Structural Properties of Phenylalanine-Based Dimers Revealed Using IR Action Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Theoretical Approach
3. Results
3.1. Structural Assignment of the PhgPhg Monomer
3.1.1. Conformer A of the PhgPhg Monomer
3.1.2. Conformer B of the PhgPhg Monomer
3.2. Structural Assignment of the PhgPhg Dimer
3.3. Structural Assignment of the FF Monomer
3.4. Structural Assignment of the FF Dimer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petkova, A.T.; Leapman, R.D.; Guo, Z.; Yau, W.M.; Mattson, M.P.; Tycko, R. Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 2005, 307, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Gazit, E. A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J. 2002, 16, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Adler-Abramovich, L.; Vaks, L.; Carny, O.; Trudler, D.; Magno, A.; Caflisch, A.; Frenkel, D.; Gazit, E. Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nat. Chem. Biol. 2012, 8, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Reches, M.; Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 2003, 300, 625–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rymer, S.J.; Tendler, S.J.B.; Bosquillon, C.; Washington, C.; Roberts, C.J. Self-assembling peptides and their potential applications in biomedicine. Ther. Deliv. 2011, 2, 1043–1056. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhu, P.; Li, J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 2010, 39, 1877–1890. [Google Scholar] [CrossRef]
- Yan, X.; Li, J.; Möhwald, H. Self-assembly of hexagonal peptide microtubes and their optical waveguiding. Adv. Mater. 2011, 23, 2796–2801. [Google Scholar] [CrossRef]
- Marchesan, S.; Vargiu, A.V.; Styan, K.E. The Phe-Phe motif for peptide self-assembly in nanomedicine. Molecules 2015, 20, 19775–19788. [Google Scholar] [CrossRef] [Green Version]
- Handelman, A.; Kuritz, N.; Natan, A.; Rosenman, G. Reconstructive phase transition in ultrashort peptide nanostructures and induced visible photoluminescence. Langmuir 2016, 32, 2847–2862. [Google Scholar] [CrossRef] [Green Version]
- Handelman, A.; Lavrov, S.; Kudryavtsev, A.; Khatchatouriants, A.; Rosenberg, Y.; Mishina, E.; Rosenman, G. Nonlinear optical bioinspired peptide nanostructures. Adv. Opt. Mater. 2013, 1, 875–884. [Google Scholar] [CrossRef]
- Nuraeva, A.; Vasilev, S.; Vasileva, D.; Zelenovskiy, P.; Chezganov, D.; Esin, A.; Kopyl, S.; Romanyuk, K.; Shur, V.Y.; Kholkin, A.L. Evaporation-driven crystallization of diphenylalanine microtubes for microelectronic applications. Cryst. Growth Des. 2016, 16, 1472–1479. [Google Scholar] [CrossRef]
- Reches, M.; Gazit, E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett. 2004, 4, 581–585. [Google Scholar] [CrossRef]
- Tamamis, P.; Adler-Abramovich, L.; Reches, M.; Marshall, K.; Sikorski, P.; Serpell, L.; Gazit, E.; Archontis, G. Self-assembly of phenylalanine oligopeptides: Insights from experiments and simulations. Biophys. J. 2009, 96, 5020–5029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler-Abramovich, L.; Aronov, D.; Beker, P.; Yevnin, M.; Stempler, S.; Buzhansky, L.; Rosenman, G.; Gazit, E. Self-assembled arrays of peptide nanotubes by vapour deposition. Nat. Nanotechnol. 2009, 4, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jia, Y.; Dai, L.; Yang, Y.; Li, J. Controlled rod nanostructured assembly of diphenylalanine and their optical waveguide properties. ACS Nano 2015, 9, 2689–2695. [Google Scholar] [CrossRef]
- Yan, X.; He, Q.; Wang, K.; Duan, L.; Cui, Y.; Li, J. Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery. Angew. Chem. Int. Ed. 2007, 119, 2483–2486. [Google Scholar] [CrossRef]
- Kumaraswamy, P.; Lakshmanan, R.; Sethuraman, S.; Krishnan, U.M. Self-assembly of peptides: Influence of substrate, pH and medium on the formation of supramolecular assemblies. Soft Matter 2011, 7, 2744–2754. [Google Scholar] [CrossRef]
- Görbitz, C.H. The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s β-amyloid polypeptide. Chem. Commun. 2006, 22, 2332–2334. [Google Scholar] [CrossRef]
- Jeon, J.; Shell, M.S. Self-assembly of cyclo-diphenylalanine peptides in vacuum. J. Phys. Chem. B 2014, 118, 6644–6652. [Google Scholar] [CrossRef]
- Jeon, J.; Mills, C.E.; Scott Shell, M. Molecular insights into diphenylalanine nanotube assembly: All-atom simulations of oligomerization. J. Phys. Chem. B 2013, 117, 3935–3943. [Google Scholar] [CrossRef]
- Reches, M.; Gazit, E. Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini-capped diphenylalanine peptide analogues. Isr. J. Chem. 2005, 45, 363–371. [Google Scholar] [CrossRef]
- Gerhards, M.; Unterberg, C. Structures of the protected amino acid Ac-Phe-OMe and its dimer: A β-sheet model system in the gas phase. Phys. Chem. Chem. Phys. 2002, 4, 1760–1765. [Google Scholar] [CrossRef]
- Fricke, H.; Funk, A.; Schrader, T.; Gerhards, M. Investigation of secondary structure elements by IR/UV double resonance spectroscopy: Analysis of an isolated β-sheet model system. J. Am. Chem. Soc. 2008, 130, 4692–4698. [Google Scholar] [CrossRef] [PubMed]
- Gloaguen, E.; Mons, M.; Schwing, K.; Gerhards, M. Neutral peptides in the gas phase: Conformation and aggregation issues. Chem. Rev. 2020, 120, 12490–12562. [Google Scholar] [CrossRef] [PubMed]
- Bakels, S.; Stroganova, I.; Rijs, A.M. Probing the formation of isolated cyclo-FF peptide clusters by far-infrared action spectroscopy. Phys. Chem. Chem. Phys. 2021, 23, 20945–20956. [Google Scholar] [CrossRef]
- Bakels, S.; Meijer, E.M.; Greuell, M.; Porskamp, S.B.A.; Rouwhorst, G.; Mahé, J.; Gaigeot, M.P.; Rijs, A.M. Interactions of aggregating peptides probed by IR-UV action spectroscopy. Faraday Discuss. 2019, 217, 322–341. [Google Scholar] [CrossRef] [Green Version]
- Bakels, S.; Porskamp, S.B.A.; Rijs, A.M. Formation of neutral peptide aggregates as studied by mass-selective IR action spectroscopy. Angew. Chem. Int. Ed. 2019, 131, 10647–10651. [Google Scholar] [CrossRef]
- Gloaguen, E.; Loquais, Y.; Thomas, J.A.; Pratt, D.W.; Mons, M. Spontaneous formation of hydrophobic domains in isolated peptides. J. Phys. Chem. B 2013, 117, 4945–4955. [Google Scholar] [CrossRef]
- Gloaguen, E.; Valdes, H.; Pagliarulo, F.; Pollet, R.; Tardivel, B.; Hobza, P.; Piuzzi, F.; Mons, M. Experimental and theoretical investigation of the aromatic-aromatic interaction in isolated capped dipeptides. J. Phys. Chem. A 2010, 114, 2973–2982. [Google Scholar] [CrossRef]
- Bakels, S.; Gaigeot, M.P.; Rijs, A.M. Gas-Phase Infrared Spectroscopy of Neutral Peptides: Insights from the Far-IR and THz Domain. Chem. Rev. 2020, 120, 3233–3260. [Google Scholar] [CrossRef] [Green Version]
- Rijs, A.M.; Oomens, J. IR spectroscopic techniques to study isolated biomolecules. In Gas-Phase IR Spectroscopy and Structure of Biological Molecules; Rijs, A.M., Oomens, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 364, ISBN 978-3-319-19203-1. [Google Scholar]
- Oepts, D.; van der Meer, A.F.G.; van Amersfoort, P.W. The Free-Electron-Laser user facility FELIX. Infrared Phys. Technol. 1995, 36, 297–308. [Google Scholar] [CrossRef]
- Case, D.A.; Darden, T.A.; Cheatham, T.E., III.; Simmerling, C.L.; Wang, J.; Duke, R.E.; Luo, R.; Walker, R.C.; Zhang, W.; Merz, K.M.; et al. AMBER 12. University of California, San Francisco. 2012. Available online: https://ambermd.org/ (accessed on 12 February 2022).
- Robertson, E.G.; Simons, J.P. Getting into shape: Conformational and supramolecular landscapes in small biomolecules and their hydrated clusters. Phys. Chem. Chem. Phys. 2001, 3, 1–18. [Google Scholar] [CrossRef]
- Gloaguen, E.; De Courcy, B.; Piquemal, J.P.; Pilmé, J.; Parisel, O.; Pollet, R.; Biswal, H.S.; Piuzzi, F.; Tardivel, B.; Broquier, M.; et al. Gas-phase folding of a two-residue model peptide chain: On the importance of an interplay between experiment and theory. J. Am. Chem. Soc. 2010, 132, 11860–11863. [Google Scholar] [CrossRef] [PubMed]
- Valdes, H.; Spiwok, V.; Rezac, J.; Reha, D.; Abo-Riziq, A.G.; De Vries, M.S.; Hobza, P. Potential-energy and free-energy surfaces of Glycyl-Phenylalanyl-Alanine (GFA) tripeptide: Experiment and theory. Chem. Eur. J. 2008, 14, 4886–4898. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. A.03. Gaussian Inc. Wallingford CT. 2016. Available online: https://gaussian.com/gaussian16 (accessed on 12 February 2022).
- Hünig, I.; Kleinermanns, K. Conformers of the peptides glycine-tryptophan, tryptophan-glycine and tryptophan-glycine-glycine as revealed by double resonance laser spectroscopy. Phys. Chem. Chem. Phys. 2004, 6, 2650–2658. [Google Scholar] [CrossRef]
- Chin, W.; Mons, M.; Dognon, J.-P.; Mirasol, R.; Chass, G.; Dimicoli, I.; Piuzzi, F.; Butz, P.; Tardivel, B.; Compagnon, I.; et al. The gas-phase dipeptide analogue acetyl-phenylalanyl-amide: A model for the study of side chain/backbone interactions in proteins. J. Phys. Chem. A 2005, 109, 5281–5288. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M.; Han, K.Y.; Park, J.; Kim, G.S.; Kim, S.K. Solvent migration from the C- to the N-terminus of amino acid in photoionization of phenylglycine-water complex. J. Chem. Phys. 2008, 128, 041104. [Google Scholar] [CrossRef]
- Ramaekers, R.; Pajak, J.; Rospenk, M.; Maes, G. Matrix-isolation FT-IR spectroscopic study and theoretical DFT(B3LYP)/6–31 ++ G** calculations of the vibrational and conformational properties of tyrosine. Spectrochim. Acta Part A 2005, 61, 1347–1356. [Google Scholar] [CrossRef]
- Lee, J.J.; Albrecht, M.; Rice, C.A.; Suhm, M.A.; Stamm, A.; Zimmer, M.; Gerhards, M. Adaptive aggregation of peptide model systems. J. Phys. Chem. A 2013, 117, 7050–7063. [Google Scholar] [CrossRef]
- Abo-Riziq, A.G.; Bushnell, J.E.; Crews, B.; Callahan, M.P.; Grace, L.; De Vries, M.S. Discrimination between diastereoisomeric dipeptides by IR-UV double resonance spectroscopy and ab initio calculations. Int. J. Quantum Chem. 2005, 105, 437–445. [Google Scholar] [CrossRef]
- Pérez-Mellor, A.; Alata, I.; Lepere, V.; Zehnacker, A. Chirality effects in the structures of jet-cooled bichromophoric dipeptides. J. Mol. Spectrosc. 2018, 349, 71–84. [Google Scholar] [CrossRef]
- Gerhards, M.; Unterberg, C.; Gerlach, A.; Jansen, A. β-sheet model systems in the gas phase: Structures and vibrations of Ac-Phe-NHMe and its dimer (Ac-Phe-NHMe)2. Phys. Chem. Chem. Phys. 2004, 6, 2682–2690. [Google Scholar] [CrossRef]
- Guo, C.; Luo, Y.; Zhou, R.; Wei, G. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides. Nanoscale 2014, 6, 2800–2811. [Google Scholar] [CrossRef] [PubMed]
- Frederix, P.W.J.M.; Ulijn, R.V.; Hunt, N.T.; Tuttle, T. Virtual screening for dipeptide aggregation: Toward predictive tools for peptide self-assembly. J. Phys. Chem. Lett. 2011, 2, 2380–2384. [Google Scholar] [CrossRef]
- Görbitz, C.H. Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 2001, 7, 5153–5159. [Google Scholar] [CrossRef]
- Xiong, Q.; Jiang, Y.; Cai, X.; Yang, F.; Li, Z.; Han, W. Conformation dependence of diphenylalanine self-assembly structures and dynamics: Insights from hybrid-resolution simulations. ACS Nano 2019, 13, 4455–4468. [Google Scholar] [CrossRef]
- Chakraborty, P.; Bera, S.; Mickel, P.; Paul, A.; Shimon, L.J.W.; Arnon, Z.A.; Segal, D.; Král, P.; Gazit, E. Inhibitor-mediated structural transition in a minimal amyloid model. Angew. Chem. Int. Ed. 2022, 61, e202113845. [Google Scholar] [CrossRef]
- Do, T.D.; Kincannon, W.M.; Bowers, M.T. Phenylalanine oligomers and fibrils: The mechanism of assembly and the importance of tetramers and counterions. J. Am. Chem. Soc. 2015, 137, 10080–10083. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stroganova, I.; Bakels, S.; Rijs, A.M. Structural Properties of Phenylalanine-Based Dimers Revealed Using IR Action Spectroscopy. Molecules 2022, 27, 2367. https://doi.org/10.3390/molecules27072367
Stroganova I, Bakels S, Rijs AM. Structural Properties of Phenylalanine-Based Dimers Revealed Using IR Action Spectroscopy. Molecules. 2022; 27(7):2367. https://doi.org/10.3390/molecules27072367
Chicago/Turabian StyleStroganova, Iuliia, Sjors Bakels, and Anouk M. Rijs. 2022. "Structural Properties of Phenylalanine-Based Dimers Revealed Using IR Action Spectroscopy" Molecules 27, no. 7: 2367. https://doi.org/10.3390/molecules27072367
APA StyleStroganova, I., Bakels, S., & Rijs, A. M. (2022). Structural Properties of Phenylalanine-Based Dimers Revealed Using IR Action Spectroscopy. Molecules, 27(7), 2367. https://doi.org/10.3390/molecules27072367