Changes in Organic Acids, Phenolic Compounds, and Antioxidant Activities of Lemon Juice Fermented by Issatchenkia terricola
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Properties and Organic Acids of Fermented and Control Lemon Juice
2.2. Changes in Total Phenolic and Total Flavonoid Contents
2.3. Antioxidant Properties of Fermented and Control Lemon Juice
2.4. Phenolic Compounds of Fermented and Control Lemon Juice
2.5. Sensory Evaluation
2.6. Principal Component Analysis of the Properties of Fermented and Control Lemon Juice
3. Discussion
4. Materials and Methods
4.1. Yeast Strains and Medium
4.2. Lemon Juice Preparation and Fermentation Conditions
4.3. Measurement of Total Titratable Acidity, Total Sugar, Reducing Sugar, and pH
4.4. Determination of Total Phenolic and Total Flavonoid Contents
4.5. Determination of Antioxidant Activities
4.6. Determination of Organic Acids and Limonin
4.7. Determination of Phenolic Compounds
4.8. Sensory Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- FAO. Food and Agriculture Organization of the United Nations Statistics Department Lemon and Lime Production Statistics [DB/OL]. 2020. Available online: http://faostat3.fao.org/compare/E (accessed on 27 October 2021).
- Choi, M.Y.; Chai, C.; Park, J.H.; Lim, J.; Lee, J.; Kwon, S.W. Effects of storage period and heat treatment on phenolic compound composition in dried Citrus peels (Chenpi) and discrimination of Chenpi with different storage periods through targeted metabolomic study using HPLC-DAD analysis. J. Pharm. Biomed. Anal. 2011, 54, 638–645. [Google Scholar] [CrossRef]
- Al-Jabri, N.N.; Hossain, M.A. Chemical composition and antimicrobial potency of locally grown lemon essential oil against selected bacterial strains. J. King Saud Univ. Sci. 2018, 30, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Salas, P.; Gomez-Caravaca, A.M.; Arraez-Roman, D.; Segura-Carretero, A.; Guerra-Hernandez, E.; Garcia-Villanova, B.; Fernandez-Gutierrez, A. Influence of technological processes on phenolic compounds, organic acids, furanic derivatives, and antioxidant activity of whole-lemon powder. Food Chem. 2013, 141, 869–878. [Google Scholar] [CrossRef]
- Benavente-Garcia, O.; Castillo, J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 2008, 56, 6185–6205. [Google Scholar] [CrossRef]
- Verlekar, P.; Chandak, N. Antibacterial and antibiotic-potentiation activities of lemon against drug resistant phenhotypes. Int. J. Pharm. Sci. Res. 2018, 9, 4373–4381. [Google Scholar] [CrossRef]
- Dong, X.; Hu, Y.; Li, Y.; Zhou, Z. The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Sci. Hortic. 2019, 243, 281–289. [Google Scholar] [CrossRef]
- Sass-Kiss, A.; Toth-Markus, M.; Sass, M. Chemical composition of citrus fruits (orange, lemon, and grapefruit) with respect to quality control of juice products. In Nutraceutical Beverages; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2003; pp. 24–34. [Google Scholar] [CrossRef]
- Chen, S.; Tang, L. Isolation and Identification of yeast capable of efficiently degrading citric acid and its acid degradation characteristics in red raspberry juice. Food Sci. 2020, 41, 133–139. [Google Scholar]
- Chen, S.; Tang, Y. Variation of active components of red raspberry juice during acid-reducing culture. Food Sci. 2020, 42, 241–248. [Google Scholar]
- Nour, V.; Trandafir, I.; Ionica, M.E. HPLC organic acid analysis in different citrus juices under reversed phase conditions. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 44–48. [Google Scholar]
- Filannino, P.; Cardinali, G.; Rizzello, C.G.; Buchin, S.; De Angelis, M.; Gobbetti, M.; Di Cagno, R. Metabolic responses of Lactobacillus plantarum strains during fermentation and storage of vegetable and fruit juices. Appl. Environ. Microbiol. 2014, 80, 2206–2215. [Google Scholar] [CrossRef] [Green Version]
- Cassio, F.; Leao, C. Low-affinity and high-affinity transport-systems for citric-acid in the yeast Candida-Utilis. Appl. Environ. Microbiol. 1991, 57, 3623–3628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minnaar, P.P.; Jolly, N.P.; Paulsen, V.; Du Plessis, H.W.; Van Der Rijst, M. Schizosaccharomyces pombe and Saccharomyces cerevisiae yeasts in sequential fermentations: Effect on phenolic acids of fermented Kei-apple (Dovyalis caffra L.) juice. Int. J. Food Microbiol. 2017, 257, 232–237. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, Y.; Liu, S.Q. Effects of different yeasts on physicochemical and oenological properties of red dragon fruit wine fermented with Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans. Microorganisms 2020, 8, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, E.H.; Zhao, P.; Duan, L.; Zheng, G.D.; Guo, L.; Yang, H.; Li, P. Simultaneous determination of six bioactive flavonoids in citri reticulatae pericarpium by rapid resolution liquid chromatography coupled with triple quadrupole electrospray tandem mass spectrometry. Food Chem. 2013, 141, 3977–3983. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Mousavi Khaneghah, A.; Barba, F.J.; Nemati, Z.; Sohrabi Shokofti, S.; Alizadeh, F. Fermented sweet lemon juice (Citrus limetta) using Lactobacillus plantarum LS5: Chemical composition, antioxidant and antibacterial activities. J. Funct. Foods 2017, 38, 409–414. [Google Scholar] [CrossRef]
- Zhong, W.; Liu, S.; Yang, H.; Li, E. Effect of selected yeast on physicochemical and oenological properties of blueberry wine fermented with citrate-degrading Pichia fermentans. LWT 2021, 145, 111261. [Google Scholar] [CrossRef]
- Zhong, W.; Chen, T.; Yang, H.; Li, E. Isolation and selection of non-Saccharomyces yeasts being capable of degrading citric acid and evaluation its effect on kiwifruit wine fermentation. Fermentation 2020, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wang, R.; Zhang, Y.; Yang, Y.; Sun, X.; Zhang, Q.; Yang, N. Biotransformation of phenolics and metabolites and the change in antioxidant activity in kiwifruit induced by Lactobacillus plantarum fermentation. J. Sci. Food Agric. 2020, 100, 3283–3290. [Google Scholar] [CrossRef]
- Chen, R.; Chen, W.; Chen, H.; Zhang, G.; Chen, W. Comparative evaluation of the antioxidant capacities, organic acids, and volatiles of papaya juices fermented by Lactobacillus acidophilus and Lactobacillus plantarum. J. Food Qual. 2018, 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ajayeoba, T.A.; Ijabadeniyi, O.A. Characterization and antioxidant ability of potential probiotic lactic acid bacteria in ogi liquor and lemon juice-ogi liquor. Ann. Microbiol. 2019, 69, 777–786. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, Z. Postharvest ethephon degreening improves fruit color, flavor quality and increases antioxidant capacity in ‘Eureka’ lemon (Citrus limon (L.) Burm. f.). Sci. Hortic. 2019, 248, 70–80. [Google Scholar] [CrossRef]
- Gonzalez-Molina, E.; Dominguez-Perles, R.; Moreno, D.A.; Garcia-Viguera, C. Natural bioactive compounds of Citrus limon for food and health. J. Pharm. Biomed. Anal. 2010, 51, 327–345. [Google Scholar] [CrossRef]
- Uçan, F.; Ağçam, E.; Akyildiz, A. Bioactive compounds and quality parameters of natural cloudy lemon juices. J. Food Sci. Technol. 2016, 53, 1465–1474. [Google Scholar] [CrossRef] [Green Version]
- Edlin, D.A.N.; Narbad, A.; Dickinson, J.R.; Lloyd, D. The biotransformation of simple phenolic-compounds by Brettanomyces-Anomalus. Fems Microbiol. Lett. 1995, 125, 311–315. [Google Scholar] [CrossRef]
- Huang, C.; Tao, J.; Liao, G.; Xie, M.; Qu, X.; Chen, L.; Xu, X. Dynamic changes of phenol and antioxidant capacity during fruit development of three Actinidia species (kiwifruit). Sci. Hortic. 2020, 273, 109571. [Google Scholar] [CrossRef]
- Clark, A.C.; Vestner, J.; Barril, C.; Maury, C.; Prenzler, P.D.; Scollary, G.R. The influence of stereochemistry of antioxidants and flavonols on oxidation processes in a model wine system: Ascorbic acid, erythorbic acid, +-catechin and (-)-epicatechin. J. Agric. Food Chem. 2010, 58, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Liang, L.; Su, M.; Yang, T.; Mao, X.; Wang, Y. Variations in phenolic acids and antioxidant activity of navel orange at different growth stages. Food Chem. 2021, 360, 129980. [Google Scholar] [CrossRef]
- Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F. Effect of processing techniques at industrial scale on orange juice antioxidant and beneficial health compounds. J. Agric. Food Chem. 2002, 50, 5107–5114. [Google Scholar] [CrossRef]
- Dhuique-Mayer, C.; Tbatou, M.; Carail, M.; Caris-Veyrat, C.; Dornier, M.; Amiot, M.J. Thermal degradation of antioxidant micronutrients in citrus juice: Kinetics and newly formed compounds. J. Agric. Food Chem. 2007, 55, 4209–4216. [Google Scholar] [CrossRef]
- Filannino, P.; Azzi, L.; Cavoski, I.; Vincentini, O.; Rizzello, C.G.; Gobbetti, M.; Di Cagno, R. Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation. Int. J. Food Microbiol. 2013, 163, 184–192. [Google Scholar] [CrossRef]
- Liu, G.; Sun, J.; He, X.; Tang, Y.; Li, J.; Ling, D.; Li, C.; Li, L.; Zheng, F.; Sheng, J. Fermentation process optimization and chemical constituent analysis on longan (Dimocarpus longan Lour.) wine. Food Chem. 2018, 256, 268–279. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, Y.; Yang, R.; Liu, C.; Hu, X.; Luo, S.; Gong, E.; Ye, J. The relationship between reducing sugars and phenolic retention of brown rice after enzymatic extrusion. J. Cereal Sci. 2017, 74, 244–249. [Google Scholar] [CrossRef]
- Sun, L.; Sridhar, K.; Tsai, P.; Chou, C. Effect of traditional thermal and high-pressure processing (HPP) methods on the color stability and antioxidant capacities of Djulis (Chenopodium formosanum Koidz.). LWT 2019, 109, 342–349. [Google Scholar] [CrossRef]
- Baba, S.A.; Malik, S.A. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah Univ. Sci. 2018, 9, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.Y.; Hsieh, S.L.; Ciou, J.; Huang, Y.; Leang, J.Y.; Chen, M.; Hou, C. Lemon juice bioactivity in vitro increased with lactic acid fermentation. Int. J. Food Prop. 2020, 24, 28–40. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; Hou, C. Antioxidant and antibacterial activity of seven predominant terpenoids. Int. J. Food Prop. 2019, 22, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Coelho, E.M.; da Silva Padilha, C.V.; Miskinis, G.A.; de Sá, A.G.B.; Pereira, G.E.; de Azevêdo, L.C.; dos Santos Lima, M. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. J. Food Compos. Anal. 2018, 66, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tan, L.; Zhang, Y.; Zheng, G.; Xia, Z.; Wang, C.; Zhou, L.; Zhang, Q.; Yuan, C. Debittering of lemon juice using surface molecularly imprinted polymers and the utilization of limonin. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1104, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, E.; Monteiro, M. Simultaneous HPLC determination of flavonoids and phenolic acids profile in Pera-Rio orange juice. Food Res. Int. 2018, 106, 54–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Indicators Compounds | Contents (g/L) | ||||||
---|---|---|---|---|---|---|---|
0 h | 12 h | 24 h | 36 h | 48 h | 60 h | ||
Total sugar | Fermented | 27.97 ± 3.28 a | 17.18 ± 0.41 d | 6.12 ± 0.41 e | 6.41 ± 0.41 e | 6.56 ± 0.21 e | 6.56 ± 0.21 e |
Control | 27.97 ± 3.28 a | 24.49 ± 1.64 b | 27.39 ± 0.82 ab | 25.07 ± 2.46 ab | 20.42 ± 0.82 c | 21.00 ± 0.00 c | |
Reducing sugar | Fermented | 11.69 ± 0.70 b | 10.36 ± 0.70 c | 2.81 ± 0.05 d | 2.73 ± 0.21 d | 1.05 ± 0.05 e | 1.10 ± 0.02 e |
Control | 11.69 ± 0.70 b | 11.69 ± 0.70 b | 13.01 ± 0.70 a | 12.87 ± 0.47 ab | 14.02 ± 0.70 a | 13.18 ± 0.94 a | |
Total titratable acidity | Fermented | 58.59 ± 0.39 a | 51.09 ± 0.07 b | 41.38 ± 0.47 c | 30.80 ± 0.30 d | 15.30 ± 0.27 e | 12.20 ± 0.04 f |
Control | 58.60 ± 0.39 a | 58.60 ± 0.39 a | 58.57 ± 0.39 a | 58.54 ± 0.35 a | 58.58 ± 0.41 a | 58.53 ± 0.48 a | |
pH | Fermented | 2.61 ± 0.01 h | 2.67 ± 0.01 g | 2.78 ± 0.02 d | 3.02 ± 0.01 c | 3.68 ± 0.04 b | 4.31 ± 0.01 a |
Control | 2.61 ± 0.01 h | 2.62 ± 0.01 h | 2.71 ± 0.01 ef | 2.70 ± 0.01 efg | 2.68 ± 0.01 fg | 2.73 ± 0.01 e | |
Citric acid | Fermented | 51.46 ± 0.11 a | 45.91 ± 0.57 c | 37.83 ± 0.47 d | 25.87 ± 0.58 e | 9.40 ± 0.07 f | 8.09 ± 0.05 g |
Control | 51.46 ± 0.11 a | 51.33 ± 0.09 a | 50.86 ± 0.98 ab | 50.21 ± 0.23 b | 51.20 ± 0.12 ab | 51.09 ± 0.14 ab | |
Malic acid | Fermented | 5.80 ± 0.07 a | 4.77 ± 0.09 cd | 4.45 ± 0.04 d | 3.21 ± 0.04 e | 3.40 ± 0.42 e | 3.28 ± 0.18 e |
Control | 5.80 ± 0.07 a | 5.32 ± 0.18 b | 5.19 ± 0.04 b | 4.98 ± 0.16 bc | 5.03 ± 0.13 bc | 4.96 ± 0.010 bc | |
Oxalic acid | Fermented | 1.03 ± 0.01 ab | 0.86 ± 0.06 b | 0.63 ± 0.01 c | 0.66 ± 0.09 c | 0.44 ± 0.01 d | 0.44 ± 0.01 d |
Control | 1.03 ± 0.01 ab | 1.07 ± 0.01 a | 0.92 ± 0.21 ab | 0.89 ± 0.11 ab | 1.02 ± 0.02 ab | 1.05 ± 0.06 ab | |
Lactic acid | Fermented | 0.61 ± 0.03 cd | 0.33 ± 0.08 e | 0.51 ± 0.01 d | 0.50 ± 0.01 d | 0.10 ± 0.00 f | 0.89 ± 0.01 a |
Control | 0.61 ± 0.03 cd | 0.79 ± 0.15 ab | 0.69 ± 0.01 bc | 0.71 ± 0.09 bc | 0.69 ± 0.05 bc | 0.67 ± 0.08 bc | |
Succinic acid | Fermented | 1.19 ± 0.06 c | 0.78 ± 0.03 def | 1.77 ± 0.04 b | 2.23 ± 0.14 a | 0.95 ± 0.01 cde | 0.50 ± 0.01 f |
Control | 1.19 ± 0.06 a | 1.04 ± 0.02 cd | 0.63 ± 0.03 ef | 0.69 ± 0.06 def | 0.78 ± 0.05 def | 1.03 ± 0.45 cd | |
Limonin | Fermented | 0.013 ± 0.00 de | 0.018 ± 0.00 de | 0.018 ± 0.001 d | 0.028 ± 0.001 c | 0.037 ± 0.008 b | 0.052 ± 0.002 a |
Control | 0.013 ± 0.00 de | 0.011 ± 0.00 e | 0.012 ± 0.001 de | 0.013 ± 0.00 de | 0.014 ± 0.002 de | 0.014 ± 0.001 de | |
Nomillin | Fermented | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Control | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Phenolic Compounds | Contents (mg/L) | ||||||
---|---|---|---|---|---|---|---|
0 h | 12 h | 24 h | 36 h | 48 h | 60 h | ||
Chlorogenic acid | Fermented | 15.05 ± 0.01 ab | 15.27 ± 0.15 ab | 12.30 ± 0.05 c | 13.18 ± 1.03 abc | 15.57 ± 3.12 a | 13.68 ± 0.04 abc |
Control | 15.05 ± 0.01 ab | 13.14 ± 0.03 abc | 13.37 ± 0.75 abc | 12.81 ± 0.12 bc | 14.48 ± 0.62 abc | 14.12 ± 0.07 abc | |
Neochlorogenic acid | Fermented | 17.19 ± 0.02 a | 14.17 ± 1.22 d | 12.91 ± 0.10 e | 1.93 ± 0.07 f | 1.21 ± 0.11 f | 1.28 ± 0.91 f |
Control | 17.19 ± 0.02 a | 15.91 ± 0.21 b | 15.66 ± 0.60 bc | 14.57 ± 0.23 cd | 14.86 ± 0.05 bcd | 15.62 ± 0.02 bc | |
Cryptochlorogenic acid | Fermented | 81.86 ± 0.92 a | 68.12 ± 1.04 b | 64.33 ± 0.05 b | 56.67 ± 2.70 c | 47.16 ± 1.08 d | 50.16 ± 1.55 d |
Control | 81.86 ± 0.92 a | 66.94 ± 0.79 b | 58.53 ± 7.76 c | 28.15 ± 0.44 e | 29.29 ± 1.04 e | 33.81 ± 0.87 e | |
Ferulic acid | Fermented | 208.67 ± 0.16 c | 207.39 ± 0.06 c | 227.06 ± 1.68 b | 226.95 ± 0.11 b | 229.59 ± 0.39 ab | 231.78 ± 1.15 a |
Control | 208.67 ± 0.16 c | 197.00 ± 3.80 e | 204.65 ± 3.53 cd | 207.48 ± 1.39 c | 189.00 ± 3.15 f | 202.11 ± 0.49 d | |
Syringate | Fermented | 5.01 ± 0.01 cd | 4.88 ± 0.12 e | 5.50 ± 0.03 b | 5.84 ± 0.03 a | 5.74 ± 0.08 a | 5.84 ± 0.03 a |
Control | 5.01 ± 0.01 cd | 5.02 ± 0.04 c | 5.03 ± 0.04 c | 4.90 ± 0.01 de | 4.85 ± 0.01 e | 5.00 ± 0.00 cd | |
p-Coumaric acid | Fermented | 19.16 ± 0.01 d | 18.55 ± 0.12 e | 20.78 ± 0.03 b | 20.82 ± 0.01 b | 19.54 ± 0.14 c | 21.33 ± 0.07 a |
Control | 19.16 ± 0.01 d | 19.11 ± 0.19 d | 19.11 ± 0.10 d | 19.64 ± 0.39 c | 18.60 ± 0.10 e | 18.58 ± 0.09 e | |
Gallic acid | Fermented | 12.66 ± 0.10 f | 42.88 ± 1.42 a | 23.78 ± 0.79 d | 21.59 ± 0.37 de | 21.71 ± 0.97 de | 19.87 ± 0.29 e |
Control | 12.66 ± 0.10 f | 22.57 ± 0.73 d | 23.90 ± 2.81 d | 29.55 ± 0.60 bc | 28.87 ± 0.61 c | 31.73 ± 1.01 b | |
Caffeic acid | Fermented | 1.95 ± 0.02 abc | 1.95 ± 0.13 abc | 1.82 ± 0.11 cd | 1.87 ± 0.02 bc | 1.62 ± 0.05 d | 1.96 ± 0.03 abc |
Control | 1.95 ± 0.02 abc | 2.16 ± 0.01 a | 2.19 ± 0.02 a | 2.09 ± 0.04 ab | 2.08 ± 0.01 ab | 1.86 ± 0.26 bc | |
p-Hydroxybenzoic acid | Fermented | 14.35 ± 0.13 ab | 13.25 ± 0.94 b | 5.83 ± 0.02 ef | 8.29 ± 0.47 cd | 15.30 ± 0.37 a | 14.73 ± 0.05 ab |
Control | 14.35 ± 0.13 ab | 7.23 ± 0.07 de | 5.37 ± 1.64 f | 6.35 ± 0.06 ef | 9.58 ± 0.40 c | 14.46 ± 0.15 c | |
Erucic acid | Fermented | 157.36 ± 0.47 a | 146.61 ± 5.50 ab | 127.42 ± 2.59 cd | 127.28 ± 0.31 cd | 133.26 ± 1.65 bcd | 145.76 ± 0.17 ab |
Control | 157.36 ± 0.47 a | 137.53 ± 15.42 bc | 141.37 ± 2.61 bc | 144.04 ± 1.50 ab | 121.34 ± 1.20 d | 136.23 ± 13.31 bcd | |
Catechin | Fermented | 39.01 ± 0.13 a | 34.95 ± 0.45 bc | 22.56 ± 0.16 e | 38.35 ± 1.87 a | 35.75 ± 0.45 b | 38.70 ± 0.00 a |
Control | 39.01 ± 0.13 a | 33.23 ± 0.04 c | 29.87 ± 2.24 d | 30.83 ± 0.20 d | 35.75 ± 0.49 b | 21.33 ± 0.52 e | |
Epicatechin | Fermented | 26.76 ± 0.75 h | 29.39 ± 0.08 d | 29.94 ± 0.00 cd | 32.27 ± 0.04 a | 30.42 ± 0.69 c | 31.40 ± 0.07 b |
Control | 26.76 ± 0.75 h | 28.87 ± 0.14 ef | 28.42 ± 0.49 e | 27.38 ± 0.43 gh | 27.44 ± 0.06 fgh | 27.80 ± 0.29 efg | |
Rutin | Fermented | 13.96 ± 0.05 d | 13.88 ± 0.19 d | 23.12 ± 0.60 a | 16.43 ± 0.02 c | 18.13 ± 0.20 b | 18.87 ± 0.28 b |
Control | 13.96 ± 0.05 d | 13.49 ± 0.35 de | 12.83 ± 0.18 f | 12.42 ± 0.08 f | 12.77 ± 0.40 f | 12.92 ± 0.18 ef | |
Arbutin | Fermented | 17.73 ± 0.38 c | 16.74 ± 3.01 c | 44.07 ± 0.54 a | 46.53 ± 0.06 a | 43.26 ± 4.14 ab | 38.49 ± 0.09 b |
Control | 17.73 ± 0.38 c | 13.51 ± 0.04 c | 17.44 ± 3.97 c | 17.22 ± 2.14 c | 17.20 ± 3.52 c | 15.50 ± 0.85 c | |
Hesperidin | Fermented | 85.77 ± 0.03 fg | 92.30 ± 0.02 efg | 159.28 ± 0.37 b | 194.74 ± 0.85 a | 125.98 ± 0.94 d | 98.49 ± 0.28 e |
Control | 85.77 ± 0.03 fg | 54.08 ± 4.60 h | 135.76 ± 9.80 c | 166.61 ± 4.51 b | 84.38 ± 5.76 g | 94.91 ± 2.78 ef | |
Hesperetin | Fermented | 26.94 ± 0.30 bcd | 29.37 ± 0.16 abc | 32.18 ± 2.81 ab | 29.28 ± 0.76 abc | 33.20 ± 1.14 a | 29.21 ± 1.28 abc |
Control | 26.94 ± 0.30 bcd | 24.69 ± 3.60 cd | 23.56 ± 3.06 cd | 24.42 ± 1.73 cd | 21.39 ± 3.90 d | 21.59 ± 3.60 d | |
Naringin | Fermented | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Control | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
Hyperoside | Fermented | 13.15 ± 0.07 ab | 13.58 ± 0.76 ab | 14.06 ± 0.29 a | 12.99 ± 0.65 ab | 9.97 ± 1.65 ab | 10.46 ± 0.18 ab |
Control | 13.15 ± 0.07 ab | 11.98 ± 1.73 ab | 13.50 ± 3.34 ab | 11.33 ± 0.68 ab | 9.38 ± 0.74 b | 10.44 ± 0.92 ab | |
Quercetin | Fermented | 6.10 ± 0.39 a | 3.76 ± 0.10 c | 4.96 ± 0.32 b | 5.01 ± 0.10 b | 6.12 ± 0.24 a | 6.16 ± 0.28 a |
Control | 6.10 ± 0.39 a | 4.95 ± 0.12 b | 4.87 ± 0.11 b | 4.91 ± 0.27 b | 4.72 ± 0.15 b | 4.76 ± 0.18 b | |
Luteolin | Fermented | 4.27 ± 0.04 cd | 4.11 ± 0.05 cd | 4.69 ± 0.84 bcd | 4.63 ± 1.52 bcd | 5.85 ± 0.03 b | 9.71 ± 0.15 a |
Control | 4.27 ± 0.04 cd | 3.78 ± 0.07 cd | 4.71 ± 0.10 bcd | 4.27 ± 0.00 d | 3.83 ± 0.07 cd | 4.92 ± 0.02 bc | |
Baicalein | Fermented | 3.87 ± 0.28 ab | 4.16 ± 0.11 a | 4.43 ± 0.25 a | 4.54 ± 0.04 a | 4.02 ± 0.00 ab | 4.53 ± 0.10 a |
Control | 3.87 ± 0.28 ab | 3.92 ± 0.61 ab | 4.01 ± 0.32 ab | 2.31 ± 0.02 c | 3.16 ± 0.84 bc | 2.45 ± 0.64 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Yuan, D.; Li, Q.; Zhou, X.; Wu, H.; Bao, Y.; Lu, H.; Luo, T.; Wang, J. Changes in Organic Acids, Phenolic Compounds, and Antioxidant Activities of Lemon Juice Fermented by Issatchenkia terricola. Molecules 2021, 26, 6712. https://doi.org/10.3390/molecules26216712
Liu B, Yuan D, Li Q, Zhou X, Wu H, Bao Y, Lu H, Luo T, Wang J. Changes in Organic Acids, Phenolic Compounds, and Antioxidant Activities of Lemon Juice Fermented by Issatchenkia terricola. Molecules. 2021; 26(21):6712. https://doi.org/10.3390/molecules26216712
Chicago/Turabian StyleLiu, Biao, Dongxia Yuan, Qiaoyue Li, Xin Zhou, Hao Wu, Yihong Bao, Hongyun Lu, Ting Luo, and Jinling Wang. 2021. "Changes in Organic Acids, Phenolic Compounds, and Antioxidant Activities of Lemon Juice Fermented by Issatchenkia terricola" Molecules 26, no. 21: 6712. https://doi.org/10.3390/molecules26216712
APA StyleLiu, B., Yuan, D., Li, Q., Zhou, X., Wu, H., Bao, Y., Lu, H., Luo, T., & Wang, J. (2021). Changes in Organic Acids, Phenolic Compounds, and Antioxidant Activities of Lemon Juice Fermented by Issatchenkia terricola. Molecules, 26(21), 6712. https://doi.org/10.3390/molecules26216712