drugs 2018, 78, 1277–1284. [Google Scholar] [CrossRef]
- European Medicines Agency. Braftovi: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/braftovi-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- European Medicines Agency. Mektovi: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/mektovi-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- Markham, A. Brigatinib: First Global Approval. Drugs 2017, 77, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Alunbrig: EPAR—Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/alunbrig-epar-product-information_en.pdf (accessed on 9 February 2022).
- Paik, J.; Dhillon, S. Alectinib: A Review in Advanced, ALK-Positive NSCLC. Drugs 2018, 78, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Alecensa: EPAR—Summary for the Public. Available online: https://www.ema.europa.eu/en/documents/overview/alecensa-epar-summary-public_en.pdf (accessed on 9 February 2022).
- Garnock-Jones, K.P. Cobimetinib: First Global Approval. Drugs 2015, 75, 1823–1830. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Cotellic: EPAR—Summary for the Public. Available online: https://www.ema.europa.eu/en/documents/overview/cotellic-epar-summary-public_en.pdf (accessed on 9 February 2022).
- Scott, L.J. Lenvatinib: First Global Approval. Drugs 2015, 75, 553–560. [Google Scholar] [CrossRef]
- European Medicines Agency. Lenvima: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/lenvima-epar-medicine-overview_en.pdf (accessed on 9 February 2022).
- Dungo, R.T.; Keating, G.M. Afatinib: First Global Approval. Drugs 2013, 73, 1503–1515. [Google Scholar] [CrossRef]
- European Medicines Agency. Giotrif: EPAR—Summary for the Public. Available online: https://www.ema.europa.eu/en/documents/overview/giotrif-epar-summary-public_en.pdf (accessed on 9 February 2022).
- Wright, C.J.M.; McCormack, P.L. Trametinib: First Global Approval. Drugs 2013, 73, 1245–1254. [Google Scholar] [CrossRef]
- European Medicines Agency. Mekinist: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/mekinist-epar-medicine-overview_en.pdf (accessed on 11 February 2022).
- Ballantyne, A.D.; Garnock-Jones, K.P. Dabrafenib: First Global Approval. Drugs 2013, 73, 1367–1376. [Google Scholar] [CrossRef]
- European Medicines Agency. Tafinlar: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/tafinlar-epar-medicine-overview_en.pdf (accessed on 11 February 2022).
- Singh, H.; Brave, M.; Beaver, J.A.; Cheng, J.; Tang, S.; Zahalka, E.; Palmby, T.R.; Venugopal, R.; Song, P.; Liu, Q.; et al. Food and Drug Administration Approval: Cabozantinib for the Treatment of Advanced Renal Cell Carcinoma. Clin. Cancer Res. 2017, 23, 330–335. [Google Scholar] [CrossRef] [Green Version]
- CABOMETYX (Cabozantinib). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208692s003lbl.pdf (accessed on 24 January 2022).
- European Medicines Agency. Cabometyx: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/cabometyx-epar-medicine-overview_en.pdf (accessed on 11 February 2022).
- Roy, S.; Narang, B.K.; Rastogi, S.K.; Rawal, R.K. A novel multiple tyrosine-kinase targeted agent to explore the future perspectives of anti-angiogenic therapy for the treatment of multiple solid tumors: Cabozantinib. Anticancer Agents Med. Chem. 2015, 15, 37–47. [Google Scholar] [CrossRef]
- COMETRIQ (Cabozantinib). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203756lbl.pdf (accessed on 24 January 2022).
- European Medicines Agency. Cometriq: EPAR—Summary for the Public. Available online: https://www.ema.europa.eu/en/documents/overview/cometriq-epar-summary-public_en.pdf (accessed on 11 February 2022).
- Ettrich, T.J.; Seufferlein, T. Regorafenib. Recent Results Cancer Res. 2014, 201, 185–196. [Google Scholar] [CrossRef]
- STIVARGA (Regorafenib). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203085lbl.pdf (accessed on 24 January 2022).
- European Medicines Agency. Stivarga: EPAR—Summary for the Public. Available online: https://www.ema.europa.eu/en/documents/overview/stivarga-epar-summary-public_en.pdf (accessed on 11 February 2022).
- Bellesoeur, A.; Carton, E.; Alexandre, J.; Goldwasser, F.; Huillard, O. Axitinib in the treatment of renal cell carcinoma: Design, development, and place in therapy. Drug Des. Devel. Ther. 2017, 11, 2801–2811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- INLYTA (Axitinib). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202324lbl.pdf (accessed on 24 January 2022).
- European Medicines Agency. Inlyta: EPAR—Summary for the Public. Available online: https://www.ema.europa.eu/en/documents/overview/inlyta-epar-summary-public_en.pdf (accessed on 11 February 2022).
- Shaw, A.; Yasothan, U.; Kirkpatrick, P. Crizotinib. Nat. Rev. Drug Discov. 2011, 10, 897–898. [Google Scholar] [CrossRef] [PubMed]
- XALKORI (Crizotinib). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/202570s030lbl.pdf (accessed on 23 January 2022).
- European Medicines Agency. Xalkori: EPAR—Summary for the Public. Available online: https://www.ema.europa.eu/en/documents/overview/xalkori-epar-summary-public_en.pdf (accessed on 11 February 2022).
- Flaherty, K.; Yasothan, U.; Kirkpatrick, P. Vemurafenib. Nat. Rev. Drug Discov. 2011, 10, 811–812. [Google Scholar] [CrossRef] [PubMed]
- ZELBORAF (Vemurafenib). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/202429s012lbl.pdf (accessed on 23 January 2022).
- European Medicines Agency. Zelboraf: EPAR—Summary for the Public. Available online: https://www.ema.europa.eu/en/documents/overview/zelboraf-epar-summary-public_en.pdf (accessed on 11 February 2022).
- Frampton, J.E. Vandetanib. Drugs 2012, 72, 1423–1436. [Google Scholar] [CrossRef]
- European Medicines Agency. Caprelsa: EPAR—Summary for the Public. Available online: https://www.ema.europa.eu/en/documents/overview/caprelsa-epar-summary-public_en.pdf (accessed on 11 February 2022).
- Verheijen, J.C.; Zask, A. Phosphatidylinositol 3-kinase (PI3K) inhibitors as anticancer drugs. Drugs Future. 2007, 32, 537–547. [Google Scholar] [CrossRef]
- Bénistant, C.; Chapuis, H.; Roche, S. A specific function for phosphatidylinositol 3-kinase α (p85α-p110α) in cell survival and for phosphatidylinositol 3-kinase β (p85α-p110β) in de novo DNA synthesis of human colon carcinoma cells. Oncogene 2000, 19, 5083–5090. [Google Scholar] [CrossRef] [Green Version]
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef]
- Juric, D.; Rodon, J.; Tabernero, J.; Janku, F.; Burris, H.A.; Schellens, J.H.M.; Middleton, M.R.; Berlin, J.; Schuler, M.; Gil-Martin, M.; et al. Phosphatidylinositol 3-kinase alpha-selective inhibition with alpelisib (BYL719) in PIK3CA-altered solid tumors: Results from the first-in-human study. J. Clin. Oncol. 2018, 36, 1291–1299. [Google Scholar] [CrossRef]
- PIQRAY (Alpelisib). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212526s000lbl.pdf (accessed on 23 January 2022).
- Kong, D.; Yamori, T. Phosphatidylinositol 3-kinase inhibitors: Promising drug candidates for cancer therapy. Cancer Sci. 2008, 99, 1734–1740. [Google Scholar] [CrossRef]
- Markham, A. Alpelisib: First Global Approval. Drugs 2019, 79, 1249–1253. [Google Scholar] [CrossRef]
- European Medicines Agency. Piqray: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/piqray-epar-medicine-overview_en.pdf (accessed on 11 February 2022).
- Pantsar, T. The current understanding of KRAS protein structure and dynamics. Comput. Struct. Biotechnol. J. 2019, 18, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Schlessinger, J. Small molecule combats cancer-causing KRAS protein at last. Nature. 2019, 575, 294–295. [Google Scholar] [CrossRef] [PubMed]
- LUMAKRAS (Sotorasib). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214665s000lbl.pdf (accessed on 13 February 2022).
- Fan, G.; Lou, L.; Song, Z.; Zhang, X.; Xiong, X.-F. Targeting mutated GTPase KRAS in tumor therapies. Eur. J. Med. Chem. 2021, 226, 113816. [Google Scholar] [CrossRef] [PubMed]
- Lanman, B.A.; Allen, J.R.; Allen, J.G.; Amegadzie, A.K.; Ashton, K.S.; Booker, S.K.; Chen, J.J.; Chen, N.; Frohn, M.J.; Goodman, G.; et al. Discovery of a Covalent Inhibitor of KRASG12C (AMG 510) for the Treatment of Solid Tumors. J. Med. Chem. 2020, 63, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Kang, R.; Tang, D. The KRAS-G12C inhibitor: Activity and resistance. Cancer Gene Ther. 2021. [Google Scholar] [CrossRef]
- Blair, H.A. Sotorasib: First Approval. Drugs 2021, 81, 1573–1579. [Google Scholar] [CrossRef]
- Roberts, S.; Gibb, A. Chapter 1–Introduction to enzymes, receptors and the action of small molecule drugs. In Introduction to Biological and Small Molecule Drug Research and Development; Ganellin, C., Roberts, S., Jefferis, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–55. [Google Scholar] [CrossRef]
- Goldberg, T.; Berrios-Colon, E. Abiraterone (zytiga), a novel agent for the management of castration-resistant prostate cancer. P&T 2013, 38, 23–26. [Google Scholar]
- Kluetz, P.G.; Ning, Y.M.; Maher, V.E.; Zhang, L.; Tang, S.; Ghosh, D.; Aziz, R.; Palmby, T.; Pfuma, E.; Zirkelbach, J.F.; et al. Abiraterone acetate in combination with prednisone for the treatment of patients with metastatic castration-resistant prostate cancer: U.S. Food and Drug Administration drug approval summary. Clin. Cancer Res. 2013, 19, 6650–6656. [Google Scholar] [CrossRef] [Green Version]
- Bonnefoi, H.; Grellety, T.; Tredan, O.; Saghatchian, M.; Dalenc, F.; Mailliez, A.; L’Haridon, T.; Cottu, P.; Abadie-Lacourtoisie, S.; You, B.; et al. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Ann. Oncol. 2016, 27, 812–818. [Google Scholar] [CrossRef]
- Morales, J.; Li, L.; Fattah, F.J.; Dong, Y.; Bey, E.A.; Patel, M.; Gao, J.; Boothman, D.A. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit. Rev. Eukaryot. Gene Expr. 2014, 24, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Murai, J.; Huang, S.Y.; Das, B.B.; Renaud, A.; Zhang, Y.; Doroshow, J.H.; Ji, J.; Takeda, S.; Pommier, Y. Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res. 2012, 72, 5588–5599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boussios, S.; Abson, C.; Moschetta, M.; Rassy, E.; Karathanasi, A.; Bhat, T.; Ghumman, F.; Sheriff, M.; Pavlidis, N. Poly (ADP-Ribose) Polymerase Inhibitors: Talazoparib in Ovarian Cancer and Beyond. Drugs R&D 2020, 20, 55–73. [Google Scholar] [CrossRef] [Green Version]
- Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.O.; Hochhauser, D.; Arnold, D.; Oh, D.Y.; et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Nizialek, E.; Antonarakis, E.S. PARP Inhibitors in Metastatic Prostate Cancer: Evidence to Date. Cancer Manag. Res. 2020, 12, 8105–8114. [Google Scholar] [CrossRef] [PubMed]
- Champoux, J.J. DNA Topoisomerases: Structure, Function, and Mechanism. Annu. Rev. Biochem. 2001, 70, 369–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irinotecan Hydrochloride NDA #020571. Drugs@FDA: FDA-Approved Drugs. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020571 (accessed on 24 February 2022).
- Fujita, K.; Kubota, Y.; Ishida, H.; Sasaki, Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J. Gastroenterol. 2015, 21, 12234–12248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. Onivyde for the therapy of multiple solid tumors. Onco Targets Ther. 2016, 9, 3001–3007. [Google Scholar] [CrossRef] [Green Version]
- Wang-Gillam, A.; Li, C.P.; Bodoky, G.; Dean, A.; Shan, Y.S.; Jameson, G.; Macarulla, T.; Lee, K.H.; Cunningham, D.; Blanc, J.F.; et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial. Lancet 2016, 387, 545–557; Erratum in Lancet 2016, 387, 536. [Google Scholar] [CrossRef]
- Gan, L.; Yang, Y.; Li, Q.; Feng, Y.; Liu, T.; Guo, W. Epigenetic regulation of cancer progression by EZH2: From biological insights to therapeutic potential. Biomark. Res 2018, 6, 10. [Google Scholar] [CrossRef]
- Italiano, A.; Soria, J.C.; Toulmonde, M.; Michot, J.M.; Lucchesi, C.; Varga, A.; Coindre, J.M.; Blakemore, S.J.; Clawson, A.; Suttle, B.; et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: A first-in-human, open-label, phase 1 study. Lancet Oncol. 2018, 19, 649–659. [Google Scholar] [CrossRef]
- TAZVERIK (Tazemetostat). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213400s000lbl.pdf (accessed on 24 January 2022).
- Hoy, S.M. Tazemetostat: First Approval. Drugs 2020, 80, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Hoy, S.M. Talazoparib: First global approval. Drugs 2018, 78, 1939–1946. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Talzenna: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/talzenna-epar-medicine-overview_en.pdf (accessed on 11 February 2022).
- Scott, L.J. Niraparib: First global approval. Drugs 2017, 77, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Zejula: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/zejula-epar-medicine-overview_en.pdf (accessed on 11 February 2022).
- Syed, Y.Y. Rucaparib: First global approval. Drugs 2017, 77, 585–592. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Rubraca: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/rubraca-epar-medicine-overview_en.pdf (accessed on 11 February 2022).
- Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol. Res. 2019, 148, 104398. [Google Scholar] [CrossRef]
- ONIVYDE (Irinotecan Liposome Injection). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207793lbl.pdf (accessed on 23 January 2022).
- European Medicines Agency. Onivyde: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/onivyde-epar-medicine-overview_en.pdf (accessed on 11 February 2022).
- Deeks, E.D. Olaparib: First Global Approval. Drugs 2015, 75, 231–240. [Google Scholar] [CrossRef]
- Gunderson, C.C.; Moore, K.N. Olaparib: An oral PARP-1 and PARP-2 inhibitor with promising activity in ovarian cancer. Future Oncol. 2015, 11, 747–757. [Google Scholar] [CrossRef]
- European Medicines Agency. Lynparza: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/lynparza-epar-medicine-overview_en.pdf (accessed on 11 February 2022).
- Ryan, C.J.; Cheng, M.L. Abiraterone acetate for the treatment of prostate cancer. Expert Opin. Pharmacother. 2013, 14, 91–96. [Google Scholar] [CrossRef]
- ZYTIGA (Abiraterone Acetate). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/202379lbl.pdf (accessed on 24 January 2022).
- European Medicines Agency. Zytiga: EPAR—Summary for the Public. Available online: https://www.ema.europa.eu/en/documents/overview/zytiga-epar-summary-public_en.pdf (accessed on 11 February 2022).
- Casem, M. Chapter 9—Endocytosis. In Problem Sets in Biological and Biomedical Sciences. Case Studies in Cell Biology; Casem, M., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 217–240. [Google Scholar] [CrossRef]
- Thomas, X.; Heiblig, M. An evaluation of glasdegib for the treatment of acute myelogenous leukemia. Expert Opin. Pharma-cother. 2020, 21, 523–530. [Google Scholar] [CrossRef]
- Rice, M.A.; Malhotra, S.V.; Stoyanova, T. Second-Generation Antiandrogens: From Discovery to Standard of Care in Castration Resistant Prostate Cancer. Front Oncol. 2019, 9, 801. [Google Scholar] [CrossRef]
- Scales, S.J.; de Sauvage, F.J. Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol. Sci. 2009, 30, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, H.; Evron, T.; Vardy, E.; Han, G.W.; Huang, X.P.; Hufeisen, S.J.; Mangano, T.J.; Urban, D.J.; Katritch, V.; et al. Structural basis for smoothened receptor modulation and chemoresistance to anticancer drugs. Nat. Commun. 2014, 5, 4355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandhiya, S.; Melvin, G.; Kumar, S.S.; Dkhar, S.A. The dawn of hedgehog inhibitors: Vismodegib. J. Pharmacol. Pharmacother. 2013, 4, 4–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, S.; Song, R.; Xie, J. Sonidegib: Mechanism of action, pharmacology, and clinical utility for advanced basal cell carcinomas. Onco Targets Ther. 2017, 10, 1645–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dummer, R.; Ascierto, P.A.; Basset-Seguin, N.; Dréno, B.; Garbe, C.; Gutzmer, R.; Hauschild, A.; Krattinger, R.; Lear, J.T.; Malvehy, J.; et al. Sonidegib and vismodegib in the treatment of patients with locally advanced basal cell carcinoma: A joint expert opinion. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1944–1956. [Google Scholar] [CrossRef]
- Heinlein, C.A.; Chang, C. Androgen Receptor (AR) Coregulators: An Overview. Endocr. Rev. 2002, 23, 175–200. [Google Scholar] [CrossRef]
- Taplin, M.E.; Bubley, G.J.; Shuster, T.D.; Frantz, M.E.; Spooner, A.E.; Ogata, G.K.; Keer, H.N.; Balk, S.P. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med. 1995, 332, 1393–1398. [Google Scholar] [CrossRef]
- Heinlein, C.A.; Chang, C. Androgen receptor in prostate cancer. Endocr. Rev. 2004, 25, 276–308. [Google Scholar] [CrossRef] [Green Version]
- XTANDI (Enzalutamide). Prescribing Information. 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/203415s014lbl.pdf (accessed on 23 January 2022).
- ERLEADA (Apalutamide). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/210951s001lbl.pdf (accessed on 23 January 2022).
- NUBEQA (Darolutamide). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212099Orig1s000lbl.pdf (accessed on 23 January 2022).
- Huirne, J.A.; Lambalk, C.B. Gonadotropin-releasing-hormone-receptor antagonists. Lancet 2001, 358, 1793–1803. [Google Scholar] [CrossRef]
- Sealfon, S.C.; Weinstein, H.; Millar, R.P. Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor. Endocr. Rev. 1997, 18, 180–205. [Google Scholar] [CrossRef]
- Markham, A. Relugolix: First Global Approval. Drugs 2019, 79, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Shore, N.D.; Saad, F.; Cookson, M.S.; George, D.J.; Saltzstein, D.R.; Tutrone, R.; Akaza, H.; Bossi, A.; van Veenhuyzen, D.F.; Selby, B.; et al. Oral Relugolix for Androgen-Deprivation Therapy in Advanced Prostate Cancer. N. Engl. J. Med. 2020, 382, 2187–2196. [Google Scholar] [CrossRef] [PubMed]
- Markham, A.; Duggan, S. Darolutamide: First Approval. Drugs 2019, 79, 1813–1818. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Nubeqa: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/nubeqa-epar-medicine-overview_en.pdf (accessed on 11 February 2022).
- Al-Salama, Z.T. Apalutamide: First Global Approval. Drugs 2018, 78, 699–705. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Erleada: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/erleada-epar-medicine-overview_en.pdf (accessed on 11 February 2022).
- Burness, C.B. Sonidegib: First Global Approval. Drugs 2015, 75, 1559–1566. [Google Scholar] [CrossRef]
- European Medicines Agency. Odomzo: EPAR—Summary for the Public. Available online: https://www.ema.europa.eu/en/documents/overview/odomzo-epar-summary-public_en.pdf (accessed on 11 February 2022).
- Ning, Y.M.; Pierce, W.; Maher, V.E.; Karuri, S.; Tang, S.H.; Chiu, H.J.; Palmby, T.; Zirkelbach, J.F.; Marathe, D.; Mehrotra, N.; et al. Enzalutamide for treatment of patients with metastatic castration-resistant prostate cancer who have previously received docetaxel: U.S. Food and Drug Administration drug approval summary. Clin. Cancer Res. 2013, 19, 6067–6073. [Google Scholar] [CrossRef] [Green Version]
- XTANDI (Enzalutamide). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203415lbl.pdf (accessed on 24 January 2022).
- European Medicines Agency. Xtandi: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/xtandi-epar-medicine-overview_en.pdf (accessed on 11 February 2022).
- Axelson, M.; Liu, K.; Jiang, X.; He, K.; Wang, J.; Zhao, H.; Kufrin, D.; Palmby, T.; Dong, Z.; Russell, A.M.; et al. Food and Drug Administration approval: Vismodegib for recurrent, locally advanced, or metastatic basal cell carcinoma. Clin. Cancer Res. 2013, 19, 2289–2293. [Google Scholar] [CrossRef] [Green Version]
- ERIVEDGE (Vismodegib). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203388lbl.pdf (accessed on 24 January 2022).
- European Medicines Agency. Erivedge: EPAR—Summary for the Public. Available online: https://www.ema.europa.eu/en/documents/overview/erivedge-epar-summary-public_en.pdf (accessed on 11 February 2022).
- Pommier, Y.; Kohlhagen, G.; Bailly, C.; Waring, M.; Mazumder, A.; Kohn, K.W. DNA sequence- and structure-selective alkylation of guanine N2 in the DNA minor groove by ectainiascidin 743, a potent antitumor compound from the caribbean tunicate ecteinascidia turbinata. Biochemistry 1996, 35, 13303–13309. [Google Scholar] [CrossRef]
- Leal, J.F.; Martínez-Díez, M.; García-Hernández, V.; Moneo, V.; Domingo, A.; Bueren-Calabuig, J.A.; Negri, A.; Gago, F.; Guillén-Navarro, M.J.; Avilés, P.; et al. PM01183, a new DNA minor groove covalent binder with potent in vitro and in vivo anti-tumour activity. Br. J. Pharmacol. 2010, 161, 1099–1110. [Google Scholar] [CrossRef] [Green Version]
- D’Incalci, M.; Galmarini, C.M. A review of trabectedin (ET-743): A unique mechanism of action. Mol. Cancer Ther. 2010, 9, 2157–2163. [Google Scholar] [CrossRef] [Green Version]
- Santamaría Nuñez, G.; Robles, C.M.; Giraudon, C.; Martínez-Leal, J.F.; Compe, E.; Coin, F.; Aviles, P.; Galmarini, C.M.; Egly, J.M. Lurbinectedin Specifically Triggers the Degradation of Phosphorylated RNA Polymerase II and the Formation of DNA Breaks in Cancer Cells. Mol. Cancer Ther. 2016, 15, 2399–2412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germano, G.; Frapolli, R.; Belgiovine, C.; Anselmo, A.; Pesce, S.; Liguori, M.; Erba, E.; Uboldi, S.; Zucchetti, M.; Pasqualini, F.; et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 2013, 23, 249–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belgiovine, C.; Bello, E.; Liguori, M.; Craparotta, I.; Mannarino, L.; Paracchini, L.; Beltrame, L.; Marchini, S.; Galmarini, C.M.; Mantovani, A.; et al. Lurbinectedin reduces tumour-associated macrophages and the inflammatory tumour microenvironment in preclinical models. Br. J. Cancer 2017, 117, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Forveille, S.; Iribarren, K.; Sauvat, A.; Senovilla, L.; Wang, Y.; Humeau, J.; Perez-Lanzon, M.; Zhou, H.; Martínez-Leal, J.F.; et al. Lurbinectedin synergizes with immune checkpoint blockade to generate anticancer immunity. Oncoimmunology 2019, 8, e1656502. [Google Scholar] [CrossRef]
- Shabsigh, A.; Kleinmann, N.; Smith, A.B.; Scherr, D.; Seltzer, E.; Schoenberg, M.; Lerner, S.P. Pharmacokinetics of UGN-101, a mitomycin-containing reverse thermal gel instilled via retrograde catheter for the treatment of low-grade upper tract urothelial carcinoma. Cancer Chemother. Pharmacol 2021, 87, 799–805. [Google Scholar] [CrossRef] [PubMed]
- MITOMYCIN ANDA #064106. Drugs@FDA: FDA-Approved Drugs. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=064106 (accessed on 22 February 2022).
- Abraham, L.M.; Selva, D.; Casson, R.; Leibovitch, I. Mitomycin. Drugs 2006, 66, 321–340. [Google Scholar] [CrossRef] [PubMed]
- Rafael, D.; Melendres, M.M.R.; Andrade, F.; Montero, S.; Martinez-Trucharte, F.; Vilar-Hernandez, M.; Durán-Lara, E.F.; Schwartz, S., Jr.; Abasolo, I. Thermo-responsive hydrogels for cancer local therapy: Challenges and state-of-art. Int. J. Pharm. 2021, 606, 120954. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Lurbinectedin: First Approval. Drugs 2020, 80, 1345–1353. [Google Scholar] [CrossRef]
- JELMYTO (Mitomycin). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211728s000lbl.pdf (accessed on 24 January 2022).
- Barone, A.; Chi, D.C.; Theoret, M.R.; Chen, H.; He, K.; Kufrin, D.; Helms, W.S.; Subramaniam, S.; Zhao, H.; Patel, A.; et al. FDA Approval Summary: Trabectedin for Unresectable or Metastatic Liposarcoma or Leiomyosarcoma Following an Anthracycline-Containing Regimen. Clin. Cancer Res. 2017, 23, 7448–7453. [Google Scholar] [CrossRef] [Green Version]
- YONDELIS (Trabectedin). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207953s000lbl.pdf (accessed on 31 January 2022).
- European Medicines Agency. Yondelis: EPAR—Summary for the Public. Available online: https://www.ema.europa.eu/en/documents/overview/yondelis-epar-summary-public_en.pdf (accessed on 11 February 2022).
- Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical therapy in cancer: Clinical advances and challenges. Nat. Rev. Drug Discov. 2020, 19, 589–608. [Google Scholar] [CrossRef]
- Gill, M.R.; Falzone, N.; Du, Y.; Vallis, K.A. Targeted radionuclide therapy in combined-modality regimens. Lancet Oncol. 2017, 18, e414–e423. [Google Scholar] [CrossRef]
- Jimenez, C.; Erwin, W.; Chasen, B. Targeted Radionuclide Therapy for Patients with Metastatic Pheochromocytoma and Paraganglioma: From Low-Specific-Activity to High-Specific-Activity Iodine-131 Metaiodobenzylguanidine. Cancers 2019, 11, 1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayano, D.; Kinuya, S. Current Consensus on I-131 MIBG Therapy. Nucl. Med. Mol. Imaging 2018, 52, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Hennrich, U.; Kopka, K. Lutathera®: The First FDA- and EMA-Approved Radiopharmaceutical for Peptide Receptor Radionuclide Therapy. Pharmaceuticals 2019, 12, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godlewski, T. A New Radio-active Product from Actinium. Nature 1905, 71, 294–295. [Google Scholar] [CrossRef]
- Godlewski, T.V. Actinium and its successive products. Philos. Mag. Ser. 6 1905, 10, 35–45. [Google Scholar] [CrossRef]
- Shirley, M.; McCormack, P.L. Radium-223 Dichloride: A Review of Its Use in Patients with Castration-Resistant Prostate Cancer with Symptomatic Bone Metastases. Drugs 2014, 74, 579–586. [Google Scholar] [CrossRef]
- Deshayes, E.; Roumiguie, M.; Thibault, C.; Beuzeboc, P.; Cachin, F.; Hennequin, C.; Huglo, D.; Rozet, F.; Kassab-Chahmi, D.; Rebillard, X.; et al. Radium 223 dichloride for prostate cancer treatment. Drug Des. Devel. Ther. 2017, 11, 2643–2651. [Google Scholar] [CrossRef] [Green Version]
- AZEDRA (Iobenguane I 131). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209607s000lbl.pdf (accessed on 25 January 2022).
- European Medicines Agency. List of Nationally Authorized Medicinal Products. Available online: https://www.ema.europa.eu/en/documents/psusa/iodine-131i-iobenguane-list-nationally-authorised-medicinal-products-psusa/00001764/201505_en.pdf (accessed on 11 February 2022).
- LUTATHERA (Lutetium Lu 177 Dotatate). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/208700s000lbl.pdf (accessed on 6 February 2022).
- European Medicines Agency. Lutathera: EPAR—Summary for the Public. Available online: https://www.ema.europa.eu/en/documents/overview/lutathera-epar-summary-public_en.pdf (accessed on 11 February 2022).
- Kluetz, P.G.; Pierce, W.; Maher, V.E.; Zhang, H.; Tang, S.; Song, P.; Liu, Q.; Haber, M.T.; Leutzinger, E.E.; Al-Hakim, A.; et al. Radium Ra 223 Dichloride Injection: U.S. Food and Drug Administration Drug Approval Summary. Clin. Cancer Res. 2014, 20, 9–14. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. Xofigo: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/xofigo-epar-medicine-overview_en.pdf (accessed on 11 February 2022).
- Moon, C.; Oh, E. Rationale and strategies for formulation development of oral fixed dose combination drug products. J. Pharm. Investig. 2016, 46, 615–631. [Google Scholar] [CrossRef]
- TRIFLURIDINE NDA #018299. Drugs@FDA: FDA-Approved Drugs. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=018299 (accessed on 24 February 2022).
- Rahman, L.; Voeller, D.; Rahman, M.; Lipkowitz, S.; Allegra, C.; Barrett, J.C.; Kaye, F.J.; Zajac-Kaye, M. Thymidylate synthase as an oncogene: A novel role for an essential DNA synthesis enzyme. Cancer Cell. 2004, 5, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Kish, T.; Uppal, P. Trifluridine/Tipiracil (Lonsurf) for the Treatment of Metastatic Colorectal Cancer. P&T 2016, 41, 314–325. [Google Scholar]
- Carmine, A.A.; Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S. Trifluridine: A Review of its Antiviral Activity and Therapeutic Use in the Topical Treatment of Viral Eye Infections. Drugs 1982, 23, 329–353. [Google Scholar] [CrossRef]
- LONSURF (Trifluridine and Tipiracil). Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/207981s008lbl.pdf (accessed on 24 January 2022).
- Martinez-Perez, J.; Riesco-Martinez, M.C.; Garcia-Carbonero, R. The safety of trifluridine and tipiracil for the treatment of metastatic colorectal cancer. Expert Opin. Drug Saf. 2018, 17, 643–650. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Lonsurf: EPAR—Medicine Overview. Available online: https://www.ema.europa.eu/en/documents/overview/lonsurf-epar-medicine-overview_en.pdf (accessed on 11 February 2022).
- Li, Z.; Pinch, B.J.; Olson, C.M.; Donovan, K.A.; Nowak, R.P.; Mills, C.E.; Scott, D.A.; Doctor, Z.M.; Eleuteri, N.A.; Chung, M.; et al. Development and Characterization of a Wee1 Kinase Degrader. Cell Chem. Biol. 2020, 27, 57–65.e9. [Google Scholar] [CrossRef]
- Rothweiler, E.M.; Stefaniak, J.; Ward, J.A.; Rogers, C.; Balikci, E.; Huber, K.V.M. A chemical biology toolbox to investigate in-cell target engagement and specificity of PRMT5-inhibitors. bioRxiv 2022. [Google Scholar] [CrossRef]
- Békés, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov. 2022, 21, 181–200. [Google Scholar] [CrossRef]
- Liang, J.; Zbieg, J.R.; Blake, R.A.; Chang, J.H.; Daly, S.; DiPasquale, A.G.; Friedman, L.S.; Gelzleichter, T.; Gill, M.; Giltnane, J.M.; et al. GDC-9545 (Giredestrant): A Potent and Orally Bioavailable Selective Estrogen Receptor Antagonist and Degrader with an Exceptional Preclinical Profile for ER+ Breast Cancer. J. Med. Chem. 2021, 64, 11841–11856. [Google Scholar] [CrossRef]
- Nitulescu, G.M.; Margina, D.; Juzenas, P.; Peng, Q.; Olaru, O.T.; Saloustros, E.; Fenga, C.; Spandidos, D.A.; Libra, M.; Tsatsakis, A.M. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int. J. Oncol. 2016, 48, 869–885. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.S.; Patel, A.; Sim, H.M.; Zhang, Y.K.; Wang, Y.J.; Kathawala, R.J.; Zhang, H.; Talele, T.T.; Ambudkar, S.V.; Xu, R.H.; et al. ARRY-334543 reverses multidrug resistance by antagonizing the activity of ATP-binding cassette subfamily G member 2. J. Cell. Biochem. 2014, 115, 1381–1391. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, C.R.; Garassino, M.C.; Nadal, E.; Öhrling, K.; Scheffler, M.; Mazières, J. On target: Rational approaches to KRAS inhibition for treatment of non-small cell lung carcinoma. Lung Cancer 2021, 160, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Selim, J.H.; Shaheen, S.; Sheu, W.C.; Hsueh, C.T. Targeted and novel therapy in advanced gastric cancer. Exp. Hematol. Oncol. 2019, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov, Identifier: NCT04676516. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04676516?term=GSK3326595&phase=1&draw=2&rank=1 (accessed on 26 March 2022).
- Kummar, S.; Li, S.; Reiss, K.; Ford, J.M.; Mitchell, E.P.; Zwiebel, J.A.; Takebe, N.; Gray, R.J.; McShane, L.M.; Rubinstein, L.V.; et al. NCI-MATCH EAY131 -Z1I: Phase II study of AZD1775, a wee-1 kinase inhibitor, in patients with tumors containing BRCA1 and BRCA2 mutations. In Proceedings of the American Association for Cancer Research Annual Meeting, Atlanta, PA, USA, 29 March–3 April 2019. [Google Scholar]
- Sochacka-Ćwikła, A.; Mączyński, M.; Regiec, A. FDA-Approved Drugs for Hematological Malignancies—The Last Decade Review. Cancers 2022, 14, 87. [Google Scholar] [CrossRef]
- Abdelaziz, A.; Vaishampayan, U. Cabozantinib for the treatment of kidney cancer. Expert Rev. Anticancer Ther. 2017, 17, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. Data-mining for sulfur and fluorine: An evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem. 2014, 57, 2832–2842. [Google Scholar] [CrossRef]
- Mendez, L.; Henriquez, G.; Sirimulla, S.; Narayan, M. Looking Back, Looking Forward at Halogen Bonding in Drug Discovery. Molecules 2017, 22, 1397. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.S.; Liu, S.; Zou, D.; Thomas, M.; Wang, Y.; Zhou, T.; Romero, J.; Kohlmann, A.; Li, F.; Qi, J.; et al. Discovery of Brigatinib (AP26113), a Phosphine Oxide-Containing, Potent, Orally Active Inhibitor of Anaplastic Lymphoma Kinase. J. Med. Chem. 2016, 59, 4948–4964. [Google Scholar] [CrossRef]
- Kumari, S.; Carmona, A.V.; Tiwari, A.K.; Trippier, P.C. Amide bond bioisosteres: Strategies, synthesis, and successes. J. Med. Chem. 2020, 63, 12290–12358. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Brindisi, M. Urea Derivatives in Modern Drug Discovery and Medicinal Chemistry. J. Med. Chem. 2020, 63, 2751–2788. [Google Scholar] [CrossRef]
- Tanii, H.; Hashimoto, K. Studies on the mechanism of acute toxicity of nitriles in mice. Arch. Toxicol. 1984, 55, 47–54. [Google Scholar] [CrossRef]
- Fleming, F.F.; Yao, L.; Ravikumar, P.C.; Funk, L.; Shook, B.C. Nitrile-containing pharmaceuticals: Efficacious roles of the nitrile pharmacophore. J. Med. Chem. 2010, 53, 7902–7917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, Y.; Li, X.; Yu, Z.; Song, C.; Du, Y. Nitrile-containing pharmaceuticals: Target, mechanism of action, and their SAR studies. RSC Med. Chem. 2021, 12, 1650–1671. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Rong, D.; Li, Z.; Sun, G.; Wu, F.; Li, X.; Cao, H.; Cheng, Y.; Tang, W.; Sun, Y. Role of Small Molecule Targeted Compounds in Cancer: Progress, Opportunities, and Challenges. Front Cell Dev. Biol. 2021, 9, 694363. [Google Scholar] [CrossRef] [PubMed]
No. | Generic Name of Drug | Brand Name and Company | First FDA/EMA Approval Date | Structure | Molecular Target | Route of Administration | Indication | Adverse Effects | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Abemaciclib | VERZENIO Eli Lilly and Company, Indianapolis, IN, USA | FDA: 28 September 2017 EMA: 27 September 2018 | CDK4 1, CDK6 2 | Oral | Breast Cancer | Diarrhea, fatigue, nausea, decreased appetite, abdominal pain, neutropenia, vomiting, infections, anemia, headache, thrombocytopenia, leucopenia | [67,68] | |
2 | Ribociclib | KISQALI Novartis Pharmaceuticals Corporation, Basel, Switzerland | FDA: 13 March 2017 EMA: 22 August 2017 | CDK4 1, CDK6 2 | Oral | Breast Cancer | Neutropenia, nausea, infections, fatigue, diarrhea | [69,70] | |
3 | Palbociclib | IBRANCE Pfizer Inc., New York City, NY, USA | FDA: 3 February 2015 EMA: 9 November 2016 | CDK4 1, CDK6 2 | Oral | Breast Cancer | Neutropenia, leukopenia, fatigue, anemia, nausea, arthralgia, alopecia, diarrhea, hot flush | [71,72] |
No. | Generic Name of Drug | Brand Name and Company | First FDA/EMA Approval Date | Structure | Molecular Target | Route of Administration | Indication | Adverse Effects | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Alpelisib | PIQRAY Novartis Pharmaceuticals Corporation, Basel, Switzerland | FDA: 24 May 2019 EMA: 27 July 2020 | PI3K-α 1 | Oral | Breast Cancer | Hyperglycemia, diarrhea, rash, nausea, fatigue, decreased appetite, stomatitis | [160,161] |
No. | Generic Name of Drug | Brand Name and Company | First FDA/EMA Approval Date | Structure | Molecular Target | Route of Administration | Indication | Adverse Effects | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Sotorasib | LUMAKRAS Amgen Inc., Thousand Oaks, CA, USA | FDA: 28 May 2021 EMA: Not approved | KRAS 1 | Oral | Non-Small Cell Lung Cancer | Decreased lymphocytes, and hemoglobin, diarrhea, increased aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase, musculoskeletal pain, decreased calcium, nausea, fatigue, hepatotoxicity, cough | [168] |
No. | Generic Name of Drug | Brand Name and Company | First FDA/EMA Approval Date | Structure | Molecular Target | Route of Administration | Indication | Adverse Effects | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Trifluridine + Tipiracil | LONSURF Taiho Oncology, Inc., Princeton, NJ, USA | FDA: 22 September 2015 EMA: 26 April 2016 | TS 1 | Oral | Colorectal Cancer, Gastric Cancer | Anemia, neutropenia, fatigue/asthenia, nausea, thrombocytopenia, decreased appetite, diarrhea, vomiting, pyrexia | [268,269,270] | |
TP 2 |
No. | Name/Symbol | Company | Phase of Development | Structure | Molecular Target | Route of Administration | Indication | Ref. |
---|---|---|---|---|---|---|---|---|
1 | Adagrasib (MRTX849) | Mirati Therapeutics, Inc., San Diego, CA, USA | Phase 3 | KRAS 1 | Oral | Non-Small Cell Lung Cancer | [277] | |
2 | Giredestrant (GDC-9545) | Genentech, Inc., South San Francisco, CA, USA | Phase 3 | ER 2 | Oral | Breast Cancer | [274] | |
3 | Varlitinib (ARRY-334543) | ASLAN Pharmaceuticals, Menlo Park, CA, USA | Phase 3 | EGFR 3, HER2 4 | Oral | Gastric Cancer | [276,278] | |
4 | ARV-471 | Arvinas, Inc., New Haven, CT, USA Pfizer Inc., New York City, NY, USA | Phase 2 | ER 2 | Oral | Breast Cancer | [273] | |
5 | Pemrametostat (GSK3326595) | GlaxoSmithKline, London, UK | Phase 2 | PRMT5 5 | Oral | Breast Cancer | [272,279] | |
6 | Adavosertib (AZD1775) | AstraZeneca, Cambridge, UK | Phase 2 | WEE1 6 | Oral | Solid Tumors | [271,280] | |
7 | Ipatasertib (GDC-0068) | Genentech, Inc., South San Francisco, CA, USA | Phase 2 | AKT 7 | Oral | Gastric Cancer | [275] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sochacka-Ćwikła, A.; Mączyński, M.; Regiec, A. FDA-Approved Small Molecule Compounds as Drugs for Solid Cancers from Early 2011 to the End of 2021. Molecules 2022, 27, 2259. https://doi.org/10.3390/molecules27072259
Sochacka-Ćwikła A, Mączyński M, Regiec A. FDA-Approved Small Molecule Compounds as Drugs for Solid Cancers from Early 2011 to the End of 2021. Molecules. 2022; 27(7):2259. https://doi.org/10.3390/molecules27072259
Chicago/Turabian StyleSochacka-Ćwikła, Aleksandra, Marcin Mączyński, and Andrzej Regiec. 2022. "FDA-Approved Small Molecule Compounds as Drugs for Solid Cancers from Early 2011 to the End of 2021" Molecules 27, no. 7: 2259. https://doi.org/10.3390/molecules27072259
APA StyleSochacka-Ćwikła, A., Mączyński, M., & Regiec, A. (2022). FDA-Approved Small Molecule Compounds as Drugs for Solid Cancers from Early 2011 to the End of 2021. Molecules, 27(7), 2259. https://doi.org/10.3390/molecules27072259