Enterocins: Classification, Synthesis, Antibacterial Mechanisms and Food Applications
Abstract
:1. Introduction
2. Classification of Enterocins
3. Synthesis of Enterocins
4. Production and Purification of Enterocins
5. Antibacterial Activity and Mechanisms of Action
6. Application of Enterocins in Food Industry
6.1. Dairy Products
6.2. Meat Products
6.3. Fruits and Vegetables Products
Food Systems | Enterocins | Producing Strain | Additional Treatment | Target Organisms | References |
---|---|---|---|---|---|
Dairy products | Enterocin AS-48 | E. faecalis A-48-32 | moderate heat (65 °C, 5 min); Cocultivation; | Staphylococcus aureus; Bacillus cereus | [23,92] |
Enterocin CCM 4231 | E. faecium CCM 4231 | add purified enterocin CCM 4231 (concentration 3200 AU/mL) | Escherichia coli; Listeria monocytogenes; Staphylococcus aureus | [68,78] | |
Enterocin EJ97 | E. faecalis EJ97 | sodium nitrite, sodium benzoate, et.al | Listeria monocytogenes; | [35] | |
Enterocin E-760 | E. faecium NRRL B-30745 | Salmonella enterica; Yersinia enterocolitica; | [54] | ||
Dairy products | Enterocin CRL 35 | E. faecium CRL 35 | Listeria monocytogenes; | [69] | |
Meat products | Enterocins A and B | E. faecium CTC492 | Salmonella entericai; Listeria monocytogenes; Staphylococcus aureus; | [72,93] | |
Enterocin AS-48 | E. faecalis A-48-32 | added at concentrations of 30 or 40 μg/g; high hydrostatic pressure | Staphylococcus aureus; Salmonella enterica; Listeria monocytogenes; | [76,94] | |
Enterocin CCM 4231 | E. faecium CCM 4231 | Listeria monocytogenes; | [78] | ||
Enterocin LM-2 | E. faecium LM-2 | high hydrostatic pressure | Salmonella enterica; Listeria monocytogenes; | [77] | |
Fruits and vegetables products | Enterocin AS-48 | E. faecalis A-48-32 | Washing with chemical preservatives; heat (80–95 °C for 5 min); nisin and phenolic compounds; cinnamic and hydrocinnamic acids, etc | Bacillus cereus; Listeria monocytogenes; Staphylococcus aureus; Bacillus coagulans; Paenibacillus sp.; Bacillus weihenstephanensis; Pantoea; Leuconostocs | [81,83,86,88,95] |
Enterocin 416K1 | E. casseliflavus IM 416K1 | chitosan | Listeria monocytogenes | [89] | |
Fruits and vegetables products | Enterocin EJ97 | E. faecalis EJ97 | sodium tripolyphosphate and sodium nitrite | Bacillus coagulans | [96] |
Enterocin KT2W2G | E. faecalis KT2W2G | essential oils; cinnamon oil | Lactococcus lactis subsp. Lactis; Enterococcus faecalis; Klebsiella pneumonia; Klebsiella variicola; Serratia marcescens | [91] |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R.; Harwood, V.J. Enterococci in the Environment. Microbiol. Mol. Biol. 2012, 76, 685–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilmore, M.S.; Lebreton, F.; van Schaik, W. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. In Current Opinion in Microbiology; Elsevier Current Trends: Cambridge, MA, USA; Volume 16, pp. 10–16.
- Prieto, A.M.G.; van Schaik, W.; Rogers, M.R.; Coque, T.M.; Baquero, F.; Corander, J.; Willems, R.J. Citation: Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones? Front. Microbiol. 2016, 7, 788. [Google Scholar]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, C.A.; Murray, B.E. The rise of the Enterococcus: Beyond vancomycin resistance. Nat. Publ. Group 2012, 10, 266–278. [Google Scholar] [CrossRef] [Green Version]
- Iweriebor, B.C.; Obi, L.C.; Okoh, A.I. Virulence and antimicrobial resistance factors of Enterococcuss isolated from fecal samples from piggery farms in Eastern Cape, South Africa Ecological and evolutionary microbiology. BMC Microbiol. 2015, 15, 136. [Google Scholar] [CrossRef] [Green Version]
- Tamang, M.D.; Moon, D.C.; Kim, S.-R.; Kang, H.Y.; Lee, K.; Nam, H.-M.; Jang, G.-C.; Lee, H.-S.; Jung, S.-C.; Lim, S.-K. Detection of novel oxazolidinone and phenicol resistance gene optrA in enterococcal isolates from food animals and animal carcasses. Vet. Microbiol. 2017, 201, 252–256. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Zhang, R.; Li, J.; Zhao, Q.; He, T.; et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Moein, K.A.; El-Hariri, M.D.; Wasfy, M.O.; Samir, A. Occurrence of ampicillin-resistant Enterococcus faecium carrying esp gene in pet animals: An upcoming threat for pet lovers. J. Glob. Antimicrob. Resist. 2017, 9, 115–117. [Google Scholar] [CrossRef]
- Van den Bunt, G.; Top, J.; Hordijk, J.; de Greeff, S.C.; Mughini-Gras, L.; Corander, J.; van Pelt, W.; Bonten, M.J.; Fluit, A.C.; Willems, R.J. Intestinal carriage of ampicillin-and vancomycin-resistant Enterococcus faecium in humans, dogs and cats in the Netherlands. Antimicrob. Chemother. 2018, 73, 607–614. [Google Scholar] [CrossRef]
- Bybee, S.; Scorza, A.; Lappin, M. Effect of the Probiotic Enterococcus faecium SF68 on Presence of Diarrhea in Cats and Dogs Housed in an Animal Shelter. J. Vet. Intern. Med. 2011, 25, 856–860. [Google Scholar] [CrossRef]
- Strasser, B.; Geiger, D.; Schauer, M.; Gostner, J.M.; Gatterer, H.; Burtscher, M.; Fuchs, D. Probiotic Supplements Beneficially Affect Tryptophan-Kynurenine Metabolism and Reduce the Incidence of Upper Respiratory Tract Infections in Trained Athletes: A Randomized, Double-Blinded, Placebo-Controlled Trial. Nutrients 2016, 8, 752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollmann, M.; Nordhoff, M.; Pospischil, A.; Tedin, K.; Wieler, L.H. Effects of a probiotic strain of Enterococcus faecium on the rate of natural chlamydia infection in swine. Infect. Immun. 2005, 73, 4346–4353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gálvez, A.; Abriouel, H.; López, R.L.; Omar, N.B. Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 2007, 120, 51–70. [Google Scholar] [CrossRef] [PubMed]
- Riley, M.A.; Gordon, D.M. The ecological role of bacteriocins in bacterial competition. In Trends in Microbiology; Elsevier Ltd.: Amsterdam, The Netherlands; Volume 7, pp. 129–133.
- José, M.; Burgos, G.; Pulido, R.P.; Aguayo, M.d.L.; Gálvez, A.; Lucas, R. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications. Int. J. Mol. Sci. 2014, 15, 22706–22727. [Google Scholar]
- Shima, J.; Nisin, A. Nippon Shokuhin Kagaku Kogaku Kaishi. SJR 2008, 55, 37. [Google Scholar]
- Klaenhammer, T.R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 1993, 12, 39–85. [Google Scholar] [CrossRef]
- Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of lactic acid bacteria: Extending the family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951. [Google Scholar] [CrossRef] [Green Version]
- Kumariya, R.; Garsa, A.K.; Rajput, Y.S.; Sood, S.K.; Akhtar, N.; Patel, S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog. 2019, 128, 171–177. [Google Scholar] [CrossRef]
- Cruz, V.L.; Ramos, J.; Melo, M.N.; Martinez-Salazar, J. Bacteriocin AS-48 binding to model membranes and pore formation as revealed by coarse-grained simulations. Biochim. Biophys. Acta Biomembr. 2013, 1828, 2524–2531. [Google Scholar] [CrossRef]
- Haas, W.; Gilmore, M.S. Molecular nature of a novel bacterial toxin: The cytolysin of Enterococcus faecalis. Med. Microbiol. Immunol. 1999, 187, 183–190. [Google Scholar] [CrossRef]
- Samyn, B.; Bueno, M.M.; Devreese, B.; Maqueda, M.; Galvez, A.; Valdivia, E.; Coyette, J.; van Beeumen, J. The cyclic structure of the enterococcal peptide antibiotic AS-48. FEBS Lett. 1994, 352, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Stepper, J.; Shastri, S.; Loo, T.S.; Preston, J.C.; Novak, P.; Man, P.; Moore, C.H.; Havlicek, V.; Patchett, M.L.; Norris, G.E. Cysteine S -glycosylation, a new post-translational modification found in glycopeptide bacteriocins. FEBS Lett. 2011, 585, 645–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eijsink, V.G.H.; Skeie, M.; Middelhoven, P.H.; Brurberg, M.B.; Nes, I.F. Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl. Environ. Microbiol. 1998, 64, 3275–3281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aymerich, T.; Holo, H.; Håvarstein, L.S.; Hugas, M.; Garriga, M.; Nes, I.F. Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl. Environ. Microbiol. 1996, 62, 1676–1682. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.B.; Malaphan, W.; Zendo, T.; Nakayama, J.; Sonomoto, K. Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Appl. Environ. Microbiol. 2010, 76, 4542–4545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cintas, L.M.; Casaus, P.; Holo, H.; Hernandez, P.E.; Nes, I.F.; Håvarstein, L.S. Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J. Bacteriol. 1998, 180, 1988–1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casaus, P.; Nilsen, T.; Cintas, L.M.; Nes, I.F.; Hernández, P.E.; Holo, H. Enterocin B, a new bacteriocin from enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 1997, 143, 2287–2294. [Google Scholar] [CrossRef] [Green Version]
- Nilsen, T.; Nes, I.F.; Holo, H. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microbiol. 2003, 69, 2975–2984. [Google Scholar] [CrossRef] [Green Version]
- Booth, M.C.; Bogie, C.P.; Sahl, H.G.; Siezen, R.J.; Hatter, K.L.; Gilmore, M.S. Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol. Microbiol. 1996, 21, 1175–1184. [Google Scholar] [CrossRef]
- Maky, M.A.; Ishibashi, N.; Zendo, T.; Perez, R.H.; Doud, J.R.; Karmi, M.; Sonomoto, K. Enterocin F4-9, a novel O-linked glycosylated bacteriocin. Appl. Environ. Microbiol. 2015, 81, 4819–4826. [Google Scholar] [CrossRef] [Green Version]
- Cintas, L.M.; Casaus, P.; Håvarstein, L.S.; Hernández, P.E.; Nes, I.F. Biochemical and genetic characterization of enterocin P, a novel sec- dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl. Environ. Microbiol. 1977, 63, 4321–4330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Criado, R.; Gutiérrez, J.; Martín, M.; Herranz, C.; Hernández, P.E.; Cintas, L.M. Immunochemical characterization of temperature-regulated production of enterocin L50 (EntL50A and EntL50B), enterocin P, and enterocin Q by Enterococcus faecium L50. Appl. Environ. Microbiol. 2006, 72, 7634–7643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, M.T.; Cañamero, M.M.; Lucas, R.; Omar, N.B.; Pulido, R.P.; Gálvez, A. Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. Int. J. Food Microbiol. 2004, 90, 161–170. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Srivastava, S. Purification and characterization of plantaricin LR14: A novel bacteriocin produced by Lactobacillus plantarum LR/14. Appl. Microbiol. Biotechnol. 2003, 79, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Flint, S.; Yu, P.; Yu, C.P.-L.; Group, B. Determination of the mode of action of enterolysin A, produced by Enterococcus faecalis B9510. J. Appl. Microbiol. 2013, 115, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Sahl, H.G.; Bierbaum, G. Lantibiotics: Biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu. Rev. Microbiol. 1998, 52, 41–79. [Google Scholar] [CrossRef] [PubMed]
- Nes, I.F.; Diep, D.B.; Håvarstein, L.S.; Brurberg, M.B.; Eijsink, V.; Holo, H. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 1996, 70, 113–128. [Google Scholar] [CrossRef]
- Risøen, P.A.; Brurberg, M.B.; Eijsink, V.G.H.; Nes, I.F. Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus. Mol. Microbiol. 2000, 37, 619–628. [Google Scholar] [CrossRef] [Green Version]
- Flynn, S.; van Sinderen, D.; Thornton, G.M.; Holo, H.; Nes, I.F.; Collins, J.K. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 2002, 148, 973–984. [Google Scholar]
- Hoang, K.; Moore, B.S. Natural Metabolic Diversity Encoded by the Enterocin Biosynthesis Gene Cluster. J. Am. Chem. Soc. 2000, 122, 5415–5416. [Google Scholar]
- Rodali, V.P.; Lingala, V.K.; Karlapudi, A.P.; Indira, M.; Venkateswarulu, T.C.; Babu, D.J. Biosynthesis and potential applications of bacteriocins. J. Pure Appl. Microbiol. 2013, 7, 2933–2945. [Google Scholar]
- Furlaneto-Maia, L.; Ramalho, R.; Rocha, K.R.; Furlaneto, M.C. Antimicrobial activity of enterocins against Listeria sp. and other food spoilage bacteria. Biotechnol. Lett. 2020, 42, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Le, T.N.; Do, T.H.; Nguyen, T.N.; Tran, N.T.; Enfors, S.O.; Truong, N.H. Expression and Simple Purification Strategy for the Generation of Antimicrobial Active Enterocin P from Enterococcus faecium Expressed in Escherichia coli ER2566. Iran. J. Biotechnol. 2014, 12, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Nigutová, K.; Serenčová, L.; Piknová, M.; Javorský, P.; Pristaš, P. Heterologous expression of functionally active enterolysin A, class III bacteriocin from Enterococcus faecalis, in Escherichia coli. Protein Expr. Purif. 2008, 60, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Daniela, M.C.C.; Barraza, E.; Colombo, N.S.R.; Galván, A.E.; Acuña, L.; Minahk, C.J.; Bellomio, A. New insights into enterocin CRL35: Mechanism of action and immunity revealed by heterologous expression in Escherichia coli. Mol. Microbiol. 2017, 105, 922–933. [Google Scholar]
- Klocke, M.; Mundt, K.; Idler, F.; Jung, S.; Backhausen, J.E. Heterologous expression of enterocin A, a bacteriocin from Enterococcus faecium, fused to a cellulose-binding domain in Escherichia coli results in a functional protein with inhibitory activity against Listeria. Appl. Microbiol. Biotechnol. 2005, 67, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Arbulu, S.; Jiménez, J.J.; Gútiez, L.; Feito, J.; Cintas, L.M.; Herranz, C.; Hernández, P.E. Cloning and expression of synthetic genes encoding native, hybrid- and bacteriocin-derived chimeras from mature class IIa bacteriocins, by Pichia pastoris (syn. Komagataella spp.). Food Res. Int. 2019, 121, 888–899. [Google Scholar] [CrossRef]
- Hu, X.; Mao, R.; Zhang, Y.; Teng, D.; Wang, X.; Xi, D.; Wang, J. Biotechnical paving of recombinant enterocin A as the candidate of anti-Listeria agent. BMC Microbiol. 2014, 14, 220. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.J.; Borrero, J.; Gútiez, L.; Arbulu, S.; Herranz, C.; Cintas, L.M.; Hernández, P.E. Use of Synthetic Genes for Cloning, Production and Functional Expression of the Bacteriocins Enterocin A and Bacteriocin E 50-52 by Pichia pastoris and Kluyveromyces lactis. Mol. Biotechnol. 2014, 56, 571–583. [Google Scholar] [CrossRef]
- Basanta, A.; Gómez-Sala, B.; Sánchez, J.; Diep, D.B.; Herranz, C.; Hernández, P.E.; Cintas, L.M. Use of the Yeast Pichia pastoris as an Expression Host for Secretion of Enterocin L50, a Leaderless Two-Peptide (L50A and L50B) Bacteriocin from Enterococcus faecium L50. Appl. Environ. Microbiol. 2010, 76, 3314–3324. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.; Bourque, D.; Criado, R.; Choi, Y.J.; Cintas, L.M.; Hernández, P.E.; Míguez, C.B. Heterologous extracellular production of enterocin P from Enterococcus faecium P13 in the methylotrophic bacterium Methylobacterium extorquens. FEMS Microbiol. Lett. 2005, 248, 125–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, J.J.; Diep, D.B.; Borrero, J.; Gútiez, L.; Arbulu, S.; Nes, I.F.; Herranz, C.; Cintas, L.M.; Hernández, P.E. Cloning strategies for heterologous expression of the bacteriocin enterocin A by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475. Microb. Cell Factories 2015, 14, 166. [Google Scholar] [CrossRef] [PubMed]
- Martín, M.; Gutiérrez, J.; Criado, R.; Herranz, C.; Cintas, L.M.; Hernández, P.E. Cloning, production and expression of the bacteriocin enterocin a produced by Enterococcus faecium PLBC21 in Lactococcus lactis. Appl. Microbiol. Biotechnol. 2007, 76, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.H.; Ishibashi, N.; Inoue, T.; Himeno, K.; Masuda, Y.; Sawa, N.; Zendo, T.; Wilaipun, P.; Leelawatcharamas, V.; Nakayama, J.; et al. Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin. J. Bacteriol. 2016, 198, 291–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Line, J.E.; Svetoch, E.A.; Eruslanov, B.V.; Perelygin, V.V.; Mitsevich, E.V.; Mitsevich, I.P.; Levchuk, V.P.; Svetoch, O.E.; Seal, B.S.; Siragusa, G.R.; et al. Isolation and Purification of Enterocin E-760 with Broad Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2008, 52, 1094–1100. [Google Scholar] [CrossRef] [Green Version]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins—A viable alternative to antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C.; Ross, R.P. Food microbiology: Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005, 3, 777–788. [Google Scholar] [CrossRef]
- Cascales, E.; Buchanan, S.K.; Duché, D.; Kleanthous, C.; Lloubes, R.; Postle, K.; Riley, M.; Slatin, S.; Cavard, D. Colicin Biology. Microbiol. Mol. Biol. Rev. 2007, 71, 158–229. [Google Scholar] [CrossRef] [Green Version]
- Cotter, P.D. An ’Upp’-turn in bacteriocin receptor identification. Mol. Microbiol. 2014, 92, 1159–1163. [Google Scholar] [CrossRef]
- Herranz, C.; Chen, Y.; Chung, H.-J.; Cintas, L.M.; Hernández, P.E.; Montville, T.J.; Chikindas, M.L. Enterocin P Selectively Dissipates the Membrane Potential of Enterococcus faecium T136. Appl. Environ. Microbiol. 2001, 67, 1689–1692. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Luo, L.; Wang, X.; Lu, Y.; Yi, Y.; Shan, Y.; Liu, B.; Zhou, Y.; Lü, X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 863–899. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, Y.; You, C.; Ren, J.; Chen, W.; Zheng, H.; Liu, Z. Variation in Raw Milk Microbiota Throughout 12 Months and the Impact of Weather Conditions. Sci. Rep. 2018, 8, 2371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, I.; Miskeen, S.; Khalil, A.T.; Phull, A.R.; Kim, S.J.; Oh, D.H. Foodborne pathogens: Staphylococcus aureus and listeria monocytogenes an unsolved problem of the food industry. Pak. J. Nutr. 2016, 15, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Ananou, S.; Muñoz, A.; Bueno, M.M.; González-Tello, P.; Galvez, A.; Maqueda, M.; Valdivia, E. Evaluation of an enterocin AS-48 enriched bioactive powder obtained by spray drying. Food Microbiol. 2010, 27, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, A.; Ananou, S.; Galvez, A.; Bueno, M.M.; Rodriguez, A.; Maqueda, M.; Valdivia, E. Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: Bactericidal synergism with heat. Int. Dairy J. 2007, 17, 760–769. [Google Scholar] [CrossRef]
- Lauková, A.; Mareková, M.; Javorský, P. Detection and antimicrobial spectrum of a bacteriocin-like substance produced by Enterococcus faecium CCM4231. Lett. Appl. Microbiol. 1993, 16, 257–260. [Google Scholar] [CrossRef]
- Lauková, A.; Czikková, S.; Dobránsky, T.; Burdová, O. Inhibition of Listeria monocytogenes and Staphylococcus aureus by enterocin CCM 4231 in milk products. Food Microbiol. 1999, 16, 93–99. [Google Scholar] [CrossRef]
- Lauková, A.; Vlaemynck, G.; Czikková, S. Effect of enterocin CCM 4231 on Listeria monocytogenes in Saint-Paulin cheese. Folia Microbiol. 2001, 46, 157–160. [Google Scholar] [CrossRef]
- Farías, M.E.; Farías, R.N.; Holgado, A.P.d.; Sesma, F. Purification and N-terminal amino acid sequence of enterocin CRL 35, a “pediocin-like” bacteriocin produced by Enterococcus faecium CRL 35. Lett. Appl. Microbiol. 1996, 22, 417–419. [Google Scholar] [CrossRef]
- Heredia, N.; García, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef]
- Hennekinne, J.-A.; Herbin, S.; Firmesse, O.; Auvray, F. European Food Poisoning Outbreaks Involving Meat and Meat-based Products. Procedia Food Sci. 2015, 5, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Aymerich, T.; Garriga, M.; Ylla, J.; Vallier, J.; Monfort, J.M.; Hugas, M. Application of Enterocins as Biopreservatives against Listeria innocua in Meat Products. J. Food Prot. 2000, 63, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Jofré, A.; Aymerich, T.; Monfort, J.M.; Garriga, M. Application of enterocins A and B, sakacin K and nisin to extend the safe shelf-life of pressurized ready-to-eat meat products. Eur. Food Res. Technol. 2008, 228, 159–162. [Google Scholar] [CrossRef]
- Ananou, S.; Garriga, M.; Hugas, M.; Maqueda, M.; Bueno, M.M.; Gálvez, A.; Valdivia, E. Control of Listeria monocytogenes in model sausages by enterocin AS-48. Int. J. Food Microbiol. 2005, 103, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Ananou, S.; Baños, A.; Maqueda, M.; Martínez-Bueno, M.; Gálvez, A.; Valdivia, E. Effect of combined physico-chemical treatments based on enterocin AS-48 on the control of Listeria monocytogenes and Staphylococcus aureus in a model cooked ham. Food Control 2010, 21, 478–486. [Google Scholar] [CrossRef]
- Ananou, S.; Garriga, M.; Jofré, A.; Aymerich, T.; Galvez, A.; Maqueda, M.; Bueno, M.M.; Valdivia, E. Combined effect of enterocin AS-48 and high hydrostatic pressure to control food-borne pathogens inoculated in low acid fermented sausages. Meat Sci. 2010, 84, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, Y.; Gui, M.; Zheng, H.; Dai, R.; Li, P. Combined effect of high hydrostatic pressure and enterocin LM-2 on the refrigerated shelf life of ready-to-eat sliced vacuum-packed cooked ham. Food Control 2012, 24, 64–71. [Google Scholar] [CrossRef]
- Lauková, A.; Czikková, S.; Laczková, S.; Turek, P. Use of enterocin CCM 4231 to control Listeria monocytogenes in experimentally contaminated dry fermented Hornad salami. Int. J. Food Microbiol. 1999, 52, 115–119. [Google Scholar] [CrossRef]
- Al-Tayyar, N.A.; Youssef, A.M.; Al-Hindi, R.R. Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: A review. Sustain. Mater. Technol. 2020, 26, e00215. [Google Scholar] [CrossRef]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Martín-Belloso, O. Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int. J. Food Microbiol. 2008, 121, 313–327. [Google Scholar] [CrossRef]
- Lucas, R.; Grande, M.J.; Abriouel, H.; Maqueda, M.; Ben Omar, N.; Valdivia, E.; Cañamero, M.M.M.; Galvez, A. Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods. Food Chem. Toxicol. 2006, 44, 1774–1781. [Google Scholar] [CrossRef] [PubMed]
- Molinos, A.C.; Abriouel, H.; Omar, N.B.; Lucas, R.; Valdivia, E.; Gálvez, A. Inactivation of Listeria monocytogenes in raw fruits by enterocin AS-48. J. Food Prot. 2008, 71, 2460–2467. [Google Scholar] [CrossRef] [PubMed]
- Molinos, A.C.; Abriouel, H.; López, R.L.; Omar, N.B.; Valdivia, E.; Gálvez, A. Inhibition of Bacillus cereus and Bacillus weihenstephanensis in raw vegetables by application of washing solutions containing enterocin AS-48 alone and in combination with other antimicrobials. Food Microbiol. 2008, 25, 762–770. [Google Scholar]
- Molinos, A.C.; Abriouel, H.; Ben Omar, N.; Valdivia, E.; López, R.L.; Maqueda, M.; Cañamero, M.M.; Gálvez, A. Effect of Immersion Solutions Containing Enterocin AS-48 on Listeria monocytogenes in Vegetable Foods. Appl. Environ. Microbiol. 2005, 71, 7781–7787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grande, M.J.; Lucas, R.; Valdivia, E.; Abriouel, H.; Maqueda, M.; Ben Omar, N.; Cañamero, M.M.M.; Galvez, A. Stability of enterocin AS-48 in fruit and vegetable juices. J. Food Prot. 2005, 68, 2085–2094. [Google Scholar] [CrossRef]
- Grande, M.J.; Lucas, R.; Abriouel, H.; Ben Omar, N.; Maqueda, M.; Martínez-Bueno, M.; Martínez-Cañamero, M.; Valdivia, E.; Gálvez, A. Control of Alicyclobacillus acidoterrestris in fruit juices by enterocin AS-48. Int. J. Food Microbiol. 2005, 104, 289–297. [Google Scholar] [CrossRef]
- Grande, M.J.; Abriouel, H.; López, R.L.; Valdivia, E.; Ben Omar, N.; Cañamero, M.M.M.; Gálvez, A. Efficacy of enterocin AS-48 against bacilli in ready-to-eat vegetable soups and purees. J. Food Prot. 2007, 70, 2339–2345. [Google Scholar] [CrossRef]
- Pulido, R.P.; Toledo, J.; Grande, M.J.; Gálvez, A.; Lucas, R. Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp. Int. J. Food Microbiol. 2015, 196, 62–69. [Google Scholar] [CrossRef]
- Anacarso, I.; de Niederhäusern, S.; Iseppi, R.; Sabia, C.; Bondi, M.; Messi, P. Anti-listerial activity of chitosan and Enterocin 416K1 in artificially contaminated RTE products. Food Control 2011, 22, 2076–2080. [Google Scholar] [CrossRef]
- Viedma, P.M.; Abriouel, H.; Omar, N.B.; López, R.L.; Gálvez, A. Effect of enterocin EJ97 against Geobacillus stearothermophilus vegetative cells and endospores in canned foods and beverages. Eur. Food Res. Technol. 2009, 230, 513–519. [Google Scholar] [CrossRef]
- Issouffou, C.; Suwansri, S.; Salaipeth, L.; Domig, K.J.; Hwanhlem, N. Synergistic effect of essential oils and enterocin KT2W2G on the growth of spoilage microorganisms isolated from spoiled banana peel. Food Control 2018, 89, 260–269. [Google Scholar] [CrossRef]
- Lihui, D.; Xingrong, J.; Jian, Y.; Rong, H.; Lifeng, W.; Wei, S.; Qin, L. Enterococcus Durable and Its Bacteriocin That Can Inhibit Listeria. China Patent CN103305445B, 21 January 2015. [Google Scholar]
- Xingrong, J.; Lihui, D.; Xinquan, C.; Xueyou, W.; Jian, Y.; Rong, H.; Ying, H.X.; Lingping, L. A Durable Enterococcus Mutant, Encoding Gene and Its Application. China Patent CN105037509A, 11 November 2015. [Google Scholar]
- Guicheng, H.; Xueqin, W.; Lijie, Y. A High-Yielding Bacteriocin Enterococcus faecalis and Its Application. China Patent CN104593294A, 6 May 2015. [Google Scholar]
- Junrui, W.; Rina, W.; Xiaorui, W.; Xiqing, Y.; Dongbing, T. A Bacteriocin-Producing Enterococcus faecium and Its Application. China Patent CN105779346B, 17 May 2019. [Google Scholar]
- Chen, H.; Hoover, D.G. Bacteriocins and Their Food Applications. Compr. Rev. Food Sci. Food Saf. 2003, 2, 82–100. [Google Scholar]
Classification | Characters | Examples | |
---|---|---|---|
Class I | I a | posttranslationally modified; lanthipeptides | Cytolysin [31] |
I b | posttranslationally modified; head-to-tail cyclized peptides; | Enterocin AS-48 [16] | |
I c | posttranslationally modified; sactibiotics | ||
I d | posttranslationally modified; linear azol(in)e-containing peptides | ||
I e | posttranslationally modified; glycocins | Enterocin F4-9 [32] | |
I f | posttranslationally modified; lasso peptides | ||
Class II | II a | unmodified bacteriocins; pediocin-like bacteriocins | Enterocin A [25]; Enterocin P [33] |
II b | unmodified bacteriocins; two-peptide bacteriocins | Enterocin X [27] | |
II c | unmodified bacteriocins; leaderless bacteriocins | Enterocin L50 [28]; Enterocin Q [34]; Enterocin EJ97 [35]; Enterocin RJ-11 [36] | |
II d | unmodified bacteriocins; non-pediocin-like, single-peptide bacteriocins | Enterocin B [29] | |
Class III | large molecular weight; heat labile | Enterolysin A [37] |
Expression Systems | Enterocins | Producing Strain | Expression Host | Plasmid | References |
---|---|---|---|---|---|
E. coli | Enterocin P | E. faecium P13 | E. coli ER2566 | pTWIN1 | [45] |
Enterolysin A | E. faecalis II/1 | E. coli SG13009 | pQE-30 UA | [46] | |
Enterocin CRL35 | E. mundtii CRL35 | BL21(DE3) | pACYCDuet-1 | [47] | |
Enterocin A and B | E. faecium ATB197a | BL21(DE3) | pET37b(+) | [48] | |
Yeast | Enterocin HF and enterocin CRL35 | E. faecium | P. pastoris X-33 | pPICZαA | [49] |
Enterocin A | E. faecium CTC492; E. faecium T136 | P. pastoris X-33; K. lactis GG799EA | pPICZαA; pKLAC2 | [50,51] | |
L50A and L50B | E. faecium L50 | P. pastoris X-33 | pPICZαA | [52] | |
Enterocin P | E. faecium P13 | P. pastoris X-33 | pPICZαA | [53] | |
Lactobacillus | Enterocin A | E. faecium T136; E. faecium PLBC21 | L. casei CECT475; L. casei IL1403; L. casei NZ9000 | pSIP411UAI; pMG36c | [54,55] |
Ent53B | E. faecium NKR-5-3 | L. casei NZ9000 | pNK-B | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Pang, X.; Wu, Y.; Liu, X.; Zhang, X. Enterocins: Classification, Synthesis, Antibacterial Mechanisms and Food Applications. Molecules 2022, 27, 2258. https://doi.org/10.3390/molecules27072258
Wu Y, Pang X, Wu Y, Liu X, Zhang X. Enterocins: Classification, Synthesis, Antibacterial Mechanisms and Food Applications. Molecules. 2022; 27(7):2258. https://doi.org/10.3390/molecules27072258
Chicago/Turabian StyleWu, Yajing, Xinxin Pang, Yansha Wu, Xiayu Liu, and Xinglin Zhang. 2022. "Enterocins: Classification, Synthesis, Antibacterial Mechanisms and Food Applications" Molecules 27, no. 7: 2258. https://doi.org/10.3390/molecules27072258
APA StyleWu, Y., Pang, X., Wu, Y., Liu, X., & Zhang, X. (2022). Enterocins: Classification, Synthesis, Antibacterial Mechanisms and Food Applications. Molecules, 27(7), 2258. https://doi.org/10.3390/molecules27072258