Discovery of a Novel Inhibitor Structure of Mycobacterium tuberculosis Isocitrate Lyase
Abstract
:1. Introduction
2. Results
2.1. Virtual Screening
2.2. Enzyme Inhibitory Activity Assay
2.3. Antibacterial Activity Assay
2.4. Pharmacokinetics of Daphnetin
2.5. Molecular Dynamics Simulation
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Methods
4.2.1. Protein Preparation
4.2.2. Ligand Preparation
4.2.3. Virtual Screening
4.2.4. Enzyme Inhibitory Activity Assay
4.2.5. Antibacterial Activity Assay
4.2.6. Pharmacokinetic Prediction and Dynamics Simulation of Hits
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Dheda, K.; Gumbo, T.; Maartens, G.; Dooley, K.E.; McNerney, R.; Murray, M.; Furin, J.; Nardell, E.A.; London, L.; Lessem, E.; et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med. 2017, 5, 291–360. [Google Scholar] [CrossRef]
- Faridgohar, F. Finding new ways to combat multidrug-resistant Tuberculosis. Microb. Drug Resist. 2020, 26, 71–80. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2020. Available online: https://apps.who.int/iris/handle/10665/336069 (accessed on 7 April 2021).
- Bhusal, R.P.; Bashiri, G.; Kwai, B.X.C.; Sperry, J.; Leung, I.K.H. Targeting isocitrate lyase for the treatment of latent tuberculosis. Drug Discov. Today 2017, 22, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Gideon, H.P.; Flynn, J.L. Latent tuberculosis: What the host “sees”? Immunol. Res. 2011, 50, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Campanico, A.; Harjivan, S.G.; Warner, D.F.; Moreira, R.; Lopes, F. Addressing Latent Tuberculosis: New Advances in Mimicking the Disease, Discovering Key Targets, and Designing Hit Compounds. Int. J. Mol. Sci. 2020, 21, 8854. [Google Scholar] [CrossRef]
- Grace, A.G.; Mittal, A.; Jain, S.; Tripathy, J.P.; Satyanarayana, S.; Tharyan, P.; Kirubakaran, R. Shortened treatment regimens versus the standard regimen for drug-sensitive pulmonary tuberculosis. Cochrane Database Syst. Rev. 2019, 12, CD012918. [Google Scholar] [CrossRef]
- Shi, L.; Sohaskey, C.D.; Kana, B.D.; Dawes, S.; North, R.J.; Mizrahi, V.; Gennaro, M.L. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc. Natl. Acad. Sci. USA 2005, 102, 15629–15634. [Google Scholar] [CrossRef] [Green Version]
- Sohaskey, C.D. Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. J. Bacteriol. 2008, 190, 2981–2986. [Google Scholar] [CrossRef] [Green Version]
- Sohaskey, C.D.; Wayne, L.G. Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J. Bacteriol. 2003, 185, 7247–7256. [Google Scholar] [CrossRef] [Green Version]
- Ibeji, C.U.; Salleh, N.A.M.; Sum, J.S.; Ch’ng, A.C.W.; Lim, T.S.; Choong, Y.S. Demystifying the catalytic pathway of Mycobacterium tuberculosis isocitrate lyase. Sci. Rep. 2020, 10, 18925. [Google Scholar] [CrossRef]
- Vanni, P.; Giachetti, E.; Pinzauti, G.; McFadden, B.A. Comparative structure, function and regulation of isocitrate lyase, an important assimilatory enzyme. Comp. Biochem. Physiol. B 1990, 95, 431–458. [Google Scholar] [CrossRef]
- Giffin, M.M.; Modesti, L.; Raab, R.W.; Wayne, L.G.; Sohaskey, C.D. Ald of Mycobacterium tuberculosis encodes both the alanine dehydrogenase and the putative glycine dehydrogenase. J. Bacteriol. 2012, 194, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Honer Zu Bentrup, K.; Miczak, A.; Swenson, D.L.; Russell, D.G. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J. Bacteriol. 1999, 181, 7161–7167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betts, J.C.; Lukey, P.T.; Robb, L.C.; McAdam, R.A.; Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 2002, 43, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Gould, T.A.; van de Langemheen, H.; Munoz-Elias, E.J.; McKinney, J.D.; Sacchettini, J.C. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol. Microbiol. 2006, 61, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Elias, E.J.; McKinney, J.D. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med. 2005, 11, 638–644. [Google Scholar] [CrossRef] [Green Version]
- Nandakumar, M.; Nathan, C.; Rhee, K.Y. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat. Commun. 2014, 5, 4306. [Google Scholar] [CrossRef]
- Sharma, R.; Das, O.; Damle, S.G.; Sharma, A.K. Isocitrate lyase: A potential target for anti-tubercular drugs. Recent Pat. Inflamm. Allergy Drug Discov. 2013, 7, 114–123. [Google Scholar] [CrossRef]
- Ko, Y.H.; McFadden, B.A. Alkylation of isocitrate lyase from Escherichia coli by 3-bromopyruvate. Arch. Biochem. Biophys. 1990, 278, 373–380. [Google Scholar] [CrossRef]
- McFadden, B.A.; Purohit, S. Itaconate, an isocitrate lyase-directed inhibitor in Pseudomonas indigofera. J. Bacteriol. 1977, 131, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Schloss, J.V.; Cleland, W.W. Inhibition of isocitrate lyase by 3-nitropropionate, a reaction-intermediate analogue. Biochemistry 1982, 21, 4420–4427. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Xie, J.P.; Yan, J.F.; Wang, H.H.; Hu, C.H. A high throughput screening approach to identify isocitrate lyase inhibitors from traditional Chinese medicine sources. Drug Dev. Res. 2006, 67, 818–823. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, S.; Deng, Q.; Li, X.; Meng, J.; Guan, Y.; Li, C.; Xiao, C. Identification of a novel inhibitor of isocitrate lyase as a potent antitubercular agent against both active and non-replicating Mycobacterium tuberculosis. Tuberculosis 2016, 97, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Sriram, D.; Yogeeswari, P.; Methuku, S.; Vyas, D.R.; Senthilkumar, P.; Alvala, M.; Jeankumar, V.U. Synthesis of various 3-nitropropionamides as Mycobacterium tuberculosis isocitrate lyase inhibitor. Bioorgan. Med. Chem. Lett. 2011, 21, 5149–5154. [Google Scholar] [CrossRef]
- Liu, X.; Zang, Y.; Sun, B.; Yin, Y. Optimization of phage heptapeptide library-screening process for developing inhibitors of the isocitrate lyase homologue from Mycobacterium tuberculosis. Med. Chem. Res. 2013, 23, 2543–2553. [Google Scholar] [CrossRef]
- Wu, G.; Robertson, D.H.; Brooks, C.L.; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm. J. Comput. Chem. 2003, 24, 1549–1562. [Google Scholar] [CrossRef]
- Lee, Y.V.; Choi, S.; Wahab, H.; Lim, T.S.; Choong, Y.S. Applications of Ensemble Docking in Potential Inhibitor Screening for Mycobacterium tuberculosis Isocitrate Lyase Using a Local Plant Database. J. Chem. Inf. Modeling 2019, 59, 2487–2495. [Google Scholar] [CrossRef]
- Tiwari, A.; Kumar, A.; Srivastava, G.; Sharma, A. Screening of Anti-mycobacterial Phytochemical Compounds for Potential Inhibitors against Mycobacterium Tuberculosis Isocitrate Lyase. Curr. Top. Med. Chem. 2019, 19, 600–608. [Google Scholar] [CrossRef]
- Lee, H.J.; Jeong, P.; Moon, Y.; Choi, J.; Heo, J.D.; Kim, Y.C.; Han, S.Y. Characterization of LDD-2633 as a Novel RET Kinase Inhibitor with Anti-Tumor Effects in Thyroid Cancer. Pharmaceuticals 2021, 14, 38. [Google Scholar] [CrossRef]
- Liu, H.; Song, D.; Zhang, Y.; Yang, S.; Luo, R.; Chen, H.F. Extensive tests and evaluation of the CHARMM36IDPSFF force field for intrinsically disordered proteins and folded proteins. Phys. Chem. Chem. Phys. 2019, 21, 21918–21931. [Google Scholar] [CrossRef]
- Mu, J.; Liu, H.; Zhang, J.; Luo, R.; Chen, H.F. Recent Force Field Strategies for Intrinsically Disordered Proteins. J. Chem. Inf. Modeling 2021, 61, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.U.; Rehman, A.U.; Liu, H.; Chen, H.F. Comparison and Evaluation of Force Fields for Intrinsically Disordered Proteins. J. Chem. Inf. Modeling 2020, 60, 4912–4923. [Google Scholar] [CrossRef] [PubMed]
- Bernard, R.B.; Robert, E.B.; Barry, D.O.; David, J.S. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 1983, 4, 187–217. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, S.; Hoener zu Bentrup, K.; McKinney, J.D.; Russell, D.G.; Jacobs, W.R., Jr.; Sacchettini, J.C. Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nat. Struct. Mol. Biol. 2000, 7, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.T.; Joksovic, P.M.; Su, P.; Kang, H.W.; Van Deusen, A.; Baumgart, J.P.; David, L.S.; Snutch, T.P.; Barrett, P.Q.; Lee, J.H.; et al. Molecular mechanisms of subtype-specific inhibition of neuronal T-type calcium channels by ascorbate. J. Neurosci. 2007, 27, 12577–12583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Vilas, J.A.; Quesada, A.R.; Medina, M.A. 4-methylumbelliferone inhibits angiogenesis in vitro and in vivo. J. Agric. Food Chem. 2013, 61, 4063–4071. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, H.L.; Kim, S.J.; Chung, W.S.; Kim, S.S.; Um, J.Y. Inhibitory effects of chelidonic acid on IL-6 production by blocking NF-kappaB and caspase-1 in HMC-1 cells. Immunopharmacol. Immunotoxicol. 2011, 33, 614–619. [Google Scholar] [CrossRef]
- Amaravani, M.; Prasad, N.K.; Ramakrishna, V. COX-2 structural analysis and docking studies with gallic acid structural analogues. Springerplus 2012, 1, 58. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.S.; Oh, J.S.; Kang, I.C.; Hong, S.J.; Choi, C.H. Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J. Microbiol. 2008, 46, 744–750. [Google Scholar] [CrossRef]
- Liao, W.C.; Huang, Y.T.; Lu, L.P.; Huang, W.Y. Antioxidant Ability and Stability Studies of 3-O-Ethyl Ascorbic Acid, a Cosmetic Tyrosinase Inhibitor. J. Cosmet. Sci. 2018, 69, 233–243. [Google Scholar]
- Ohtoyo, M.; Tamura, M.; Machinaga, N.; Muro, F.; Hashimoto, R. Scintillation Proximity Assay to Detect the Changes in Cellular Dihydrosphingosine 1-Phosphate Levels. Lipids 2016, 51, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.B.; Zhao, Y.N.; Zhang, K.; Mack, P. Daphnetin, One of Coumarin Derivatives, is a Protein Kinase Inhibitor. Biochem. Biophys. Res. Commun. 1999, 260, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Li, L.Z.; Song, S.J. Daphne giraldii Nitsche (Thymelaeaceae): Phytochemistry, pharmacology and medicinal uses. Phytochemistry 2020, 171, 112231. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Jiang, X.; Cao, H.; Shuai, W.; Zhang, L.; Wang, G.; Quan, D.; Jiang, X. Daphnetin Preconditioning Decreases Cardiac Injury and Susceptibility to Ventricular Arrhythmia following Ischaemia-Reperfusion through the TLR4/MyD88/NF-Kappab Signalling Pathway. Pharmacology 2021, 106, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Chen, F.; Fang, H.; Mi, J.; Qi, Q.; Yang, M. Daphnetin inhibits proliferation and inflammatory response in human HaCaT keratinocytes and ameliorates imiquimod-induced psoriasis-like skin lesion in mice. Biol. Res. 2020, 53, 48. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Pan, J.; Liu, H.; Lin, R.; Chen, Y.; Zhang, C. Daphnetin inhibits the survival of hepatocellular carcinoma cells through regulating Wnt/beta-catenin signaling pathway. Drug Dev. Res. 2022, 1–9. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Su, R.J.; Xu, G.L.; Liang, S.L.; Gao, C.X. Clinical observation of 111 cases of angina pectoris with coronary heart disease treated by daphnetin. Chin. J. Gerontol. 1988, 8, 53. [Google Scholar]
- Li, X.M.; Guo, S.F.; Liu, F.T. Clinical observation of 112 cases of thromboangiitis obliterans treated by daphnetin. Jilin Med. J. 1986, 7, 28–29. [Google Scholar]
- Chiang, C.C.; Cheng, M.J.; Peng, C.F.; Huang, H.Y.; Chen, I.S. A novel dimeric coumarin analog and antimycobacterial constituents from Fatoua pilosa. Chem. Biodivers. 2010, 7, 1728–1736. [Google Scholar] [CrossRef]
- Miri, R.; Nejati, M.; Saso, L.; Khakdan, F.; Parshad, B.; Mathur, D.; Parmar, V.S.; Bracke, M.E.; Prasad, A.K.; Sharma, S.K.; et al. Structure-activity relationship studies of 4-methylcoumarin derivatives as anticancer agents. Pharm. Biol. 2016, 54, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Nagy, N.; Kuipers, H.F.; Frymoyer, A.R.; Ishak, H.D.; Bollyky, J.B.; Wight, T.N.; Bollyky, P.L. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front. Immunol. 2015, 6, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. Biomed. Res. Int. 2013, 2013, 963248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Ren, Q.C.; Xu, L.; Feng, L.S. Coumarin derivatives and their antituberculous activity. World Notes Antibiot. 2017, 38, S4–S10. [Google Scholar] [CrossRef]
- Mangasuli, S.N.; Hosamani, K.M.; Devarajegowda, H.C.; Kurjogi, M.M.; Joshi, S.D. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents. Eur. J. Med. Chem. 2018, 146, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.Y.; Jiang, X.; Zeng, H.W.; Yang, X.L. Immobilization of Isocitrate lyase on Amphoteric Ion-rich Hydrophilic Magnetic Beads. J. Food Sci. Biotechnol. 2021; accepted. [Google Scholar]
- Giachetti, E.; Pinzauti, G.; Vanni, P. A new continuous optical assay for isocitrate lyase. Experientia 1984, 40, 227–228. [Google Scholar] [CrossRef]
Compound | Structure | Inhibition Rate % | LibDock Score | -Interaction Energy (kcal/mol) | Natural Resource | Reported Target Name |
---|---|---|---|---|---|---|
L-Ascorbic acid | 20.2 a | 97.1 | 60.0 | Ginkgo Semen, Herba Patriniae, Corayceps, etc. | Cav3.2 channels [36] | |
4-Methylumbelliferone | 25.6 a | 84.5 | 55.4 | Olibanun | Hyaluronic acid [37] | |
Quinic acid | 46.0 a | 99.8 | 52.7 | Boehmeriae Rhizoma Et Radix | - | |
L-Shikimic acid | 17.4 a | 94.4 | 52.3 | Anisi Stellati Fructus | - | |
Chelidonic acid | 18.5 a | 95.3 | 52.2 | Chelidonium majus L. | NF-κB [38] | |
Gallic acid | 28.8 a | 98.6 | 51.6 | Palm leaf rhubarb, eucalyptus urophylla, dogwood, etc. | COX-2 [39] | |
Phosphatidic acid | 34.1 b | 99.8 | 57 | Angelicae Sinensis Radix and Panacis Quinquefolii Radix | - | |
Methyl gallate | 27.4 b | 95.7 | 54.1 | Paeoniae Radix Alba, Radix Paeoniae Rubra, Canavaliae Semen, etc. | Bacterial [40] | |
3-O-Ethy-L-ascorbic acid | 21.9 b | 93.9 | 52.9 | Hippophae Fructus and Sapindi Mukorossiperic Arpium | Tyrosinase [41] | |
4-Deoxypyridoxine 5′-phosphate | 3.3 b | 93.2 | 55.6 | Hippophae Fructus | Sphingosine 1-phosphate [42] | |
Daphnetin | 100 b | 94.8 | 56 | Daphne Korean Nakai | EGFR, PKA, and PKC [43] | |
3-BP | 63.6 ± 2.8 (μM) c | 55.7 | 41 | - | MtICL [20] | |
IA | 38.6 ± 0.8 (μM) c | 72.9 | 54 | - | MtICL [21] |
Compound | MIC (μg/mL) |
---|---|
Daphnetin | 128 |
3-BP | 256 |
IA | >256 |
Streptomycin | 0.5 |
Levofloxacin | <0.125 |
Compound | Absorption Level | Solubility Level | BBB Level | CYP2D6 | Hepatotoxic | PPB |
---|---|---|---|---|---|---|
Daphnetin | 0 | 4 | 3 | FALSE | TRUE | FALSE |
3-BP | 1 | 5 | 4 | FALSE | TRUE | FALSE |
IA | 3 | 5 | 4 | FALSE | FALSE | FALSE |
Compound | Ames | Rat Oral LD50 (mg/kg_Body_Weight) | Rat Inhalational LC50 (mg/m3/h) | DTP Probability |
---|---|---|---|---|
Daphnetin | Non-mutagen | 474.36 | 2305.35 | 0.61 |
3-BP | Non-mutagen | 219.28 | 2599.56 | 0.53 |
IA | Non-mutagen | 1209.33 | 2050.05 | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, C.; Jiang, Q.; Jiang, X.; Zeng, H.; Wu, Q.; Yu, Y.; Yang, X. Discovery of a Novel Inhibitor Structure of Mycobacterium tuberculosis Isocitrate Lyase. Molecules 2022, 27, 2447. https://doi.org/10.3390/molecules27082447
Duan C, Jiang Q, Jiang X, Zeng H, Wu Q, Yu Y, Yang X. Discovery of a Novel Inhibitor Structure of Mycobacterium tuberculosis Isocitrate Lyase. Molecules. 2022; 27(8):2447. https://doi.org/10.3390/molecules27082447
Chicago/Turabian StyleDuan, Changyuan, Qihua Jiang, Xue Jiang, Hongwei Zeng, Qiaomin Wu, Yang Yu, and Xiaolan Yang. 2022. "Discovery of a Novel Inhibitor Structure of Mycobacterium tuberculosis Isocitrate Lyase" Molecules 27, no. 8: 2447. https://doi.org/10.3390/molecules27082447
APA StyleDuan, C., Jiang, Q., Jiang, X., Zeng, H., Wu, Q., Yu, Y., & Yang, X. (2022). Discovery of a Novel Inhibitor Structure of Mycobacterium tuberculosis Isocitrate Lyase. Molecules, 27(8), 2447. https://doi.org/10.3390/molecules27082447