Carotenoid Production from Microalgae: The Portuguese Scenario
Abstract
:1. Introduction
2. Concept of (Blue) Biorefinery
3. Microalgae Biorefineries in Portugal: Past, Present, and Future
3.1. Blue Biorefinery Initiatives and Activities in Portugal
3.2. Main Sources of the Marine Biomass in Portugal
3.3. Main Areas of Application
3.4. Challenges Faced by the Sector in Portugal
- Science, technology, and logistics, linked to insufficient knowledge, training, scientific development, or capacity to create, improve, scale up, transport, and accommodate perishable (marine) raw materials or to the ability to implement products, services, or processes throughout the value chain. For instance, securing or developing a reliable, replicable, continuous, and sustainable biomass source based on marine resources is the most severe bottleneck jeopardizing the development of marine-derived pharmaceuticals.
- Cooperation, associated with limited knowledge transfer and communication between the national agents holding the data, knowledge, or infrastructure that could promote innovation or overcome barriers impeding the creation or development of a product or service is among the most severe challenges for Portugal.
- Communication and marketing, related with communication throughout the value chain, together with the need for marketing skills and expertise should be improved.
- Market and consumer demand, addressing the knowledge on the development and implementation of business plans that address market and consumer demands as well as competitor products.
- Funding and cost of operations, referring to available funding schemes, access to them and their appropriateness, along with the development of cost-efficient processes. Here, it is important to highlight how access to blue resources is often difficult or expensive and though specific public funding schemes may propose a swift solution, these are generally not suitable as a continuous stream of reliable funding.
- Legal and regulatory, connected to licensing and regulation agendas required to start new enterprises, develop and commercialize new products or services while addressing intellectual property issues. Hurdles in dealing with public authorities or applicable regulatory authorities are also included. This is frequently cited as the deciding reason for failing to attract private investment due to stringent Portuguese rules.
3.5. Actions towards the Blue Bioeconomy
- Public support for the creation of a web-based portal to gather and group information on all the blue bioeconomy-concerned entities, their expertise, products, and services.
- Development of an infrastructure to centralize demand for blue bioresources, prototyping and pilot-scaling up facilities, such as downstream processing and biorefineries. The Blue Demo Network (initiative promoted by the BLUEBIO ALLIANCE) could promote this action through its continuous financial support.
- Revision of training programs for young scientists in blue bio-based courses to include training sessions targeting industry and economy demands, namely entrepreneurship, management, and industrial skills.
- Simplification of national funding schemes, through the submission process for projects exerted in two stages: the first, simpler version, followed by a full project proposal submission conditioned by approval in stage one, similar to EU instruments such as the SME Instrument [38]. This can potentially reduce the time invested in such complex funding applications, as well as the time and financial resources for the evaluation.
- Creation of blue bioeconomy-related acceleration and follow-up programs. An open innovation project calls in and the industry challenges stakeholders throughout the value chain to address their needs through competitive calls and funding. Initiatives for funding high-risk experimentation and exploratory projects should also be promoted.
4. Carotenoids Found in Microalgae
4.1. β-Carotene
4.2. Lutein and Zeaxanthin
5. Cell Disruption, Extraction, and Purification Techniques
5.1. Cell Disruption
5.2. Extraction
5.2.1. Organic Solvents
5.2.2. Surfactant Solvents
5.2.3. Ionic Liquids and Deep Eutectic Solvents
5.2.4. Supercritical Fluid Extraction
5.3. Fractionation/Purification
5.3.1. Protein Removal
5.3.2. Chromatography
5.3.3. Liquid–Liquid Extraction
5.3.4. Aqueous Biphasic Systems
5.3.5. Integrated Techniques—Example
6. Conclusions
- The microalgae business is only competitive when all the fractions are valorized. For instance, mature infrastructure for algae production for biofuels can be extended to pigment production, further reinforcing a multiproduct bioeconomy which prioritizes an initial recovery of high-value compounds followed by valorization of the remaining fractions (biorefinery concept).
- Numerous technologies at the laboratory scale could efficiently extract carotenoids from microalgae. Nevertheless, new funding opportunities must be created to allow scalability studies. To this end, supercritical extraction stands out due to the use of nontoxic solvents, although poorly selective, and is being already implemented for industrial application on food production.
- More work needs to be performed to address the separation and polishing step as the final extract is often of too low purity compared to synthetic pigments.
- The governmental incentives already implemented (projects in collaboration between universities and industries supported by regional governments and the Recovery and Resilience Plan (RRP) are good examples) requiring fostering of a healthy dialog between the academia and the industry to develop a biorefinery that targets higher-grade compounds needs to continue and be reinforced in the coming years.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.J.; Chang, J.S. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 2017, 229, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Baicha, Z.; Salar-García, M.J.; Ortiz-Martínez, V.M.; Hernández-Fernández, F.J.; de los Ríos, A.P.; Labjar, N.; Lotfi, E.; Elmahi, M. A critical review on microalgae as an alternative source for bioenergy production: A promising low cost substrate for microbial fuel cells. Fuel Process. Technol. 2016, 154, 104–116. [Google Scholar] [CrossRef]
- Ventura, S.P.M.; Nobre, B.P.; Ertekin, F.; Hayes, M.; Garcia-Vaquero, M.; Vieira, F.; Kocj, M.; Gouveia, L.; Aires-Barros, M.R.; Palavra, A.M.F. Extraction of added-value compounds from microalgae. In Microalgae-Based Biofuels and Bioproducts; Woodhead Publishing: Sawston, UK, 2017; pp. 461–483. ISBN 9780081010235. [Google Scholar]
- Arora, P.; Chance, R.R.; Hendrix, H.; Realff, M.J.; Thomas, V.M.; Yuan, Y. Greenhouse Gas Impact of Algal Bio-Crude Production for a Range of CO2 Supply Scenarios. Appl. Sci. 2021, 11, 11931. [Google Scholar] [CrossRef]
- Valdovinos-García, E.M.; Barajas-Fernández, J.; de los Ángeles Olán-Acosta, M.; Petriz-Prieto, M.A.; Guzmán-López, A.; Bravo-Sánchez, M.G. Techno-Economic Study of CO2 Capture of a Thermoelectric Plant Using Microalgae (Chlorella vulgaris) for Production of Feedstock for Bioenergy. Energies 2020, 13, 413. [Google Scholar] [CrossRef] [Green Version]
- Dębowski, M.; Krzemieniewski, M.; Zieliński, M.; Kazimierowicz, J. Immobilized Microalgae-Based Photobioreactor for CO2 Capture (IMC-CO2PBR): Efficiency Estimation, Technological Parameters, and Prototype Concept. Atmosphere 2021, 12, 1031. [Google Scholar] [CrossRef]
- Han, W.; Mao, Y.; Wei, Y.; Shang, P.; Zhou, X. Bioremediation of Aquaculture Wastewater with Algal-Bacterial Biofilm Combined with the Production of Selenium Rich Biofertilizer. Water 2020, 12, 2071. [Google Scholar] [CrossRef]
- Debowski, M.; Zielinski, M.; Kisielewska, M.; Kazimierowicz, J.; Dudek, M.; Swica, I.; Rudnicka, A. The Cultivation of Lipid-Rich Microalgae Biomass as Anaerobic Digestate Valorization Technology—A Pilot-Scale Study. Processes 2020, 8, 517. [Google Scholar] [CrossRef]
- Hawrot-Paw, M.; Koniuszy, A.; Gałczynska, M.; Zajac, G.; Szyszlak-Bargłowicz, J. Production of Microalgal Biomass Using Aquaculture Wastewater as Growth Medium. Water 2019, 12, 106. [Google Scholar] [CrossRef] [Green Version]
- Sathasivam, R.; Radhakrishnan, R.; Hashem, A.; Abd_Allah, E.F. Microalgae metabolites: A rich source for food and medicine. Saudi J. Biol. Sci. 2017, 26, 709–722. [Google Scholar] [CrossRef]
- Naghshbandi, M.P.; Tabatabaei, M.; Aghbashlo, M.; Aftab, M.N.; Iqbal, I. Metabolic Engineering of Microalgae for Biofuel Production; Humana Press: Totowa, NJ, USA, 2019; pp. 1–20. [Google Scholar]
- Markou, G.; Nerantzis, E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol. Adv. 2013, 31, 1532–1542. [Google Scholar] [CrossRef]
- Jayaseelan, M.; Usman, M.; Somanathan, A.; Palani, S.; Muniappan, G.; Jeyakumar, R.B. Microalgal Production of Biofuels Integrated with Wastewater Treatment. Sustainability 2021, 13, 8797. [Google Scholar] [CrossRef]
- Dębowski, M.; Dudek, M.; Zieliński, M.; Nowicka, A.; Kazimierowicz, J. Microalgal Hydrogen Production in Relation to Other Biomass-Based Technologies—A Review. Energies 2021, 14, 6025. [Google Scholar] [CrossRef]
- Di Visconte, G.S.; Spicer, A.; Chuck, C.J.; Allen, M.J. The Microalgae Biorefinery: A Perspective on the Current Status and Future Opportunities Using Genetic Modification. Appl. Sci. 2019, 9, 4793. [Google Scholar] [CrossRef] [Green Version]
- Culaba, A.B.; Ubando, A.T.; Ching, P.M.L.; Chen, W.H.; Chang, J.S. Biofuel from Microalgae: Sustainable Pathways. Sustainability 2020, 12, 8009. [Google Scholar] [CrossRef]
- Kandasamy, S.; Narayanan, M.; He, Z.; Liu, G.; Ramakrishnan, M.; Thangavel, P.; Pugazhendhi, A.; Raja, R.; Carvalho, I.S. Current strategies and prospects in algae for remediation and biofuels: An overview. Biocatal. Agric. Biotechnol. 2021, 35, 102045. [Google Scholar] [CrossRef]
- Bleta, R.; Schiavo, B.; Corsaro, N.; Costa, P.; Giaconia, A.; Interrante, L.; Monflier, E.; Pipitone, G.; Ponchel, A.; Sau, S.; et al. Robust Mesoporous CoMo/γ-Al2O3 Catalysts from Cyclodextrin-Based Supramolecular Assemblies for Hydrothermal Processing of Microalgae: Effect of the Preparation Method. ACS Appl. Mater. Interfaces 2018, 10, 12562–12569. [Google Scholar] [CrossRef] [PubMed]
- López Barreiro, D.; Samorì, C.; Terranella, G.; Hornung, U.; Kruse, A.; Prins, W. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction. Bioresour. Technol. 2014, 174, 256–265. [Google Scholar] [CrossRef]
- Zhu, L. Biorefinery as a promising approach to promote microalgae industry: An innovative framework. Renew. Sustain. Energy Rev. 2015, 41, 1376–1384. [Google Scholar] [CrossRef]
- Panis, G.; Carreon, J.R. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Res. 2016, 18, 175–190. [Google Scholar] [CrossRef] [Green Version]
- Monte, J.; Ribeiro, C.; Parreira, C.; Costa, L.; Brive, L.; Casal, S.; Brazinha, C.; Crespo, J.G. Biorefinery of Dunaliella salina: Sustainable recovery of carotenoids, polar lipids and glycerol. Bioresour. Technol. 2020, 297, 122509. [Google Scholar] [CrossRef]
- Zgheib, N.; Saade, R.; Khallouf, R.; Takache, H. Extraction of astaxanthin from microalgae: Process design and economic feasibility study. IOP Conf. Ser. Mater. Sci. Eng. 2018, 323, 012011. [Google Scholar] [CrossRef]
- Suganya, T.; Varman, M.; Masjuki, H.H.; Renganathan, S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew. Sustain. Energy Rev. 2016, 55, 909–941. [Google Scholar] [CrossRef]
- Silva, S.C.; Ferreira, I.C.F.R.; Dias, M.M.; Filomena Barreiro, M. Microalgae-Derived Pigments: A 10-Year Bibliometric Review and Industry and Market Trend Analysis. Molecules 2020, 25, 3406. [Google Scholar] [CrossRef] [PubMed]
- Mulders, K.J.M.; Lamers, P.P.; Martens, D.E.; Wijffels, R.H. Phototrophic pigment production with microalgae: Biological constraints and opportunities. J. Phycol. 2014, 50, 229–242. [Google Scholar] [CrossRef]
- Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as sources of carotenoids. Mar. Drugs 2011, 9, 625–644. [Google Scholar] [CrossRef]
- Lafarga, T.; Clemente, I.; Garcia-Vaquero, M. 5-Carotenoids from microalgae. In Carotenoids: Properties, Processing and Applications; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 149–187. ISBN 978-0-12-817067-0. [Google Scholar]
- Vasconcelos, V.; Moreira-Silva, J.; Moreira, S. (Eds.) Portugal Blue Bioeconomy Roadmap—BLUEandGREEN; CIIMAR: Matosinhos, Portugal, 2019. [Google Scholar]
- ECORYS/s.Pro/MRAG. Study on Deepening Understanding of Potential Blue Growth in the EU Member States on Europe’s Atlantic Arc. Final Report FWC MARE/2012/06—SC C1/2013/02. (Conducted for DG Maritime Affairs and Fisheries). 2014. Available online: https://webgate.ec.europa.eu/maritimeforum/system/files/Blue%20Growth%20Atlantic_Seabasin%20report%20FINAL%2007Mar14.pdf (accessed on 16 February 2022).
- European Commission; Directorate-General for Maritime Affairs and Fisheries; Addamo, A.; Calvo Santos, A.; Carvalho, N.; Guillén, J.; Magagna, D.; Neehus, S.; Peralta Baptista, A.; Quatrini, S.; et al. The EU Blue Economy Report 2021, Publications Office. 2021. Available online: https://data.europa.eu/doi/10.2771/5187 (accessed on 16 February 2022).
- European Commission. CORDIS|EU Research Results. Available online: https://cordis.europa.eu/ (accessed on 22 January 2022).
- Rumin, J.; de Oliveira Junior, R.G.; Bérard, J.B.; Picot, L. Improving microalgae research and marketing in the european atlantic area: Analysis of major gaps and barriers limiting sector development. Mar. Drugs 2021, 19, 319. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Kazimierowicz, J.; Kujawska, N.; Talbierz, S. Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations. Sustainability 2020, 12, 9980. [Google Scholar] [CrossRef]
- European Market Observatory for Fisheries and Aquaculture (EUMOFA). Blue Bieconomy: Situation Report and Perspectives. 2018. Available online: https://knowledge4policy.ec.europa.eu/publication/blue-bioeconomy-situation-report-perspectives_en (accessed on 16 February 2022).
- European Commission. Regulation (EC) No. 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives (Text with EEA Relevance) OJ L 354, 31 December 2008. Available online: https://www.legislation.gov.uk/eur/2008/1333/contents (accessed on 16 February 2022).
- TechFunding Horizon 2020—SME Instrument. Available online: https://www.techfunding.eu/sme-instrument (accessed on 22 January 2022).
- McWilliams, A. The Global Market for Carotenoids|BCC Research. Available online: https://www.bccresearch.com/market-research/food-and-beverage/the-global-market-for-carotenoids.html (accessed on 16 February 2022).
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Stahl, W.; Sies, H. Bioactivity and protective effects of natural carotenoids. Biochim. Biophys. Acta-Mol. Basis Dis. 2005, 1740, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Faller, P.; Pascal, A.; Rutherford, A.W. β-Carotene redox reactions in photosystem II: Electron transfer pathway. Biochemistry 2001, 40, 6431–6440. [Google Scholar] [CrossRef]
- Frank, H.A.; Cua, A.; Chynwat, V.; Young, A.; Gosztola, D.; Wasielewski, M.R. Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth. Res. 1994, 41, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Phillip, D.; Hobe, S.; Paulsen, H.; Molnar, P.; Hashimoto, H.; Young, A.J. The Binding of Xanthophylls to the Bulk Light-harvesting Complex of Photosystem II of Higher Plants. J. Biol. Chem. 2002, 277, 25160–25169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Sun, Z.; Sun, P.; Chen, T.; Chen, F. Microalgal carotenoids: Beneficial effects and potential in human health. Food Funct. 2014, 5, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Sathasivam, R.; Juntawong, N. Modified medium for enhanced growth of Dunaliella strains. Int. J. Curr. Sci. 2013, 5, 67–73. [Google Scholar]
- Milledge, J.J. Commercial application of microalgae other than as biofuels: A brief review. Rev. Environ. Sci. Biotechnol. 2011, 10, 31–41. [Google Scholar] [CrossRef]
- Srinivasan, J.R.; Dessipri, E. β-Carotene-rich extract from Dunaliella salina. In Proceedings of the 84th JECFA-Chem. Tech. Assess. (CTA); 2017; pp. 1–5. Available online: https://www.fao.org/3/ca7513en/ca7513en.pdf (accessed on 16 February 2022).
- Xu, Y.; Ibrahim, I.; Wosu, C.; Ben-Amotz, A.; Harvey, P. Potential of New Isolates of Dunaliella salina for Natural β-Carotene Production. Biology 2018, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini Tafreshi, A.; Shariati, M. Dunaliella biotechnology: Methods and applications. J. Appl. Microbiol. 2009, 107, 14–35. [Google Scholar] [CrossRef]
- Wasanasathian, A.; Peng, C.A. Algal Photobioreactor for Production of Lutein and Zeaxanthin. In Bioprocessing for Value-Added Products from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2007; pp. 491–505. [Google Scholar]
- Xu, Y.; Harvey, P.J. Carotenoid Production by Dunaliella salina under Red Light. Antioxidants 2019, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Borowitzka, M.A. High-value products from microalgae-their development and commercialisation. J. Appl. Phycol. 2013, 25, 743–756. [Google Scholar] [CrossRef]
- Heinrich, U.; Gärtner, C.; Wiebusch, M.; Eichler, O.; Sies, H.; Tronnier, H.; Stahl, W. Supplementation with β-Carotene or a Similar Amount of Mixed Carotenoids Protects Humans from UV-Induced Erythema. J. Nutr. 2003, 133, 98–101. [Google Scholar] [CrossRef]
- Landrum, J.T.; Bone, R.A. Lutein, zeaxanthin, and the macular pigment. Arch. Biochem. Biophys. 2001, 385, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, S.; Knaus, M.; Suh, M. Associations between lutein, zeaxanthin, and age-related macular degeneration: An overview. Crit. Rev. Food Sci. Nutr. 2009, 49, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Krinsky, N.I.; Landrum, J.T.; Bone, R.A. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr. 2003, 23, 171–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sathasivam, R.; Pongpadung, P.; Praiboon, J.; Chirapart, A.; Trakulnaleamsai, S.; Roytrakul, S.; Juntawong, N. Optimizing NaCl and KNO3 concentrations for high β-carotene production in photobioreactor by Dunaliella salina ku11 isolated from saline soil sample. Chiang Mai J. Sci. 2018, 45, 106–115. [Google Scholar]
- Raposo, M.; de Morais, A.; de Morais, R.; Raposo, M.F.d.J.; De Morais, A.M.M.B.; De Morais, R.M.S.C. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases. Mar. Drugs 2015, 13, 5128–5155. [Google Scholar] [CrossRef]
- Sathasivam, R.; Ki, J.-S. A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries. Mar. Drugs 2018, 16, 26. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.-M.; Jiang, Y.; Chen, F. High-Yield Production of Lutein by the Green Microalga Chlorella protothecoides in Heterotrophic Fed-Batch Culture. Biotechnol. Prog. 2002, 18, 723–727. [Google Scholar] [CrossRef]
- Molnár, P.; Deli, J.; Tanaka, T.; Kann, Y.; Tani, S.; Gyémánt, N.; Molnár, J.; Kawase, M. Carotenoids with anti-Helicobacter pylori activity from Golden delicious apple. Phyther. Res. 2009, 24, 644–648. [Google Scholar] [CrossRef]
- Lima, V.C.; Rosen, R.B.; Farah, M. Macular pigment in retinal health and disease. Int. J. Retin. Vitr. 2016, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- Lidebjer, C.; Leanderson, P.; Ernerudh, J.; Jonasson, L. Low plasma levels of oxygenated carotenoids in patients with coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 448–456. [Google Scholar] [CrossRef]
- Phong, W.N.; Show, P.L.; Ling, T.C.; Juan, J.C.; Ng, E.P.; Chang, J.S. Mild cell disruption methods for bio-functional proteins recovery from microalgae—Recent developments and future perspectives. Algal Res. 2018, 31, 506–516. [Google Scholar] [CrossRef]
- Günerken, E.; D’Hondt, E.; Eppink, M.H.M.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R.H. Cell disruption for microalgae biorefineries. Biotechnol. Adv. 2015, 33, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S. Mechanical/physical methods of cell disruption and tissue homogenization. Methods Mol. Biol. 2008, 424, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Snehya, A.V.; Sundaramahalingam, M.A.; Rajeshbanu, J.; Anandan, S.; Sivashanmugam, P. Studies on evaluation of surfactant coupled sonication pretreatment on Ulva fasciata (marine macroalgae) for enhanced biohydrogen production. Ultrason. Sonochem. 2021, 81, 105853. [Google Scholar] [CrossRef]
- Postma, P.R.; Miron, T.L.; Olivieri, G.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresour. Technol. 2015, 184, 297–304. [Google Scholar] [CrossRef]
- Larrosa, A.P.Q.; Camara, Á.S.; Moura, J.M.; Pinto, L.A.A. Spirulina sp. biomass dried/disrupted by different methods and their application in biofilms production. Food Sci. Biotechnol. 2018, 27, 1659–1665. [Google Scholar] [CrossRef]
- Kwak, M.; Kang, S.G.; Hong, W.K.; Han, J.I.; Chang, Y.K. Simultaneous cell disruption and lipid extraction of wet Aurantiochytrium sp. KRS101 using a high shear mixer. Bioprocess Biosyst. Eng. 2018, 41, 671–678. [Google Scholar] [CrossRef]
- Carullo, D.; Abera, B.D.; Casazza, A.A.; Donsì, F.; Perego, P.; Ferrari, G.; Pataro, G. Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Res. 2018, 31, 60–69. [Google Scholar] [CrossRef]
- Grimi, N.; Dubois, A.; Marchal, L.; Jubeau, S.; Lebovka, N.I.; Vorobiev, E. Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresour. Technol. 2014, 153, 254–259. [Google Scholar] [CrossRef]
- Kapoore, R.V.; Butler, T.O.; Pandhal, J.; Vaidyanathan, S. Microwave-assisted extraction for microalgae: From biofuels to biorefinery. Biology 2018, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- McMillan, J.R.; Watson, I.A.; Ali, M.; Jaafar, W. Evaluation and comparison of algal cell disruption methods: Microwave, waterbath, blender, ultrasonic and laser treatment. Appl. Energy 2013, 103, 128–134. [Google Scholar] [CrossRef]
- Demuez, M.; Mahdy, A.; Tomás-Pejó, E.; González-Fernández, C.; Ballesteros, M. Enzymatic cell disruption of microalgae biomass in biorefinery processes. Biotechnol. Bioeng. 2015, 112, 1955–1966. [Google Scholar] [CrossRef] [PubMed]
- Krishna Koyande, A.; Tanzil, V.; Murraly Dharan, H.; Subramaniam, M.; Robert, R.N.; Lau, P.L.; Khoiroh, I.; Show, P.L. Integration of osmotic shock assisted liquid biphasic system for protein extraction from microalgae Chlorella vulgaris. Biochem. Eng. J. 2020, 157, 107532. [Google Scholar] [CrossRef]
- González-González, L.M.; Astals, S.; Pratt, S.; Jensen, P.D.; Schenk, P.M. Impact of osmotic shock pre-treatment on microalgae lipid extraction and subsequent methane production. Bioresour. Technol. Rep. 2019, 7, 100214. [Google Scholar] [CrossRef]
- Sintra, T.E.; Bagagem, S.S.; Ghazizadeh Ahsaie, F.; Fernandes, A.; Martins, M.; Macário, I.P.E.; Pereira, J.L.; Gonçalves, F.J.M.; Pazuki, G.; Coutinho, J.A.P.; et al. Sequential recovery of C-phycocyanin and chlorophylls from Anabaena cylindrica. Sep. Purif. Technol. 2021, 255, 117538. [Google Scholar] [CrossRef]
- Lee, S.Y.; Cho, J.M.; Chang, Y.K.; Oh, Y.K. Cell disruption and lipid extraction for microalgal biorefineries: A review. Bioresour. Technol. 2017, 244, 1317–1328. [Google Scholar] [CrossRef]
- Kumar, R.R.; Rao, P.H.; Arumugam, M. Lipid extraction methods from microalgae: A comprehensive review. Front. Energy Res. 2015, 3, 61. [Google Scholar] [CrossRef]
- Zou, T.B.; Jia, Q.; Li, H.W.; Wang, C.X.; Wu, H.F. Response Surface Methodology for Ultrasound-Assisted Extraction of Astaxanthin from Haematococcus pluvialis. Mar. Drugs 2013, 11, 1644–1655. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Huang, Y.; Zhang, R.; Wang, S.; Liu, Y. Four different methods comparison for extraction of astaxanthin from green alga Haematococcus pluvialis. Sci. World J. 2014, 2014, 694305. [Google Scholar] [CrossRef] [Green Version]
- Salatti-Dorado, J.A.; García-Gómez, D.; Rodriguez-Ruiz, V.; Gueguen, V.; Pavon-Djavid, G.; Rubio, S. Multifunctional green supramolecular solvents for cost-effective production of highly stable astaxanthin-rich formulations from Haematococcus pluvialis. Food Chem. 2019, 279, 294–302. [Google Scholar] [CrossRef]
- Desai, R.K.; Streefland, M.; Wijffels, R.H.; Eppink, M.H.M. Novel astaxanthin extraction from Haematococcus pluvialis using cell permeabilising ionic liquids. Green Chem. 2016, 18, 1261–1267. [Google Scholar] [CrossRef]
- Choi, S.A.; Oh, Y.K.; Lee, J.; Sim, S.J.; Hong, M.E.; Park, J.Y.; Kim, M.S.; Kim, S.W.; Lee, J.S. High-efficiency cell disruption and astaxanthin recovery from Haematococcus pluvialis cyst cells using room-temperature imidazolium-based ionic liquid/water mixtures. Bioresour. Technol. 2019, 274, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Pitacco, W.; Samorì, C.; Pezzolesi, L.; Gori, V.; Grillo, A.; Tiecco, M.; Vagnoni, M.; Galletti, P. Extraction of astaxanthin from Haematococcus pluvialis with hydrophobic deep eutectic solvents based on oleic acid. Food Chem. 2022, 379, 132156. [Google Scholar] [CrossRef] [PubMed]
- Di Sanzo, G.; Mehariya, S.; Martino, M.; Larocca, V.; Casella, P.; Chianese, S.; Musmarra, D.; Balducchi, R.; Molino, A. Supercritical Carbon Dioxide Extraction of Astaxanthin, Lutein, and Fatty Acids from Haematococcus pluvialis Microalgae. Mar. Drugs 2018, 16, 334. [Google Scholar] [CrossRef] [Green Version]
- Halim, R.; Danquah, M.K.; Webley, P.A. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol. Adv. 2012, 30, 709–732. [Google Scholar] [CrossRef]
- González-Delgado, Á.D.; Kafarov, V. Microalgae based biorefinery: Issues to consider. CTyF-Cienc. Tecnol. Y Futur. 2011, 4, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Mercer, P.; Armenta, R.E. Developments in oil extraction from microalgae. Eur. J. Lipid Sci. Technol. 2011, 113, 539–547. [Google Scholar] [CrossRef]
- Anthony, R.; Stuart, B. Solvent extraction and characterization of neutral lipids in Oocystis sp. Front. Energy Res. 2015, 3, 64. [Google Scholar] [CrossRef] [Green Version]
- Olkowska, E.; Polkowska, Z.; Namieśnik, J. Analytics of surfactants in the environment: Problems and challenges. Chem. Rev. 2011, 111, 5667–5700. [Google Scholar] [CrossRef]
- Liu, C.L.; Nikas, Y.J.; Blankschtein, D. Novel bioseparations using two-phase aqueous micellar systems. Biotechnol. Bioeng. 1996, 52, 185–192. [Google Scholar] [CrossRef]
- Vieira, F.A.; Guilherme, R.J.R.; Neves, M.C.; Abreu, H.; Rodrigues, E.R.O.; Maraschin, M.; Coutinho, J.A.P.; Ventura, S.P.M. Single-step extraction of carotenoids from brown macroalgae using non-ionic surfactants. Sep. Purif. Technol. 2017, 172, 268–276. [Google Scholar] [CrossRef]
- Schaeffer, N.; Kholany, M.; Veloso, T.L.M.; Pereira, J.L.; Ventura, S.P.M.; Nicaud, J.M.; Coutinho, J.A.P. Temperature-responsive extraction of violacein using a tuneable anionic surfactant-based system. Chem. Commun. 2019, 55, 8643–8646. [Google Scholar] [CrossRef] [PubMed]
- Kunz, W.; Häckl, K. The hype with ionic liquids as solvents. Chem. Phys. Lett. 2016, 661, 6–12. [Google Scholar] [CrossRef]
- Passos, H.; Freire, M.G.; Coutinho, J.A.P. Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem. 2014, 16, 4786–4815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, V.; Prieto, M.A.; Barros, L.; Coutinho, J.A.P.; Ferreira, I.C.F.R.; Ferreira, O. Enhanced extraction of phenolic compounds using choline chloride based deep eutectic solvents from Juglans regia L. Ind. Crops Prod. 2018, 115, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- De Souza Mesquita, L.M.; Ventura, S.P.M.; Braga, A.R.C.; Pisani, L.P.; Dias, A.C.R.V.; De Rosso, V.V. Ionic liquid-high performance extractive approach to recover carotenoids from: Bactris gasipaes fruits. Green Chem. 2019, 21, 2380–2391. [Google Scholar] [CrossRef]
- Cláudio, A.F.M.; Ferreira, A.M.; Freire, M.G.; Coutinho, J.A.P. Enhanced extraction of caffeine from guaraná seeds using aqueous solutions of ionic liquids. Green Chem. 2013, 15, 2002–2010. [Google Scholar] [CrossRef]
- Martins, M.; Vieira, F.A.; Correia, I.; Ferreira, R.A.S.; Abreu, H.; Coutinho, J.A.P.; Ventura, S.P.M. Recovery of phycobiliproteins from the red macroalga Gracilaria sp. using ionic liquid aqueous solutions. Green Chem. 2016, 18, 4287–4296. [Google Scholar] [CrossRef]
- Bica, K.; Gaertner, P.; Rogers, R.D. Ionic liquids and fragrances–direct isolation of orange essential oil. Green Chem. 2011, 13, 1997. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Choi, Y.-K.; Park, J.; Lee, S.; Yang, Y.-H.; Kim, H.J.; Park, T.-J.; Hwan Kim, Y.; Lee, S.H. Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour. Technol. 2012, 109, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Orr, V.C.A.; Rehmann, L. Ionic liquids for the fractionation of microalgae biomass. Curr. Opin. Green Sustain. Chem. 2016, 2, 22–27. [Google Scholar] [CrossRef]
- Suarez Ruiz, C.A.; Emmery, D.P.; Wijffels, R.H.; Eppink, M.H.; van den Berg, C. Selective and mild fractionation of microalgal proteins and pigments using aqueous two-phase systems. J. Chem. Technol. Biotechnol. 2018, 93, 2774–2783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smink, D.; Kersten, S.R.A.; Schuur, B. Recovery of lignin from deep eutectic solvents by liquid-liquid extraction. Sep. Purif. Technol. 2020, 235, 116127. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, Y.; Huang, Y.; Ding, X.; Chen, J.; Xu, K. Deep eutectic solvents as novel extraction media for protein partitioning. Analyst 2014, 139, 2565–2573. [Google Scholar] [CrossRef]
- Ali, M.C.; Chen, J.; Zhang, H.; Li, Z.; Zhao, L.; Qiu, H. Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta 2019, 203, 16–22. [Google Scholar] [CrossRef]
- Mehariya, S.; Fratini, F.; Lavecchia, R.; Zuorro, A. Green extraction of value-added compounds form microalgae: A short review on natural deep eutectic solvents (NaDES) and related pre-treatments. J. Environ. Chem. Eng. 2021, 9, 105989. [Google Scholar] [CrossRef]
- Jeevan Kumar, S.P.; Vijay Kumar, G.; Dash, A.; Scholz, P.; Banerjee, R. Sustainable green solvents and techniques for lipid extraction from microalgae: A review. Algal Res. 2017, 21, 138–147. [Google Scholar] [CrossRef]
- Lu, W.; Alam, M.A.; Pan, Y.; Wu, J.; Wang, Z.; Yuan, Z. A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. Bioresour. Technol. 2016, 218, 123–128. [Google Scholar] [CrossRef]
- Vaz, B.M.C.; Martins, M.; de Souza Mesquita, L.M.; Neves, M.C.; Fernandes, A.P.M.; Pinto, D.C.G.A.; Neves, M.G.P.M.S.; Coutinho, J.A.P.; Ventura, S.P.M. Using aqueous solutions of ionic liquids as chlorophyll eluents in solid-phase extraction processes. Chem. Eng. J. 2022, 428, 131073. [Google Scholar] [CrossRef]
- Ventura, S.P.M.; Gonçalves, A.M.M.; Sintra, T.; Pereira, J.L.; Gonçalves, F.; Coutinho, J.A.P. Designing ionic liquids: The chemical structure role in the toxicity. Ecotoxicology 2013, 22, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.V.S.; Vidal, B.T.; Melo, C.M.; de Miranda, R.d.C.M.; Soares, C.M.F.; Coutinho, J.A.P.; Ventura, S.P.M.; Mattedi, S.; Lima, Á.S. (Eco)toxicity and biodegradability of protic ionic liquids. Chemosphere 2016, 147, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Mano, B.; Jesus, F.; Gonçalves, F.J.M.; Ventura, S.P.M.; Pereira, J.L. Applicability of heuristic rules defining structure–ecotoxicity relationships of ionic liquids: An integrative assessment using species sensitivity distributions (SSD). Green Chem. 2020, 22, 6176–6186. [Google Scholar] [CrossRef]
- Jeremias, G.; Jesus, F.; Ventura, S.P.M.; Gonçalves, F.J.M.; Asselman, J.; Pereira, J.L. New insights on the effects of ionic liquid structural changes at the gene expression level: Molecular mechanisms of toxicity in Daphnia magna. J. Hazard. Mater. 2021, 409, 124517. [Google Scholar] [CrossRef]
- Sintra, T.E.; Shimizu, K.; Ventura, S.P.M.; Shimizu, S.; Canongia Lopes, J.N.; Coutinho, J.A.P. Enhanced dissolution of ibuprofen using ionic liquids as catanionic hydrotropes. Phys. Chem. Chem. Phys. 2018, 20, 2094–2103. [Google Scholar] [CrossRef]
- Cláudio, A.F.M.; Neves, M.C.; Shimizu, K.; Canongia Lopes, J.N.; Freire, M.G.; Coutinho, J.A.P. The magic of aqueous solutions of ionic liquids: Ionic liquids as a powerful class of catanionic hydrotropes. Green Chem. 2015, 17, 3948–3963. [Google Scholar] [CrossRef]
- Hu, S.; Jiang, T.; Zhang, Z.; Zhu, A.; Han, B.; Song, J.; Xie, Y.; Li, W. Functional ionic liquid from biorenewable materials: Synthesis and application as a catalyst in direct aldol reactions. Tetrahedron Lett. 2007, 48, 5613–5617. [Google Scholar] [CrossRef]
- Bisht, M.; Jha, I.; Venkatesu, P. Does choline-based amino acid ionic liquid behave as a biocompatible solvent for stem bromelain structure? Process Biochem. 2018, 74, 77–85. [Google Scholar] [CrossRef]
- Ventura, S.P.M.; Gurbisz, M.; Ghavre, M.; Ferreira, F.M.M.; Gonçalves, F.; Beadham, I.; Quilty, B.; Coutinho, J.A.P.; Gathergood, N. Imidazolium and Pyridinium Ionic Liquids from Mandelic Acid Derivatives: Synthesis and Bacteria and Algae Toxicity Evaluation. ACS Sustain. Chem. Eng. 2013, 1, 393–402. [Google Scholar] [CrossRef]
- Knez, Ž.; Pantić, M.; Cör, D.; Novak, Z.; Knez Hrnčič, M. Are supercritical fluids solvents for the future? Chem. Eng. Process.-Process Intensif. 2019, 141, 107532. [Google Scholar] [CrossRef]
- Macías-Sánchez, M.D.; Mantell, C.; Rodríguez, M.; Martínez De La Ossa, E.; Lubián, L.M.; Montero, O. Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. J. Food Eng. 2005, 66, 245–251. [Google Scholar] [CrossRef]
- Macías-Sánchez, M.D.; Fernandez-Sevilla, J.M.; Fernández, F.G.A.; García, M.C.C.; Grima, E.M. Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis. Food Chem. 2010, 123, 928–935. [Google Scholar] [CrossRef]
- Feller, R.; Matos, Â.P.; Mazzutti, S.; Moecke, E.H.S.; Tres, M.V.; Derner, R.B.; Oliveira, J.V.; Junior, A.F. Polyunsaturated ω-3 and ω-6 fatty acids, total carotenoids and antioxidant activity of three marine microalgae extracts obtained by supercritical CO2 and subcritical n-butane. J. Supercrit. Fluids 2018, 133, 437–443. [Google Scholar] [CrossRef]
- Martins, M.; Soares, B.P.; Santos, J.H.P.M.; Bharmoria, P.; Torres Acosta, M.A.; Dias, A.C.R.V.; Coutinho, J.A.P.; Ventura, S.P.M. Sustainable Strategy Based on Induced Precipitation for the Purification of Phycobiliproteins. ACS Sustain. Chem. Eng. 2021, 9, 3942–3954. [Google Scholar] [CrossRef]
- Saxena, A.; Tripathi, B.P.; Kumar, M.; Shahi, V.K. Membrane-based techniques for the separation and purification of proteins: An overview. Adv. Colloid Interface Sci. 2009, 145, 1–22. [Google Scholar] [CrossRef]
- Kim, D.Y.; Hwang, T.; Oh, Y.K.; Han, J.I. Harvesting Chlorella sp. KR-1 using cross-flow electro-filtration. Algal Res. 2014, 6, 170–174. [Google Scholar] [CrossRef]
- Coskun, O. Separation techniques: Chromatography. North. Clin. Istanb. 2016, 3, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Aluç, Y.; Başaran Kankılıç, G.; Tüzün, İ. Determination of carotenoids in two algae species from the saline water of Kapulukaya reservoir by HPLC. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 93–100. [Google Scholar] [CrossRef]
- Cerón-García, M.C.; González-López, C.V.; Camacho-Rodríguez, J.; López-Rosales, L.; García-Camacho, F.; Molina-Grima, E. Maximizing carotenoid extraction from microalgae used as food additives and determined by liquid chromatography (HPLC). Food Chem. 2018, 257, 316–324. [Google Scholar] [CrossRef]
- Morowvat, M.H.; Ghasemi, Y. Developing a Robust Method for Quantification of β-Carotene in Dunaliella salina Biomass Using HPLC Method. Int. J. Pharm. Clin. Res. 2016, 8, 1423–1428. [Google Scholar]
- Sarkar, S.; Manna, M.S.; Bhowmick, T.K.; Gayen, K. Priority-based multiple products from microalgae: Review on techniques and strategies. Crit. Rev. Biotechnol. 2020, 40, 590–607. [Google Scholar] [CrossRef] [PubMed]
- Cantwell, F.F.; Losier, M. Liquid—Liquid extraction. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2002; Volume 37, pp. 297–340. ISBN 9780444505101. [Google Scholar]
- Xinmei, F.; Shugui, D.; Yu, Z. Comparison of Extraction Capacities Between Ionic Liquids and Dichloromethane. Chin. J. Anal. Chem. 2006, 34, 598–602. [Google Scholar]
- Martins, M.; Mesquita, L.M.D.S.; Vaz, B.M.C.; Dias, A.C.R.V.; Torres-Acosta, M.A.; Quéguineur, B.; Coutinho, J.A.P.; Ventura, S.P.M. Extraction and Fractionation of Pigments from Saccharina latissima (Linnaeus, 2006) Using an Ionic Liquid + Oil + Water System. ACS Sustain. Chem. Eng. 2021, 9, 6599–6612. [Google Scholar] [CrossRef]
- Freire, M.G.; Cláudio, A.F.M.; Araújo, J.M.M.; Coutinho, J.A.P.; Marrucho, I.M.; Canongia Lopes, J.N.; Rebelo, L.P.N. Aqueous biphasic systems: A boost brought about by using ionic liquids. Chem. Soc. Rev. 2012, 41, 4966–4995. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Huang, L.; Peng, D.; Sattar, A.; Shabbir, M.A.B.; et al. Aqueous two-phase system (ATPS): An overview and advances in its applications. Biol. Proced. Online 2016, 18, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freire, M.G.; Louros, C.L.S.; Rebelo, L.P.N.; Coutinho, J.A.P. Aqueous biphasic systems composed of a water-stable ionic liquid + carbohydrates and their applications. Green Chem. 2011, 13, 1536. [Google Scholar] [CrossRef]
- Domínguez-Pérez, M.; Tomé, L.I.N.; Freire, M.G.; Marrucho, I.M.; Cabeza, O.; Coutinho, J.A.P. (Extraction of biomolecules using) aqueous biphasic systems formed by ionic liquids and aminoacids. Sep. Purif. Technol. 2010, 72, 85–91. [Google Scholar] [CrossRef]
- Marques, C.F.C.; Mourão, T.; Neves, C.M.S.S.; Lima, A.S.; Boal-Palheiros, I.; Coutinho, J.A.P.; Freire, M.G. Aqueous biphasic systems composed of ionic liquids and sodium carbonate as enhanced routes for the extraction of tetracycline. Biotechnol. Prog. 2013, 29, 645–654. [Google Scholar] [CrossRef]
- Álvarez, M.; Moscoso, F.; Rodríguez, A.; Sanromán, M.; Deive, F. Triton X surfactants to form aqueous biphasic systems: Experiment and correlation. J. Chem. Thermodyn. 2012, 54, 385–392. [Google Scholar] [CrossRef]
- Cláudio, A.F.M.; Ferreira, A.M.; Freire, C.S.R.; Silvestre, A.J.D.; Freire, M.G.; Coutinho, J.A.P. Optimization of the gallic acid extraction using ionic-liquid-based aqueous two-phase systems. Sep. Purif. Technol. 2012, 97, 142–149. [Google Scholar] [CrossRef]
- Rosa, P.A.J.; Azevedo, A.M.; Sommerfeld, S.; Bäcker, W.; Aires-Barros, M.R. Aqueous two-phase extraction as a platform in the biomanufacturing industry: Economical and environmental sustainability. Biotechnol. Adv. 2011, 29, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Cisneros, M.; Benavides, J.; Brenes, C.H.; Rito-Palomares, M. Recovery in aqueous two-phase systems of lutein produced by the green microalga Chlorella protothecoides. J. Chromatogr. B 2004, 807, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Kholany, M.; Trébulle, P.; Martins, M.; Ventura, S.P.M.; Nicaud, J.M.; Coutinho, J.A.P. Extraction and purification of violacein from Yarrowia lipolytica cells using aqueous solutions of surfactants. J. Chem. Technol. Biotechnol. 2020, 95, 1126–1134. [Google Scholar] [CrossRef]
- Quental, M.V.; Passos, H.; Kurnia, K.A.; Coutinho, J.A.P.; Freire, M.G. Aqueous biphasic systems composed of ionic liquids and acetate-based salts: Phase diagrams, densities, and viscosities. J. Chem. Eng. Data 2015, 60, 1674–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, P.S.; Li, B.; Vachali, P.P.; Gorusupudi, A.; Shyam, R.; Henriksen, B.S.; Nolan, J.M. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog. Retin. Eye Res. 2016, 50, 34–66. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.H.P.M.; Almeida, M.R.; Martins, C.I.R.; Dias, A.C.R.V.; Freire, M.G.; Coutinho, J.A.P.; Ventura, S.P.M. Separation of phenolic compounds by centrifugal partition chromatography. Green Chem. 2018, 20, 1906–1916. [Google Scholar] [CrossRef]
- Kim, S.M.; Shang, Y.F.; Um, B.-H. A preparative method for isolation of fucoxanthin from Eisenia bicyclis by centrifugal partition chromatography. Phytochem. Anal. 2011, 22, 322–329. [Google Scholar] [CrossRef]
- Li, J.; Engelberth, A.S. Quantification and purification of lutein and zeaxanthin recovered from distillers dried grains with solubles (DDGS). Bioresour. Bioprocess. 2018, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Schwienheer, C.; Prinz, A.; Zeiner, T.; Merz, J. Separation of active laccases from Pleurotus sapidus culture supernatant using aqueous two-phase systems in centrifugal partition chromatography. J. Chromatogr. B 2015, 1002, 1–7. [Google Scholar] [CrossRef]
- Vázquez-Villegas, P.; Aguilar, O.; Rito-Palomares, M. Study of biomolecules partition coefficients on a novel continuous separator using polymer-salt aqueous two-phase systems. Sep. Purif. Technol. 2011, 78, 69–75. [Google Scholar] [CrossRef]
- Azquez-Villegas, P.V.; Espitia-Saloma, E.; Rito-Palomares, M.; Aguilar, O. Low-abundant protein extraction from complex protein sample using a novel continuous aqueous two-phase systems device. J. Sep. Sci 2013, 36, 391–399. [Google Scholar] [CrossRef] [PubMed]
Carotenoid | Microalgae | Other Carotenoids | Concentration | Application Area | Ref. |
---|---|---|---|---|---|
β-Carotene | Dunaliella salina | Zeaxanthin, lutein, α-carotene | 10–13% DW | Provitamin A function Colorectal cancer Prevention of acute and chronic coronary syndromes Photoprotection of the skin against UV light Prevention of night blindness Antioxidant property Prevention of liver fibrosis | [11,58,59,60] |
Chlorella zofingiensis | Canthaxanthin, astaxanthin | 0.9% DW | |||
Spirulina maxima | Astaxanthin, lutein, β-cryptoxanthin, zeaxanthin, echinenone, oscillaxanthin, myxoxanthophyll | 80% TC | |||
Lutein | Chlorella pyrenoidosa | Violaxanthin, loroxanthin, α- and β-carotene | 0.2–0.4% DW | Prevention of acute and chronic coronary syndromes and stroke Maintenance of normal visual function Prevention of cataracts Prevention of AMD Prevention of retinitis Prevention of gastric infection by H. Pylori Antioxidant properties Anticancer activities | [59,60,61,62,63] |
Chlorella protothecoides | – | 5.4 mg·g−1 | |||
Chlorella sorokiniana | Astaxanthin | 5.90 mg·g−1 | |||
Scenedesmus bijugus | Astaxanthin | 2.9 mg·g−1 | |||
Zeaxanthin | Porphyridium cruentum | β-carotene | 97.4% TC | Prevention of acute and chronic coronary syndromes Maintenance of the normal visual function Prevention of cataracts Prevention of AMD | [59,60,64] |
Cell Disruption Method | Disruption Mechanism | Advantages | Disadvantages | Ref. |
---|---|---|---|---|
Bead mill | Physical deformation by beads against cells |
|
| [69,70] |
High-speed homogenization | Cavitation and shear |
|
| [71] |
High-pressure homogenization | Cavitation and shear |
|
| [72,73] |
Ultrasonication | Cavitation shear force |
|
| [65,73] |
Microwaves | Temperature increase and molecular energy |
|
| [74,75] |
Pulsed electric field | Short electrical pulses (electroporation) |
|
| [72,73] |
Enzymatic lysis | Enzyme substrate interaction |
|
| [65,76] |
Osmotic shock | Hypotonic or hypertonic stress |
|
| [77,78] |
Freezing and thawing | Ice crystal formation and perforation |
|
| [79] |
Thermolysis | Heat shock |
|
| [75] |
Solvent | Advantages | Disadvantages | Selected Examples | Ref. | |
---|---|---|---|---|---|
Conditions | Yield | ||||
Organic |
|
| Ethanol:ethyl acetate (1:1 (v/v), 2 h) | 17.34 ± 0.85 (mg·g−1) | [82] |
Ethanol:ethyl acetate (1:1 (v/v), ultrasound-assisted (200 W), 16 min) | 27.58 ± 0.40 (mg·g−1) | [82] | |||
Hexane:isopropanol (6:4 (v/v), ultrasound-assisted, 20 min) | 9.7 ± 0.6 (mg·g−1) | [83] | |||
Surfactant |
|
| Octanoic acid/ethanol/water ternary mixture (SUPRAS) (ratio of biomass: equilibrium solution: SUPRAS of (1:5:2) (mg:mL:mL)) | 96 ± 7 (%) | [84] |
IL and DES |
|
| 1-ethyl-3methylimidazolium di-butylphosphate (EMIM DBP) (40% (w/w), at 45 °C, 90 min) | ≥70 (%) | [85] |
EMIM-based ILs with HSO4−, CH3SO3−, (CF3SO2)2− anions (6.7% (v/v), 30 °C, 60 min) | >99.0 | [86] | |||
Thymol:oleic acid (3:1, 6 h, 60 °C, 2.5 wt%) | 75 ± 0.7 (%) | [87] | |||
Supercritical |
|
| SFE-CO2 (550 bar, 50 °C, 120 min) | 98.6 (%) | [88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kholany, M.; Coutinho, J.A.P.; Ventura, S.P.M. Carotenoid Production from Microalgae: The Portuguese Scenario. Molecules 2022, 27, 2540. https://doi.org/10.3390/molecules27082540
Kholany M, Coutinho JAP, Ventura SPM. Carotenoid Production from Microalgae: The Portuguese Scenario. Molecules. 2022; 27(8):2540. https://doi.org/10.3390/molecules27082540
Chicago/Turabian StyleKholany, Mariam, João A. P. Coutinho, and Sónia P. M. Ventura. 2022. "Carotenoid Production from Microalgae: The Portuguese Scenario" Molecules 27, no. 8: 2540. https://doi.org/10.3390/molecules27082540
APA StyleKholany, M., Coutinho, J. A. P., & Ventura, S. P. M. (2022). Carotenoid Production from Microalgae: The Portuguese Scenario. Molecules, 27(8), 2540. https://doi.org/10.3390/molecules27082540