Development and Evaluation of Chitosan Nanoparticles for Ocular Delivery of Tedizolid Phosphate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chromatographic Analysis of TZP
2.3. Formulation Development
2.4. Characterization of the CSNPs
2.4.1. Particle Size, Polydispersity-Index (PDI) and Zeta-Potential Measurements
2.4.2. Transmission Electron Microscopy (TEM)
2.4.3. X-ray Diffraction Study
2.4.4. Encapsulation Efficiency and Drug Loading Capacity
2.4.5. Physicochemical Characterization
2.5. In Vitro Drug Release and Release Kinetics
2.6. Antimicrobial Study
2.7. In Vivo Animal Study
2.7.1. Ocular Irritation Study
2.7.2. Transcorneal Permeation
2.8. Statistical Analysis of the Data
3. Results and Discussion
3.1. Formulation Development
3.2. Particle Characterization and Morphology of CSNPs
3.3. X-ray Diffraction Analysis
3.4. Physicochemical Characterization
3.5. In Vitro Drug Release and Kinetics
3.6. Antimicrobial Activity of TZP-CSNPs (F2)
3.7. Ocular Irritation Study
3.8. Transcorneal Permeation of TZP
4. Conclusions
5. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Amato, M.; Pershing, S.; Walvick, M.; Tanak, S. Trends in methicillin-resistant staph aureus infections of the eye and orbit. In Proceedings of the Annual Meeting of American Academy of Ophthalmology, Orlando, FL, USA, 22–25 October 2011. [Google Scholar]
- Chuang, C.C.; Hsiao, C.H.; Tan, H.Y.; Ma, D.H.; Lin, K.K.; Chang, C.J.; Huang, Y.C. Staphylococcus aureus ocular infection: Methicillin-resistance, clinical features, and antibiotic susceptibilities. PLoS ONE 2012, 8, e42437. [Google Scholar] [CrossRef] [PubMed]
- Helzner, J. Your role in curbing the rising threat of ophthalmic MRSA. Ophthalmol. Manag. 2013, 17, 45–47. [Google Scholar]
- Stefani, S.; Chung, D.R.; Lindsay, J.A.; Friedrich, A.W.; Kearns, A.M.; Westh, H.; Mackenzie, F.M. Meticillin-resistant Staphylococcus aureus (MRSA): Global epidemiology and harmonisation of typing methods. Int. J. Antimicrob. Agents 2012, 39, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Tulkens, P.M.; Mehra, P.; Fang, E.; Prokocimer, P. Tedizolid Phosphate for the Management of Acute Bacterial Skin and Skin Structure Infections: Safety Summary. Clin. Infect. Dis. 2014, 58, S51–S57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrandez, O.; Urbina, O.; Grau, S. Critical role of tedizolid in the treatment of acute bacterial skin and skin structure infections. Drug Des. Dev. Ther. 2016, 11, 65–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kisgen, J.J.; Mansour, H.; Unger, N.R.; Childs, L.M. Tedizolid: A new oxazolidinone antimicrobial. Am. J. Health Syst. Pharm. 2014, 71, 621–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhanel, G.G.; Love, R.; Adam, H.; Golden, A.; Zelenitsky, S.; Schweizer, F.; Gorityala, B.; Lagace-Wiens, P.R.; Rubinstein, E.; Walkty, A.; et al. Tedizolid: A novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs 2015, 75, 253–270. [Google Scholar] [CrossRef]
- Schlosser, M.J.; Hosako, H.; Radovsky, A.; Butt, M.T.; Draganov, D.; Vija, J.; Oleson, F. Lack of neuropathological changes in rats administered tedizolid phosphate for nine months. Antimicrob. Agents Chemother. 2015, 59, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Tian, L.; Liu, J.; Huang, G. Construction and evaluation in vitro and in vivo of tedizolid phosphate loaded cationic liposomes. J. Liposome Res. 2018, 28, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Narita, M.; Tsuji, B.T.; Yu, V.L. Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome. Pharmacotherapy 2007, 27, 1189–1197. [Google Scholar] [CrossRef]
- Sievert, D.M.; Rudrik, J.T.; Patel, J.B.; McDonald, L.C.; Wilkins, M.J.; Hageman, J.C. Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clin. Infect. Dis. 2008, 46, 668–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cholkar, K.; Patel, S.P.; Vadlapudi, A.D.; Mitra, A.K. Novel strategies for anterior segment ocular drug delivery. J. Ocul. Pharmacol. Ther. 2013, 29, 106–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabiano, A.; Chetoni, P.; Zambito, Y. Mucoadhesive nano-sized supramolecular assemblies for improved pre-corneal drug residence time. Drug Dev. Ind. Pharm. 2015, 41, 2069–2076. [Google Scholar] [CrossRef] [PubMed]
- Fangueiro, J.F.; Andreani, T.; Fernandes, L.; Garcia, M.L.; Egea, M.A.; Silva, A.M.; Souto, E.B. Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. Colloids Surf. B Biointerfaces 2014, 123, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Prausnitz, M.R.; Edwards, A. Model of transient drug diffusion across cornea. J. Control. Release 2004, 99, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Kalam, M.A.; Sultana, Y.; Ali, A.; Aqil, M.; Mishra, A.K.; Chuttani, K. Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. J. Drug Target. 2010, 18, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Alkholief, M.; Albasit, H.; Alhowyan, A.; Alshehri, S.; Raish, M.; Abul Kalam, M.; Alshamsan, A. Employing a PLGA-TPGS based nanoparticle to improve the ocular delivery of Acyclovir. Saudi Pharm. J. 2019, 27, 293–302. [Google Scholar] [CrossRef]
- Kalam, M.A. Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. Int. J. Biol. Macromol. 2016, 89, 127–136. [Google Scholar] [CrossRef]
- Akhter, S.; Ramazani, F.; Ahmad, M.Z.; Ahmad, F.J.; Rahman, Z.; Bhatnagar, A.; Storm, G. Ocular pharmacoscintigraphic and aqueous humoral drug availability of ganciclovir-loaded mucoadhesive nanoparticles in rabbits. Eur. J. Nanomed. 2013, 5, 159–167. [Google Scholar] [CrossRef]
- Warsi, M.H.; Anwar, M.; Garg, V.; Jain, G.K.; Talegaonkar, S.; Ahmad, F.J.; Khar, R.K. Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids Surf. B Biointerfaces 2014, 122, 423–431. [Google Scholar] [CrossRef]
- Kurakula, M.; Naveen, N.R. Prospection of recent chitosan biomedical trends: Evidence from patent analysis (2009–2020). Int. J. Biol. Macromol. 2020, 165, 1924–1938. [Google Scholar] [CrossRef] [PubMed]
- Kurakula, M.; Naveen, N.R. In Situ Gel Loaded with Chitosan-Coated Simvastatin Nanoparticles: Promising Delivery for Effective Anti-Proliferative Activity against Tongue Carcinoma. Mar. Drugs 2020, 18, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achouri, D.; Alhanout, K.; Piccerelle, P.; Andrieu, V.r. Recent advances in ocular drug delivery. Drug Dev. Ind. Pharm. 2012, 39, 1599–1617. [Google Scholar] [CrossRef] [PubMed]
- Lihong, W.; Xin, C.; Yongxue, G.; Yiying, B.; Gang, C. Thermoresponsive ophthalmic poloxamer/tween/carbopol in situ gels of a poorly water-soluble drug fluconazole: Preparation and in vitro-in vivo evaluation. Drug Dev. Ind. Pharm. 2014, 40, 1402–1410. [Google Scholar] [CrossRef]
- Uccello-Barretta, G.; Nazzi, S.; Zambito, Y.; Di Colo, G.; Balzano, F.; Sansò, M. Synergistic interaction between TS-polysaccharide and hyaluronic acid: Implications in the formulation of eye drops. Int. J. Pharm. 2010, 395, 122–131. [Google Scholar] [CrossRef]
- Di Colo, G.; Zambito, Y.; Burgalassi, S.; Serafini, A.; Saettone, M.F. Effect of chitosan on in vitro release and ocular delivery of ofloxacin from erodible inserts based on poly(ethylene oxide). Int. J. Pharm. 2002, 248, 115–122. [Google Scholar] [CrossRef]
- Diebold, Y.; Jarrin, M.; Saez, V.; Carvalho, E.L.; Orea, M.; Calonge, M.; Seijo, B.; Alonso, M.J. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials 2007, 28, 1553–1564. [Google Scholar] [CrossRef]
- Draize, J.H.; Woodard, G.; Calvery, H.O. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmacol. Exp. Ther. 1944, 82, 377–390. [Google Scholar]
- Kalam, M.A.; Iqbal, M.; Alshememry, A.; Alkholief, M.; Alshamsan, A. UPLC-MS/MS assay of Tedizolid in rabbit aqueous humor: Application to ocular pharmacokinetic study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1171, 122621. [Google Scholar] [CrossRef]
- Kennedy, G.; Osborn, J.; Flanagan, S.; Alsayed, N.; Bertolami, S. Stability of Crushed Tedizolid Phosphate Tablets for Nasogastric Tube Administration. Drugs R D 2015, 15, 329–333. [Google Scholar] [CrossRef] [Green Version]
- Santini, D.; Sutherland, C.; Nicolau, D. Development of a High Performance Liquid Chromatography Method for the Determination of Tedizolid in Human Plasma, Human Serum, Saline and Mouse Plasma. J. Chromatogr. Sep. Tech. 2015, 6, 270. [Google Scholar]
- Calvo, P.; Remunan Lopez, C.; Vila-Jato, J.L.; Alonso, M.J. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res. 1997, 14, 1431–1436. [Google Scholar] [CrossRef] [PubMed]
- Abul Kalam, M.; Khan, A.A.; Khan, S.; Almalik, A.; Alshamsan, A. Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using Box–Behnken experimental design. Int. J. Biol. Macromol. 2016, 87, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, F.; Qiu, H.; Liu, J.; Qin, S.; Hou, Y.; Wang, C. Preparation and Characterization of Chitosan Nanoparticles for Chemotherapy of Melanoma Through Enhancing Tumor Penetration. Front. Pharmacol. 2020, 11, 317. [Google Scholar] [CrossRef]
- Almalik, A.; Day, P.J.; Tirelli, N. HA-C oated Chitosan Nanoparticles for CD 44-M ediated Nucleic Acid Delivery. Macromol. Biosci. 2013, 13, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Alshememry, A.; Kalam, M.A.; Almoghrabi, A.; Alzahrani, A.; Shahid, M.; Khan, A.A.; Haque, A.; Ali, R.; Alkholief, M.; Binkhathlan, Z. Chitosan-coated poly (lactic-co-glycolide) nanoparticles for dual delivery of doxorubicin and naringin against MCF-7 cells. J. Drug Deliv. Sci. Technol. 2022, 68, 103036. [Google Scholar] [CrossRef]
- Kurakula, M.; Ahmed, O.A.; Fahmy, U.A.; Ahmed, T.A. Solid lipid nanoparticles for transdermal delivery of avanafil: Optimization, formulation, in-vitro and ex-vivo studies. J. Liposome Res. 2016, 26, 288–296. [Google Scholar] [CrossRef]
- Rodriguez-Gonzalez, V.; Obregon, S.; Patron-Soberano, O.A.; Terashima, C.; Fujishima, A. An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes. Appl. Catal. B 2020, 270, 118853. [Google Scholar] [CrossRef]
- Qi, H.; Chen, W.; Huang, C.; Li, L.; Chen, C.; Li, W.; Wu, C. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int. J. Pharm. 2007, 337, 178–187. [Google Scholar] [CrossRef]
- Eldeeb, A.E.; Salah, S.; Mabrouk, M.; Amer, M.S.; Elkasabgy, N.A. Dual-Drug Delivery via Zein In Situ Forming Implants Augmented with Titanium-Doped Bioactive Glass for Bone Regeneration: Preparation, In Vitro Characterization, and In Vivo Evaluation. Pharmaceutics 2022, 14, 274. [Google Scholar] [CrossRef]
- Ali, Y.; Lehmussaari, K. Industrial perspective in ocular drug delivery. Adv. Drug Deliv. Rev. 2006, 58, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Moore, J. Final report on the safety assessment of polysorbates 20, 21, 40, 60, 61, 65, 80, 81, and 85. J. Am. Coll. Toxicol. 1984, 3, 1–82. [Google Scholar]
- Elgadir, M.A.; Uddin, M.S.; Ferdosh, S.; Adam, A.; Chowdhury, A.J.K.; Sarker, M.Z.I. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. J. Food Drug Anal. 2015, 23, 619–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release 1987, 5, 37–42. [Google Scholar] [CrossRef]
- Alangari, A.; Alqahtani, M.S.; Mateen, A.; Kalam, M.A.; Alshememry, A.; Ali, R.; Kazi, M.; AlGhamdi, K.M.; Syed, R. Iron Oxide Nanoparticles: Preparation, Characterization, and Assessment of Antimicrobial and Anticancer Activity. Adsorpt. Sci. Technol. 2022, 2022, 1562051. [Google Scholar] [CrossRef]
- Al-Yousef, H.M.; Amina, M.; Alqahtani, A.S.; Alqahtani, M.S.; Malik, A.; Hatshan, M.R.; Siddiqui, M.R.H.; Khan, M.; Shaik, M.R.; Ola, M.S. Pollen bee aqueous extract-based synthesis of silver nanoparticles and evaluation of their anti-cancer and anti-bacterial activities. Processes 2020, 8, 524. [Google Scholar] [CrossRef]
- Lee, M.; Hwang, J.-H.; Lim, K.-M. Alternatives to in vivo Draize rabbit eye and skin irritation tests with a focus on 3D reconstructed human cornea-like epithelium and epidermis models. Toxicol. Res. 2017, 33, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Kalam, M.A. The potential application of hyaluronic acid coated chitosan nanoparticles in ocular delivery of dexamethasone. Int. J. Biol. Macromol. 2016, 89, 559–568. [Google Scholar] [CrossRef]
- Falahee, K. Eye Irritation Testing: An Assessment of Methods and Guidelines for Testing Materials for Eye Irritancy; Office of Pesticides and Toxic Substances, US Environmental Protection Agency: Washington, DC, USA, 1981. [Google Scholar]
- Kay, J. Interpretation of eye irritation test. J. Soc. Cosmet. Chem. 1962, 13, 281–289. [Google Scholar]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Devlieghere, F.; Vermeulen, A.; Debevere, J. Chitosan: Antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 2004, 21, 703–714. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Rabea, E.I.; Rogge, T.M.; Stevens, C.V.; Smagghe, G.; Steurbaut, W.; Höfte, M. Synthesis and Fungicidal Activity of New N, O-Acyl Chitosan Derivatives. Biomacromolecules 2004, 5, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Harish Prashanth, K.V.; Tharanathan, R.N. Chitin/chitosan: Modifications and their unlimited application potential—An overview. Trends Food Sci. Technol. 2007, 18, 117–131. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Rao, M.S.; Chawla, S.P.; Sharma, A. Effects of chitosan coating on shelf-life of ready-to-cook meat products during chilled storage. LWT-Food Sci. Technol. 2013, 53, 321–326. [Google Scholar] [CrossRef]
- Kapanigowda, U.G.; Nagaraja, S.H.; Ramaiah, B.; Boggarapu, P.R.; Subramanian, R. Enhanced Trans-Corneal Permeability of Valacyclovir by Polymethacrylic Acid Copolymers Based Ocular Microspheres: In Vivo Evaluation of Estimated Pharmacokinetic/Pharmacodynamic Indices and Simulation of Aqueous Humor Drug Concentration-Time Profile. J. Pharm. Innov. 2015, 11, 82–91. [Google Scholar] [CrossRef]
- Badawi, A.A.; El-Laithy, H.M.; El Qidra, R.K.; El Mofty, H.; El dally, M. Chitosan based nanocarriers for indomethacin ocular delivery. Arch. Pharm. Res. 2008, 31, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- De Campos, A.M.; Snchez, A.; Alonso, M. Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm. 2001, 224, 159–168. [Google Scholar] [CrossRef]
- Genta, I.; Conti, B.; Perugini, P.; Pavanetto, F.; Spadaro, A.; Puglisi, G. Bioadhesive Microspheres for Ophthalmic Administration of Acyclovir. J. Pharm. Pharmacol. 1997, 49, 737–742. [Google Scholar] [CrossRef]
- Zimmer, A.; Kreuter, J.r. Microspheres and nanoparticles used in ocular delivery systems. Adv. Drug Deliv. Rev. 1995, 16, 61–73. [Google Scholar] [CrossRef]
- Datye, A.K.; Smith, D.J.J.C.R. The study of heterogeneous catalysts by high-resolution transmission electron microscoDV. Catal. Rev. 1992, 34, 129–178. [Google Scholar] [CrossRef]
- Smith, D.J.; Glaisher, R.W.; Lu, P.; McCartney, M.J.U. Profile imaging of surfaces and surface reactions. Ultramicroscopy 1989, 29, 123–134. [Google Scholar] [CrossRef]
- Tomlinson, A.; Khanal, S.; Ramaesh, K.; Diaper, C.; McFadyen, A. Tear film osmolarity: Determination of a referent for dry eye diagnosis. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4309–4315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanaki, S.G.; Koutsidis, I.A.; Koutri, I.; Karavas, E.; Bikiaris, D. Miscibility study of chitosan/2-hydroxyethyl starch blends and evaluation of their effectiveness as drug sustained release hydrogels. Carbohydr. Polym. 2012, 87, 1286–1294. [Google Scholar] [CrossRef]
- Unagolla, J.M.; Jayasuriya, A.C. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur. J. Pharm. Sci. 2018, 114, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Ameeduzzafar; Khanna, K.; Bhatnagar, A.; Ahmad, F.J.; Ali, A. Chitosan coated PLGA nanoparticles amplify the ocular hypotensive effect of forskolin: Statistical design, characterization and in vivo studies. Int. J. Biol. Macromol. 2018, 116, 648–663. [Google Scholar] [CrossRef] [PubMed]
- Bin-Jumah, M.; Gilani, S.J.; Jahangir, M.A.; Zafar, A.; Alshehri, S.; Yasir, M.; Kala, C.; Taleuzzaman, M.; Imam, S.S. Clarithromycin-Loaded Ocular Chitosan Nanoparticle: Formulation, Optimization, Characterization, Ocular Irritation, and Antimicrobial Activity. Int. J. Nanomed. 2020, 15, 7861–7875. [Google Scholar] [CrossRef] [PubMed]
TZP-CSNPs | Amount of (mg) | ||
---|---|---|---|
TZP * | CS | TPP | |
F1 | 10.0 | 13.5 mL 0.4%, w/v (54 mg) | 6.5 mL 0.2%, w/v (13 mg) |
F2 | 10.0 | 13.5 mL 0.6%, w/v (81 mg) | 6.5 mL 0.4%, w/v (26 mg) |
F3 | 10.0 | 13.5 mL 0.8%, w/v (108 mg) | 6.5 mL 0.6%, w/v (39 mg) |
TZP-CSNPs | Average Size (nm) | PDI | Zeta-Potential (mV) | Encapsulation Efficiency (%) | Drug Loading (%) |
---|---|---|---|---|---|
F1 | 227.23 ± 20.11 | 0.833 ± 0.104 | +20.6 ± 0.82 | 61.40 ± 7.26 | 7.97 ± 0.94 |
F2 | 129.13 ± 21.48 | 0.373 ± 0.113 | +31.4 ± 2.07 | 82.15 ± 4.08 | 7.02 ± 0.35 |
F3 | 472.06 ± 45.17 | 0.576 ± 0.093 | +36.6 ± 2.06 | 69.92 ± 5.37 | 4.45 ± 0.34 |
TZP-CHNPs | Clarity at 25 °C | Drug Content (%) | pH | Osmolarity (mOsmol·L−1) | Viscosity (cPs) | |
---|---|---|---|---|---|---|
at 25 °C | at 35 °C | |||||
F1 | Transparent | 98.9 ± 0.4 | 7.5 ± 0.2 | 305 ± 6 | 21.55 ± 2.55 | 20.54 ± 3.17 |
F2 | Transparent | 99.5 ± 0.6 | 7.3 ± 0.3 | 302 ± 7 | 22.35 ±2.76 | 20.85 ± 2.35 |
F3 | Transparent | 98.4 ± 0.5 | 6.8 ± 0.9 | 306 ± 4 | 23.52 ± 2.85 | 21.51 ± 3.05 |
STF * | Transparent | … | 7.4 ± 0.5 | 300 ± 3 | 01.18 ± 0.08 | 01.13 ± 0.07 |
Release Models | R2 Values | Slope | n-Values |
---|---|---|---|
Zero order (fraction of drug released vs. time) | 0.9297 | 0.0531 | 0.02305 |
First order (log% of drug remaining vs. time) | 0.9936 | 0.0562 | 0.02440 |
Korsmeyer–Peppas (log fraction of drug released vs. log time) | 0.9848 | 0.5837 | 0.25345 |
Hixon–Crowell (Mo1/3 − Mt1/3 vs. time) | 0.9798 | 0.0285 | 0.01238 |
Higuchi matrix (fraction of drug released vs. square root of time) | 0.9976 | 0.2525 | 0.10964 |
(A) Microorganisms | Zone Diameters (mm), Mean ± SD, n = 3 | ||
By TPZ-AqS | By TPZ-CSNPs (F2) | By Blank CSNPs | |
B. subtilis | 25.77 ± 3.23 | 34.83 ± 2.78 | 7.83 ± 1.59 |
S. aureus | 23.63 ± 2.28 | 36.93 ± 2.65 | 8.36 ± 1.47 |
MRSA (SA 6538) | 23.46 ± 1.27 | 32.46 ± 1.18 | 5.66 ± 0.98 |
(B) Statistical Analysis by One-Way Analysis of Variance | |||
Tukey’s Multiple Comparison Test | Mean Difference | q = Sq. Root * (D/SED) | p < 0.05 |
TZP-AqS vs. TZP-CSNPs (F2) | −10.46 | 10.64 | Yes |
TZP-AqS vs. TZP-CSNPs (F2) | 17.00 | 17.31 | Yes |
TZP-AqS vs. Blank CSNPs | 27.46 | 27.95 | Yes |
Lesions in the Treated Eyes | Individual Scores of Eye Irritation Experiments | |||||
---|---|---|---|---|---|---|
TZP-CSNPs (F2) | Blank-CSNPs | |||||
Rabbit No. | Rabbit No. | |||||
Ist | IInd | IIIrd | Ist | IInd | IIIrd | |
For Cornea | ||||||
(A) Opacity (degree of density) | 1 | 0 | 0 | 1 | 0 | 1 |
(B) Area of cornea | 4 | 4 | 4 | 4 | 4 | 4 |
Total score = (A × B × 5) = | 20 | 0 | 0 | 20 | 0 | 20 |
In Iris | ||||||
(A) Lesion values | 1 | 0 | 0 | 1 | 1 | 0 |
Total score = (A × 5) = | 5 | 0 | 0 | 5 | 5 | 0 |
In Conjunctiva | ||||||
(A) Redness | 0 | 1 | 0 | 1 | 1 | 1 |
(B) Chemosis | 0 | 0 | 0 | 0 | 0 | 0 |
(C) Mucoidal discharge | 0 | 0 | 0 | 1 | 0 | 0 |
Total score = (A + B + C) × 2 = | 0 | 2 | 0 | 4 | 2 | 2 |
TZP-CSNPs (F2) | |||||
Rabbits | 1st | 2nd | 3rd | SUM | Average (SUM/3) |
Cornea | 20 | 0 | 0 | 20 | 6.67 |
Iris | 5 | 0 | 0 | 5 | 1.67 |
Conjunctiva | 0 | 2 | 0 | 2 | 0.66 |
SUM total = | 25 | 2 | 0 | 27 | 9.00 |
Blank-CSNPs | |||||
Rabbits | 1st | 2nd | 3rd | SUM | Average (SUM/3) |
Cornea | 20 | 0 | 20 | 40 | 13.33 |
Iris | 5 | 5 | 0 | 10 | 3.33 |
Conjunctiva | 4 | 2 | 2 | 8 | 2.67 |
SUM total = | 29 | 7 | 22 | 58 | 19.33 |
Parameters | TZP-AqS | CSNPs (F2) |
---|---|---|
Cumulative amount of drug permeated (µg·cm−2) at 4 h | 51.74 ± 2.31 | 58.05 ± 2.44 |
Steady-state flux, J (µg·cm−2·h−1) | 17.50 ± 3.32 | 28.12 ± 1.41 |
Permeability coefficient, Papp (cmh−1) | (2.13 ± 0.41) × 10−2 | (3.42 ± 0.17) × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalam, M.A.; Iqbal, M.; Alshememry, A.; Alkholief, M.; Alshamsan, A. Development and Evaluation of Chitosan Nanoparticles for Ocular Delivery of Tedizolid Phosphate. Molecules 2022, 27, 2326. https://doi.org/10.3390/molecules27072326
Kalam MA, Iqbal M, Alshememry A, Alkholief M, Alshamsan A. Development and Evaluation of Chitosan Nanoparticles for Ocular Delivery of Tedizolid Phosphate. Molecules. 2022; 27(7):2326. https://doi.org/10.3390/molecules27072326
Chicago/Turabian StyleKalam, Mohd Abul, Muzaffar Iqbal, Abdullah Alshememry, Musaed Alkholief, and Aws Alshamsan. 2022. "Development and Evaluation of Chitosan Nanoparticles for Ocular Delivery of Tedizolid Phosphate" Molecules 27, no. 7: 2326. https://doi.org/10.3390/molecules27072326
APA StyleKalam, M. A., Iqbal, M., Alshememry, A., Alkholief, M., & Alshamsan, A. (2022). Development and Evaluation of Chitosan Nanoparticles for Ocular Delivery of Tedizolid Phosphate. Molecules, 27(7), 2326. https://doi.org/10.3390/molecules27072326