Biomolecules from Plant Wastes Potentially Relevant in the Management of Irritable Bowel Syndrome and Co-Occurring Symptomatology
Abstract
:1. Introduction
2. Dietary Fibers
3. Lipids
4. Vitamins and Minerals
5. Digestive Enzymes
6. Antioxidants
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussain, S.; Jõudu, I.; Bhat, R. Dietary Fiber from Underutilized Plant Resources—A Positive Approach for Valorization of Fruit and Vegetable Wastes. Sustainability 2020, 12, 5401. [Google Scholar] [CrossRef]
- Nawirska, S.; Kwasniewska, M. Dietary fibre fractions from fruit and vegetable processing waste. Food Chem. 2005, 91, 221–225. [Google Scholar] [CrossRef]
- Deng, G.-F.; Shen, C.; Xu, X.-R.; Kuang, R.-D.; Guo, Y.-J.; Zeng, L.S.; Gao, L.L.; Lin, X.; Xie, J.F.; Xia, E.Q.; et al. Potential of Fruit Wastes as Natural Resources of Bioactive Compounds. Int. J. Mol. Sci. 2012, 13, 8308–8323. [Google Scholar] [CrossRef] [Green Version]
- Socaci, S.A.; Fărcaş, A.C.; Vodnar, D.C.; Tofană, M. Food Wastes as Valuable Sources of Bioactive Molecules. In Superfood and Functional Food—The Development of Superfoods and Their Roles as Medicine; Shiomi, N., Waisundara, V., Eds.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Kakkar, S.; Tandon, R.; Tandon, N. Utilizing Fruits and Vegetables Waste as Functional Food: A Review. PCBMB 2021, 22, 41–58. [Google Scholar]
- Okawa, Y.; Fukudo, S.; Sanada, H. Specific foods can reduce symptoms of irritable bowel syndrome and functional constipation: A review. Biopsychosoc. Med. 2019, 13, 10. [Google Scholar] [CrossRef] [Green Version]
- Pilipenko, V.I.; Teplyuk, D.A.; Shakhovskaya, A.K.; Isakov, V.A.; Vorobyova, V.M.; Vorobyova, I.S.; Sarkisyan, V.A.; Kochetkova, A.A.; Mikheeva, G.A.; Yudina, A.V. Using a multicomponent functional food in IBS patients with constipation a comparative controlled study. Voprosy Pitaniia 2016, 85, 84–91. [Google Scholar] [PubMed]
- Wilson, S.; Roberts, L.; Roalfe, A.; Bridge, P.; Singh, S. Prevalence of irritable bowel syndrome: A community survey. Br. J. Gen. Pract. 2004, 54, 495–502. [Google Scholar] [PubMed]
- Chatila, R.; Merhi, M.; Hariri, E.; Sabbah, N.; Deeb, M.E. Irritable bowel syndrome: Prevalence, risk factors in an adult Lebanese population. BMC Gastroenterol. 2017, 17, 137. [Google Scholar] [CrossRef]
- Ford, A.C.; Sperber, A.D.; Corsetti, M.; Camilleri, M. Irritable bowel syndrome. Lancet 2020, 396, 1675–1688. [Google Scholar] [CrossRef]
- Balmus, I.M.; Ciobica, A.; Cojocariu, R.; Luca, A.C.; Gorgan, L. Irritable Bowel Syndrome and Neurological Deficiencies: Is There A Relationship? The Possible Relevance of the Oxidative Stress Status. Medicina 2020, 56, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buscail, C.; Sabate, J.M.; Bouchoucha, M.; Kesse-Guyot, E.; Hercberg, S.; Benamouzig, R.; Julia, C. Western Dietary Pattern Is Associated with Irritable Bowel Syndrome in the French NutriNet Cohort. Nutrients 2017, 9, 986. [Google Scholar] [CrossRef]
- Cozma-Petruţ, A.; Loghin, F.; Miere, D.; Dumitraşcu, D.L. Diet in irritable bowel syndrome: What to recommend, not what to forbid to patients! World J. Gastroenterol. 2017, 23, 3771–3783. [Google Scholar] [CrossRef]
- Manning, L.P.; Yao, C.K.; Biesiekierski, J.R. Therapy of IBS: Is a Low FODMAP Diet the Answer? Front. Psychiatry 2020, 11, 865. [Google Scholar] [CrossRef]
- Chan, M.M.H.; Zarate-Lopez, N.; Martin, L. Group education on the low FODMAP diet improves gastrointestinal symptoms but neither anxiety or depression in irritable bowel syndrome. J. Hum. Nutr. Diet. 2021. [Google Scholar] [CrossRef]
- Weber, H.C. Irritable bowel syndrome and diet. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 200–206. [Google Scholar] [CrossRef]
- Mohseni, F.; Agah, S.; Ebrahimi-Daryani, N.; Taher, M.; Nattagh-Eshtivani, E.; Karimi, S.; Rastgoo, S.; Bourbour, F.; Hekmatdoost, A. The effect of low FODMAP diet with and without gluten on irritable bowel syndrome: A double blind, placebo controlled randomized clinical trial. Clin. Nutr. ESPEN 2022, 47, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Paine, P. Review article: Current and future treatment approaches for pain in IBS. Aliment. Pharmacol. Ther. 2021, 54, S75–S88. [Google Scholar] [CrossRef]
- Varjú, P.; Farkas, N.; Hegyi, P.; Garami, A.; Szabó, I.; Illés, A.; Solymár, M.; Vincze, Á.; Balaskó, M.; Pár, G.; et al. Low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet improves symptoms in adults suffering from irritable bowel syndrome (IBS) compared to standard IBS diet: A meta-analysis of clinical studies. PLoS ONE 2017, 12, e0182942. [Google Scholar] [CrossRef] [PubMed]
- Azpiroz, F. Intestinal gas dynamics: Mechanisms and clinical relevance. Gut 2005, 54, 893–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Fandiño, O.; Hernández-Ruiz, J.; Schmulson, M. From cytokines to toll-like receptors and beyond—Current knowledge and future research needs in irritable bowel syndrome. J. Neurogastroenterol. Motil. 2010, 16, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Black, C.J.; Ford, A.C. Irritable bowel syndrome: A spotlight on future research needs. Lancet Gastroenterol. Hepatol. 2021, 6, P419–P422. [Google Scholar] [CrossRef]
- Mishima, Y.; Ishihara, S. Molecular Mechanisms of Microbiota-Mediated Pathology in Irritable Bowel Syndrome. Int. J. Mol. Sci. 2020, 21, 8664. [Google Scholar] [CrossRef]
- Zhang, S.; Jiao, T.; Chen, Y.; Gao, N.; Zhang, L.; Jiang, M. Methylglyoxal induces systemic symptoms of irritable bowel syndrome. PLoS ONE 2014, 9, e105307. [Google Scholar] [CrossRef] [Green Version]
- Sayuk, G.S.; Gyawali, C.P. Irritable Bowel Syndrome: Modern Concepts and Management Options. Am. J. Med. 2015, 128, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Getto, L.; Zeserson, E.; Breyer, M. Vomiting, diarrhea, constipation, and gastroenteritis. Emerg. Med. Clin. N. Am. 2011, 29, 211–237. [Google Scholar] [CrossRef] [PubMed]
- Sagar, N.M.; Duboc, H.; Kay, G.L.; Alam, M.T.; Wicaksono, A.N.; Covington, J.A.; Quince, C.; Kokkorou, M.; Svolos, V.; Palmieri, L.J.; et al. The pathophysiology of bile acid diarrhoea: Differences in the colonic microbiome, metabolome and bile acids. Sci. Rep. 2020, 10, 20436. [Google Scholar] [CrossRef] [PubMed]
- Alba, K.; Campbell, G.M.; Kontogiorgos, V. Dietary fibre from berry-processing waste and its impact on bread structure: A review. J. Sci. Food Agric. 2019, 99, 4189–4199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawirska, A.; Uklanska, C. Waste products from fruit and vegetable processing as potential sources for food enrichment in dietary fibre. Acta Sci. Pol. Technol. Aliment. 2008, 7, 35–42. [Google Scholar]
- Staudacher, H.M.; Whelan, K. The low FODMAP diet: Recent advances in understanding its mechanisms and efficacy in IBS. Gut 2017, 66, 1517–1527. [Google Scholar] [CrossRef] [Green Version]
- Capili, B.; Anastasi, J.K.; Chang, M. Addressing the Role of Food in Irritable Bowel Syndrome Symptom Management. J. Nurse Pract. 2016, 12, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Spiller, R. Irritable bowel syndrome: New insights into symptom mechanisms and advances in treatment. F1000Research 2016, 5, 780. [Google Scholar] [CrossRef]
- Charu, G.; Prakash, D.; Nazareno, M.A. Nutraceutical Potential of Agri-Horticultural Wastes. Obes. Control. 2017, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, R.; Jimenez, A.; Fernandez-Bolanos, J.; Guillen, R.; Heredia, A. Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci. Technol. 2006, 17, 3–15. [Google Scholar] [CrossRef]
- Maurya, A.K.; Pandey, R.K.; Rai, D.; Porwal, P.; Chandra Rai, D. Waste Product of Fruits and Vegetables Processing as A Source of Dietary Fibre: A Review. Trends Biosci. 2015, 8, 5129–5140. [Google Scholar]
- Beukema, M.; Faas, M.M.; de Vos, P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: Impact via gut microbiota and direct effects on immune cells. Exp. Mol. Med. 2020, 52, 1364–1376. [Google Scholar] [CrossRef]
- Iwassa, I.J.; Piai, J.F.; Bolanho, B.C. Fiber concentrates from asparagus by-products: Microstructure, composition, functional and antioxidant properties. Food Sci. Technol. 2019, 43. [Google Scholar] [CrossRef] [Green Version]
- Carle, R.; Keller, P.; Schieber, A.; Rentschler, C.; Katzschner, T.; Rauch, D.; Fox, G.F.; Endress, H.U. Method for Obtaining Useful Materials from the by-Products of Fruit and Vegetable. Processing. Patent WO 01/78859 A1, 30 October 2001. [Google Scholar]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products ofplant food processing as a source of functional compounds: Recent developments. Trends Food Sci. Technol. 2002, 12, 401–413. [Google Scholar] [CrossRef]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Sharoba, A.M.; Farrag, M.A.; Abd El-Salam, A.M. Utilization of some fruits and vegetables waste as a source of dietary fiber and its effect on the cake making and its quality attributes. J. Agroaliment. Process. Technol. 2013, 19, 429–444. [Google Scholar]
- Coman, V.; Teleky, B.; Mitrea, L.; Martău, G.A.; Szabo, K.; Călinoiu, L.F.; Vodnar, D.C. Chapter Five—Bioactive potential of fruit and vegetable wastes. Editor(s): Fidel Toldrá. Adv. Food Nutr. Res. 2020, 91, 157–225. [Google Scholar] [PubMed]
- El-Salhy, M.; Hatlebakk, I.G.; Hausken, T. Diet in Irritable Bowel Syndrome (IBS): Interaction with Gut Microbiota and Gut Hormones. Nutrients 2019, 11, 1824. [Google Scholar] [CrossRef] [Green Version]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Mazzawi, T.; El-Salhy, M. Effect of diet and individual dietary guidance on gastrointestinal endocrine cells in patients with irritable bowel syndrome (Review). Int. J. Mol. Med. 2017, 40, 943–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feinle-Bisset, C.; Azpiroz, F. Dietary lipids and functional gastrointestinal disorders. Am. J. Gastroenterol. 2013, 108, 737–747. [Google Scholar] [CrossRef]
- Simrén, M.; Abrahamsson, H.; Björnsson, E.S. Lipid-induced colonic hypersensitivity in the irritable bowel syndrome: The role of bowel habit, sex, and psychologic factors. Clin. Gastroenterol. Hepatol. 2007, 5, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Chua, C.S.; Huang, S.Y.; Cheng, C.W.; Bai, C.H.; Hsu, C.Y.; Chiu, H.W.; Hsu, J.L. Fatty acid components in Asian female patients with irritable bowel syndrome. Medicine 2017, 96, e9094. [Google Scholar] [CrossRef]
- Clarke, G.; Fitzgerald, P.; Hennessy, A.A.; Cassidy, E.M.; Quigley, E.M.M.; Ross, P.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Marked elevations in pro-inflammatory polyunsaturated fatty acid metabolites in females with irritable bowel syndrome. J. Lipid Res. 2010, 51, 1186–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalak, A.; Mosińska, P.; Fichna, J. Polyunsaturated Fatty Acids and Their Derivatives: Therapeutic Value for Inflammatory, Functional Gastrointestinal Disorders, and Colorectal Cancer. Front. Pharmacol. 2016, 7, 459. [Google Scholar] [CrossRef] [Green Version]
- Khomova, T.V.; Gusakova, S.D.; Glushenkova, A.I. Lipids of the processing wastes from some medicinal plants. Chem Nat. Compd. 1996, 32, 14–18. [Google Scholar] [CrossRef]
- Azwanida, N.N. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015, 4, 3. [Google Scholar] [CrossRef]
- Ormarsson, O.T.; Geirsson, T.; Bjornsson, E.S.; Jonsson, T.; Moller, P.; Loftsson, T.; Stefansson, E. Clinical Trial: Marine Lipid Suppositories as Laxatives. Mar. Drugs. 2012, 10, 2047–2054. [Google Scholar] [CrossRef] [PubMed]
- Ostlund, R.E.; Racette, S.B.; Okeke, A.; Stenson, W.F. Phytosterols that are naturally present in commercial corn oil significantly reduce cholesterol absorption in humans. Am. J. Clin. Nutr. 2002, 75, 1000–1004. [Google Scholar] [CrossRef] [PubMed]
- Ríos, J.L. Effects of triterpenes on the immune system. J. Ethnopharmacol. 2010, 128, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Fardiaz, D.; Markakis, P. Oligosaccharides and Protein Efficiency Ratio of Oncom (Fermented Peanut Press Cake). J. Food Sci. 1981, 46, 1970–1971. [Google Scholar] [CrossRef]
- Nyyssölä, A.; Ellilä, S.; Nordlund, E.; Poutanen, K. Reduction of FODMAP content by bioprocessing. Trend Food Sci. Technol. 2020, 99, 257–272. [Google Scholar] [CrossRef]
- Lopes, M.; Miranda, S.M.; Alves, J.M.; Pereira, A.S.; Belo, I. Waste cooking oils as feedstock for lipase and lipid-rich biomass production. Eur. J. Lipid Sci. Technol. 2019, 121, 1800188. [Google Scholar] [CrossRef] [Green Version]
- Gálvez-López, D.; Chávez-Meléndez, B.; Vázquez-Ovando, A.; Rosas-Quijano, R. The metabolism and genetic regulation of lipids in the oleaginous yeast Yarrowia lipolytica. Braz. J. Microbiol. 2019, 50, 23–31. [Google Scholar] [CrossRef]
- Zinjarde, S.S. Food-related applications of Yarrowia lipolytica. Food Chem. 2014, 152, 1–10. [Google Scholar] [CrossRef]
- Edgington-Mitchell, L.E. Pathophysiological roles of proteases in gastrointestinal disease. Am. J. Physiol. Gastroint. Liver Physiol. 2016, 310, G234–G239. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.K.; Dulermo, T.; Ledesma-Amaro, R.; Nic, J.M. Optimization of odd chain fatty acid production by Yarrowia lipolytica. Biotechnol. Biofuels 2018, 11, 158. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Huang, Y.; Lu, L.; Yang, W.; Huang, T.; Lin, Z.; Lin, C.; Kwan, H.; Wong, H.L.; Chen, Y.; et al. Saturated long-chain fatty acid-producing bacteria contribute to enhanced colonic motility in rats. Microbiome 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.A.; Chun-Mei, H.; Khan, N.; Iqbal, A.; Lyu, S.-W.; Shah, F. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids. BioMed Res. Int. 2017, 2017, 7348919. [Google Scholar] [CrossRef]
- Lorente-Cebrián, S.; Costa, A.; Navas-Carretero, S.; Zabala, M.; Laiglesia, L.M.; Martínez, J.A.; Moreno-Aliaga, M.J. An update on the role of omega-3 fatty acids on inflammatory and degenerative diseases. J. Physiol. Biochem. 2015, 71, 341–349. [Google Scholar] [CrossRef]
- Bozzatello, P.; Brignolo, E.; De Grandi, E.; Bellino, S. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data. J. Clin. Med. 2016, 5, 67. [Google Scholar] [CrossRef] [PubMed]
- Khayyat, Y.; Attar, S. Vitamin D Deficiency in Patients with Irritable Bowel Syndrome: Does it Exist? Oman Med. J. 2015, 30, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Hujoel, I.A. Nutritional status in irritable bowel syndrome: A North American population-based study. JGH Open 2020, 4, 656–662. [Google Scholar] [CrossRef] [Green Version]
- Ladabaum, U.; Boyd, E.; Zhao, W.K.; Mannalithara, A.; Sharabidze, A.; Singh, G.; Chung, E.; Levin, T.R. Diagnosis, comorbidities, and management of irritable bowel syndrome in patients in a large health maintenance organization. Clin. Gastroenterol. Hepatol. 2012, 10, 37–45. [Google Scholar] [CrossRef] [Green Version]
- DiNicolantonio, J.J.; Lucan, S.C. Is Fructose Malabsorption a Cause of Irritable Bowel Syndrome? Med. Hypotheses 2015, 85, 295–297. [Google Scholar] [CrossRef] [Green Version]
- Jalili, M.; Vahedi, H.; Poustchi, H.; Hekmatdoost, A. Effects of Vitamin D Supplementation in Patients with Irritable Bowel Syndrome: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Int. J. Prev. Med. 2019, 10, 16. [Google Scholar] [CrossRef]
- Davis, S. Reversal of Irritable Bowel Syndrome, Sleep Disturbance, and Fatigue with an Elimination Diet, Lifestyle Modification, and Dietary Supplements: A Case Report. Integr. Med. Encinitas 2016, 15, 60–66. [Google Scholar]
- Jalili, M.; Vahedi, H.; Poustchi, H.; Hekmatdoost, A. Soy isoflavones and cholecalciferol reduce inflammation, and gut permeability, without any effect on antioxidant capacity in irritable bowel syndrome: A randomized clinical trial. Clin. Nutr. ESPEN 2019, 34, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Ligaarden, S.C.; Farup, P.G. Low intake of vitamin B6 is associated with irritable bowel syndrome symptoms. Nutr. Res. 2011, 31, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Plotnikoff, G.; Barber, M. Refractory Depression, Fatigue, Irritable Bowel Syndrome, and Chronic Pain: A Functional Medicine Case Report. Perm. J. 2016, 20, 15–242. [Google Scholar] [CrossRef] [Green Version]
- El Amrousy, D.; Hassan, S.; El Ashry, H.; Yousef, M.; Hodeib, H. Vitamin D supplementation in adolescents with irritable bowel syndrome: Is it useful? A randomized controlled trial. Saudi J. Gastroenterol. 2018, 24, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Khattak, K.F.; Rahman, T.U. Analysis of vegetable’s peels as a natural source of vitamins and minerals. Intern. Food Res. J. 2017, 24, 292–297. [Google Scholar]
- Ismail, F.; Talpur, F.N.; Memon, A.N. Determination of water soluble vitamin in fruits and vegetables marketed in Sindh, Pakistan. Pak. J. Nutr. 2013, 12, 197–199. [Google Scholar] [CrossRef] [Green Version]
- Hanif, R.; Iqbal, Z.; Iqbal, M.; Hanif, S.; Rasheed, M. Use of vegetables as nutritional food: Role in human health. J. Agric. Biol. Sci. 2006, 1, 18–22. [Google Scholar]
- Podsedek, A. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT Food Sci. Technol. 2007, 40, 1–11. [Google Scholar] [CrossRef]
- Tańska, M.; Roszkowska, B.; Czaplicki, S.; Borowska, E.J.; Bojarska, J.; Dąbrowska, A. Effect of Fruit Pomace Addition on Shortbread Cookies to Improve Their Physical and Nutritional Values. Plant Foods Hum. Nutr. 2016, 71, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Chukwuka, K.S.; Iwuagwu, M.I.; Uka, U.N. Evaluation of nutritional components of Carica papaya L. At different stages of ripening. IOSR J. Pharm. Biol. Sci. 2013, 6, 13–16. [Google Scholar] [CrossRef]
- Oliveira, R.F.F.D.; Kwiatkowski, A.; Oliveira, D.M.; Clemente, E. Physicochemical properties of peels of plum and nectarine ‘Nacional’ and grape ‘Rubi’. Am. J. Res. Commun. 2015, 2, 1–12. [Google Scholar]
- Gonzalez-Aguilar, G.; Robles-Sanchez, R.; Martinez-Tellez, M.; Olivas, G.; Alvarez-Parrilla, E.; De la Rosa, L. Bioactive compounds in fruits: Health benefits and effect of storage conditions. Stewart Postharv Rev. 2008, 4, 1–10. [Google Scholar]
- Amini Khoozani, A.; Birch, J.; Bekhit, A.E.D.A. Production, application and health effects of banana pulp and peel flour in the food industry. J. Food Sci. Technol. 2019, 56, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Pathak, P.D.; Mandavgane, S.A.; Kulkarni, B.D. Waste to Wealth: A Case Study of Papaya Peel. Waste Biomass Valor. 2019, 10, 1755–1766. [Google Scholar] [CrossRef]
- Xu, C.; Sun, R.; Qiao, X.; Xu, C.; Shang, X.; Niu, W.; Chao, Y. Effect of vitamin e supplementation on intestinal barrier function in rats exposed to high altitude hypoxia environment. Korean J. Physiol. Pharmacol. 2014, 18, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Cottrell, J.J.; Furness, J.B.; Rivera, L.R.; Kelly, F.W.; Wijesiriwardana, U.; Pustovit, R.V.; Fothergill, L.J.; Bravo, D.M.; Celi, P.; et al. Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs. Exp. Physiol. 2016, 101, 801–810. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.Y.; Nakatsu, C.H.; Jones-Hall, J.; Kozik, A.; Jiang, Q. Vitamin E alpha- and gamma-tocopherol mitigate colitis, protect intestinal barrier function and modulate the gut microbiota in mice. Free Radic. Biol. Med. 2021, 163, 180–189. [Google Scholar] [CrossRef]
- El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Micronutrients and many important factors that affect the physiological functions of toll-like receptors. Bull. Nat. Res. Cent. 2019, 43, 123. [Google Scholar] [CrossRef] [Green Version]
- Yarandi, S.; Christie, J. High Prevalence of Subclinical Iron Deficiency in Patients with Irritable Bowel Syndrome. Am. J. Gastroenterol. 2014, 109, S541. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J.H.; Wilson, W. Subclinical magnesium deficiency: A principal driver of cardiovascular disease and a public health crisis. Open Heart 2018, 5, e000668. [Google Scholar] [CrossRef]
- Lior, O.; Sklerovsy-Benjaminov, F.; Lish, I.; Konokoff, F.; Naftali, T. Treatment of Irritable Bowel Syndrome with a Combination of Curcumin, Green Tea and Selenomethionine Has a Positive Effect on Satisfaction with Bowel Habits. J. Biosci. Med. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- El-Salhy, M.; Gilja, O.H.; Gundersen, D.; Hatlebakk, J.G.; Hausken, T. Interaction between ingested nutrients and gut endocrine cells in patients with irritable bowel syndrome (review). Int. J. Mol. Med. 2014, 34, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Kardalas, E.; Paschou, S.A.; Anagnostis, P.; Muscogiuri, G.; Siasos, G.; Vryonidou, A. Hypokalemia: A clinical update. Endocr. Connect. 2018, 7, R135–R146. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.K.; Zou, Y.; Li, J.; Xia, B. Irritable Bowel Syndrome (IBS) At a Glance. BJMP 2010, 3, a342. [Google Scholar]
- Cole, J.A.; Rothman, K.J.; Cabral, H.J.; Zhang, Y.; Farraye, F.A. Migraine, fibromyalgia, and depression among people with IBS: A prevalence study. BMC Gastroenterol. 2006, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Kawoos, Y.; Wani, Z.A.; Kadla, S.A.; Shah, I.A.; Hussain, A.; Maqbool Dar, M.; Margoob, M.A.; Sideeq, K. Psychiatric Co-morbidity in Patients with Irritable Bowel Syndrome at a Tertiary Care Center in Northern India. J. Neurogastroenterol. Motil. 2017, 23, 555–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupa-Kozak, U.; Wronkowska, M.; Soral-Śmietana, M. Effect of Buckwheat Flour on Microelements and Proteins Contents in Gluten-Free Bread. Czech J. Food Sci. 2011, 29, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Makharia, A.; Catassi, C.; Makharia, G.K. The Overlap between Irritable Bowel Syndrome and Non-Celiac Gluten Sensitivity: A Clinical Dilemma. Nutrients 2015, 7, 10417–10426. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, C.; Hashimoto, S.; Asada, C.; Nakamura, Y. Evaluation of buckwheat and barley tea wastes as ethanol fermentation substrates. J. Mater. Cycle Waste Manag. 2012, 14, 206–211. [Google Scholar] [CrossRef]
- Shaikhiev, I.G.; Sverguzova, S.V.; Galimova, R.Z.; Grechina, A.S. Using wastes of buckwheat processing as sorption materials for the removal of pollutants from aqueous media: A review. Buildintech Bit 2020. Innov. Technol. Constr. Iop Conf. Ser. Mat. Sci. Eng. 2020, 945, 012044. [Google Scholar] [CrossRef]
- Zemnukhova, L.A.; Tomshich, S.V.; Shkorina, E.D.; Klykov, A.G. Polysaccharides from Buckwheat Production Wastes. Russ. J. Appl. Chem. 2004, 77, 1178–1181. [Google Scholar] [CrossRef]
- Ullah, N.; Ali, J.; Khan, F.; Khurram, M.; Hussain, A.; Rahman, I.U.; Rahman, Z.U.; Ullah, S. Proximate composition, minerals content, antibacterial and antifungal activity evaluation of pomegranate (Punica granatum L.) Peels powder. Middle-East J. Sci. Res. 2012, 11, 396–401. [Google Scholar]
- Achikanu, C.E.; Eze-Steven, P.E.; Ude, C.M.; Ugwuokolie, O.C. Determination of the vitamin and mineral composition of common leafy vegetables in south eastern Nigeria. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 347–353. [Google Scholar]
- Ianiro, G.; Pecere, S.; Giorgio, V.; Gasbarrini, A.; Cammarota, G. Digestive Enzyme Supplementation in Gastrointestinal Diseases. Curr. Drug Metab. 2016, 17, 187–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, D.Y.; Ketwaroo, G.A.; Money, M.E.; Opekun, A.R. Enzyme therapy for functional bowel disease-like post-prandial distress. J. Dig. Dis. 2018, 19, 650–656. [Google Scholar] [CrossRef]
- Spagnuolo, R.; Cosco, C.; Mancina, R.M.; Ruggiero, G.; Garieri, P.; Cosco, V.; Doldo, P. Beta-glucan, inositol and digestive enzymes improve quality of life of patients with inflammatory bowel disease and irritable bowel syndrome. Eur. Rev. Med. Pharmacol. Sci. 2017, 21 (Suppl. 2), 102–107. [Google Scholar]
- Muss, C.; Mosgoeller, W.; Endler, T. Papaya preparation (Caricol®) in digestive disorders. Neuro Endocrinol. Lett. 2013, 34, 38–46. [Google Scholar]
- Parsons, M.E.; Ganellin, C.R. Histamine and its receptors. Br. J. Pharm. 2006, 147 (Suppl. 1), S127–S135. [Google Scholar] [CrossRef] [Green Version]
- Rathnavelu, V.; Alitheen, N.B.; Sohila, S.; Kanagesan, S.; Ramesh, R. Potential role of bromelain in clinical and therapeutic applications. Biomed. Rep. 2016, 5, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Fitzhugh, D.J.; Shan, S.; Dewhirst, M.W.; Hale, L.P. Bromelain treatment decreases neutrophil migration to sites of inflammation. Clin. Immunol. 2008, 128, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Ketnawa, S.; Chaiwut, P.; Rawdkuen, S. Extraction of bromelain from pineapple peels. Food Sci. Technol. Int. Cien. Tecnol. Int. 2011, 17, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Ketnawa, S.; Chaiwut, P.; Rawdkuen, S. Pineapple wastes: A potential source for bromelain extraction. Food Bioprod. Process. 2012, 90, 385–391. [Google Scholar] [CrossRef]
- Balmus, I.M.; Ilie, O.D.; Ciobica, A.; Cojocariu, R.O.; Stanciu, C.; Trifan, A.; Cimpeanu, M.; Cimpeanu, C.; Gorgan, L. Irritable Bowel Syndrome between Molecular Approach and Clinical Expertise-Searching for Gap Fillers in the Oxidative Stress Way of Thinking. Medicina 2020, 56, 38. [Google Scholar] [CrossRef] [Green Version]
- Mete, R.; Tulubas, F.; Oran, M.; Yilmaz, A.; Avci, B.A.; Yildiz, K.; Turan, C.B.; Gurel, A. The role of oxidants and reactive nitrogen species in irritable bowel syndrome: A potential etiological explanation. Med. Sci. Monit. 2013, 19, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Samson, S.E.; Grover, A.K. Antioxidant Supplements and Gastrointestinal Diseases: A Critical Appraisal. Med. Princ. Pract. 2017, 26, 201–217. [Google Scholar] [CrossRef]
- Balmus, I.M.; Ciobica, A.; Trifan, A.; Stanciu, C. The implications of oxidative stress and antioxidant therapies in Inflammatory Bowel Disease: Clinical aspects and animal models. Saudi J. Gastroenterol. 2016, 22, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Moura, F.A.; de Andrade, K.Q.; dos Santos, J.A.F.; Pimentel Araújo, O.R.; Goulart, M.O.F. Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol. 2015, 6, 617–639. [Google Scholar] [CrossRef] [Green Version]
- Cojocariu, R.O.; Balmus, I.M.; Lefter, R.; Hritcu, L.; Ababei, D.C.; Ciobica, A.; Copaci, S.; Mot, S.E.L.; Copolovici, L.; Copolovici, D.M.; et al. Camelina sativa Methanolic and Ethanolic Extract Potential in Alleviating Oxidative Stress, Memory Deficits, and Affective Impairments in Stress Exposure-Based Irritable Bowel Syndrome Mouse Models. Oxid. Med. Cell. Longev. 2020, 2020, 9510305. [Google Scholar] [CrossRef]
- Mierina, I.; Adere, L.; Krasauska, K.; Zoltnere, E.; Skrastiņa, D.; Jure, M. Antioxidant Properties of Camelina sativa Oil and Press-Cakes. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2018, 71, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Paulet, M.; Ciobica, A.; Olariu, L.; Ene, M.D.; Antioch, I.; Ababei, D.; Craciun, L.; Abdi, A.; Rosoiu, N. Some preliminary results regarding the effects of grape pomace on memory and anxiety in mice. Rom. Biotechnol. Lett. 2020, 25, 1843–1850. [Google Scholar] [CrossRef]
- Sousa, E.C.; Uchôa-Thomaz, A.M.; Carioca, J.O.; Morais, S.M.; Lima, A.D.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.; Rodrigues, A.L.; Rodrigues, S.P.; et al. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. Camp. 2014, 34, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tena, N.; Martín, J.; Asuero, A.G. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef] [PubMed]
- Eskicioglu, V.; Kamiloglu, S.; Nilufer-Erdil, D. Antioxidant Dietary Fibres: Potential Functional Food Ingredients from Plant Processing By-Products. Czech J. Food Sci. 2015, 33, 487–499. [Google Scholar] [CrossRef] [Green Version]
- Nagarajaiah, S.B.; Prakash, J. Chemical Composition and Bioactivity of Pomace from Selected Fruits. Int. J. Fruit Sci. 2006, 16, 423–443. [Google Scholar] [CrossRef]
- Pieszka, M.; Gogol, P.; Pietras, M.; Pieszka, M. Valuable Components of Dried Pomaces of Chokeberry, Black Currant, Strawberry, Apple and Carrot as a Source of Natural Antioxidants and Nutraceuticals in the Animal Diet. Ann. Anim. Sci. 2015, 15, 475–491. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Shin, S.K.; Kim, M.R. Antioxidant Activities and Quality Characteristics of Bread Added with Dried Mulberry Pomace. Korean Soc. Food Cook. Sci. 2013, 29, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Gulsunoglu, Z.; Karbancioglu-Guler, F.; Raes, K.; Kilic-Akyilmaz, M. Soluble and insoluble-bound phenolics and antioxidant activity of various industrial plant wastes. Int. J. Food Prop. 2019, 22, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
- Yu, J. Nutritional and Sensory Quality of Bread Containing Different Quantities of Grape Pomace from Different Grape Cultivars. EC Nutr. 2015, 2, 291–301. [Google Scholar]
- Ajila, C.M.; Leelavathi, K.; Prasada Rao, U.J.S. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J. Cereal Sci. 2008, 48, 319–326. [Google Scholar] [CrossRef]
- Ajila, C.M.; Leelavathi, K.; Prasada Rao, U.J.S. Mango peel powder: A potential source of antioxidant and dietary fiber in macaroni preparations. Innov. Food Sci. Emerg. Technol. 2008, 11, 219–224. [Google Scholar] [CrossRef]
- Gumul, D.; Korus, A.; Ziobro, R. Extruded Preparations with Sour Cherry Pomace Influence Quality and Increase the Level of Bioactive Components in Gluten-Free Breads. Int. J. Food Sci. 2020, 2020, 8024398. [Google Scholar] [CrossRef] [PubMed]
- Goranova, Z.; Baeva, M.; Vrancheva, R.; Petrova, T.; Stefanov, S. Antioxidant properties and color characteristics of sponge cakes containing functional components. Ukr. Food J. 2019, 8, 260–270. [Google Scholar] [CrossRef]
- Tolve, R.; Simonato, B.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat Bread Fortification by Grape Pomace Powder: Nutritional, Technological, Antioxidant, and Sensory Properties. Foods 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, Y.; Zhao, Y.; Wang, D.; Wang, W. Influence of antioxidant dietary fiber on dough properties and bread qualities: A review. J. Funct. Foods 2021, 80, 104434. [Google Scholar] [CrossRef]
- Quiles, A.; Campbell, G.M.; Struck, S.; Rohm, H.; Hernando, I. Fiber from fruit pomace: A review of applications in cereal-based products. Food Rev. Int. 2016, 34, 162–181. [Google Scholar] [CrossRef]
- Tomsone, L.; Galoburda, R.; Kruma, Z.; Majore, K. Physicochemical Properties of Biscuits Enriched with Horseradish (Armoracia rusticana L.) Products and Bioaccessibility of Phenolics after Simulated Human Digestion. Pol. J. Food Nutr. Sci. 2020, 70, 419–428. [Google Scholar] [CrossRef]
- Sahni, P.; Shere, D.M. Physico-chemical and sensory characteristics of beet root pomace powder incorporated fibre rich cookies. Int. J. Food Ferment. Technol. 2016, 6, 309. [Google Scholar] [CrossRef]
- Moisa, C.; Copolovici, L.; Bungău, S.; Pop, G.; Imbrea, I.; Lupitu, A.; Nemeth, S.; Copolovici, D. Wastes Resulting from Aromatic Plants Distillation—Bio-Sources Of Antioxidants And Phenolic Compounds with Biological Active Principles. Farmacia 2018, 66, 289–295. [Google Scholar]
- Yantcheva, N.S.; Vasileva, I.N.; Denev, P.N.; Fidan, H.N.; Denkova, R.S.; Slavov, A.M. Utilization of essential oil industry Chamomile wastes as a source of polyphenols. Bulg. Chem. Commun. 2019, 51, 178–183. [Google Scholar]
- Ning, J.; Hou, G.G.; Sun, J.; Wan, X.; Duba, A. Effect of green tea powder on the quality attributes and antioxidant activity of whole-wheat flour pan bread. LWT Food Sci. Technol. 2017, 79, 342–348. [Google Scholar] [CrossRef]
- Da Rosa Couto, R.; Comin, J.J.; Souza, M.; Ricachenevsky, F.K.; Lana, M.A.; Gatiboni, L.C.; Ceretta, C.A.; Brunetto, G. Should Heavy Metals Be Monitored in Foods Derived from Soils Fertilized with Animal Waste? Front. Plant Sci. 2018, 9, 732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raklami, A.; Tahiri, A.; Bechtaoui, N.; Abdelhay, E.G.; Pajuelo, E.; Baslam, M.; Meddich, A.; Oufdou, K. Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms. J. Environ. Sci. 2021, 99, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Thakali, A.; MacRae, J.D. A review of chemical and microbial contamination in food: What are the threats to a circular food system? Environ. Res. 2021, 194, 110635. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balmus, I.-M.; Copolovici, D.; Copolovici, L.; Ciobica, A.; Gorgan, D.L. Biomolecules from Plant Wastes Potentially Relevant in the Management of Irritable Bowel Syndrome and Co-Occurring Symptomatology. Molecules 2022, 27, 2403. https://doi.org/10.3390/molecules27082403
Balmus I-M, Copolovici D, Copolovici L, Ciobica A, Gorgan DL. Biomolecules from Plant Wastes Potentially Relevant in the Management of Irritable Bowel Syndrome and Co-Occurring Symptomatology. Molecules. 2022; 27(8):2403. https://doi.org/10.3390/molecules27082403
Chicago/Turabian StyleBalmus, Ioana-Miruna, Dana Copolovici, Lucian Copolovici, Alin Ciobica, and Dragos Lucian Gorgan. 2022. "Biomolecules from Plant Wastes Potentially Relevant in the Management of Irritable Bowel Syndrome and Co-Occurring Symptomatology" Molecules 27, no. 8: 2403. https://doi.org/10.3390/molecules27082403
APA StyleBalmus, I. -M., Copolovici, D., Copolovici, L., Ciobica, A., & Gorgan, D. L. (2022). Biomolecules from Plant Wastes Potentially Relevant in the Management of Irritable Bowel Syndrome and Co-Occurring Symptomatology. Molecules, 27(8), 2403. https://doi.org/10.3390/molecules27082403