Layering Optimization of the SrFe0.9Ti0.1O3−δ–Ce0.8Sm0.2O1.9 Composite Cathode
Abstract
:1. Introduction
2. Materials and methods
2.1. Sample Preparation
2.2. Sample Characterization
3. Result and Discussion
3.1. Microstructure of the Fabricated Pellet
3.2. Electrochemical Reaction of the Fabricated Pellet
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Li, J.; Hu, B.; Hui, K.; Li, K.; Wang, L. Effects of inorganic nanofibers and high char yield fillers on char layer structure and ablation resistance of ethylene propylene diene monomer composites. Compos. Part A Appl. Sci. Manuf. 2021, 150, 106633. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Catalano, M.; Bai, G.; Li, N.; Dai, J.; Wang, X.; Zhang, H.; Wang, J.; Kim, M.J. Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer. Compos. Part A Appl. Sci. Manuf. 2018, 113, 76–82. [Google Scholar] [CrossRef]
- Ali, S.A.M.; Anwar, M.; Mahmud, L.S.; Kalib, N.S.; Muchtar, A.; Somalu, M.R. Influence of current collecting and functional layer thickness on the performance stability of La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Sm0.2O1.9 composite cathode. J. Solid State Electrochem. 2019, 23, 1155–1164. [Google Scholar] [CrossRef]
- Tarancón, A. Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature. Energies 2009, 2, 1130–1150. [Google Scholar] [CrossRef]
- Zhao, K.; Kim, B.H.; Norton, M.G.; Ha, S.Y. Cathode Optimization for an Inert-Substrate-Supported Tubular Solid Oxide Fuel Cell. Front. Energy Res. 2018, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Baharuddin, N.A.; Yusoff, W.N.A.W.; Muchtar, A.; Somalu, M.R.; Samat, A.A.; Anwar, M. Influence of layer numbers on the structural and electrical performance of cobalt-free SrFe0.5Ti0.5O3-δ cathode for ntermediate-temperature solid oxide fuel cell application. IOP Conf. Ser. Earth Environ. Sci. 2019, 268, 012132. [Google Scholar] [CrossRef]
- Fang, X.; Zhu, J.; Lin, Z. Effects of Electrode Composition and Thickness on the Mechanical Performance of a Solid Oxide Fuel Cell. Energies 2018, 11, 1735. [Google Scholar] [CrossRef] [Green Version]
- Samat, A.A.; Somalu, M.R.; Muchtar, A.; Baharuddin, N.A.; Osman, N. Optimisation of screen-printed La0.6Sr0.4CoO3-δ cathode film for intermediate temperature proton-conducting solid oxide fuel cell application. IOP Conf. Ser. Earth Environ. Sci. 2019, 268, 012137. [Google Scholar] [CrossRef]
- Baharuddin, N.A.; Muchtar, A.; Somalu, M.R. Short review on cobalt-free cathodes for solid oxide fuel cells. Int. J. Hydrogen Energy 2017, 42, 9149–9155. [Google Scholar] [CrossRef]
- Baharuddin, N.A.; Aman, N.A.M.N.; Muchtar, A.; Somalu, M.R.; Samat, A.A.; Aznam, M.I. Structural, morphological, and electrochemical behavior of titanium-doped SrFe1-xTixO3-δ (x = 0.1–0.5) perovskite as a cobalt-free solid oxide fuel cell cathode. Ceram. Int. 2019, 45, 12903–12909. [Google Scholar] [CrossRef]
- Hashim, S.S.; Liang, F.; Zhou, W.; Sunarso, J. Cobalt-Free Perovskite Cathodes for Solid Oxide Fuel Cells. ChemElectroChem 2019, 6, 3549–3569. [Google Scholar] [CrossRef]
- Yang, G.; Su, C.; Shi, H.; Zhu, Y.; Song, Y.; Zhou, W.; Shao, Z. Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in Cathode Development. Energy Fuels 2020, 34, 15169–15194. [Google Scholar] [CrossRef]
- Aziz, A.J.A.; Baharuddin, N.A.; Somalu, M.R.; Muchtar, A. Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications. Ceram. Int. 2020, 46, 23314–23325. [Google Scholar] [CrossRef]
- Cavallaro, A.; Pramana, S.S.; Ruiz-Trejo, E.; Sherrell, P.C.; Ware, E.; Kilner, J.A.; Skinner, S.J. Amorphous-cathode-route towards low temperature SOFC. Sustain. Energy Fuels 2018, 2, 862–875. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, X.; Wang, W.; Zhang, D.; Jiang, Y.; Zhou, X.; Lin, B. A Zn-doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite cathode with enhanced ORR catalytic activity for SOFCs. Catalysts 2020, 10, 235. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wei, B.; Su, C.; Wang, C.; Lü, Z. Novel cobalt-free layered perovskite LaBaFe2-xNbxO6-δ (x = 0–0.1) as cathode for solid oxide fuel cells. J. Power Sources 2020, 453, 227875. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, H. A novel cobalt-free cathode material for proton-conducting solid oxide fuel cells. J. Mater. Chem. 2012, 22, 18387–18394. [Google Scholar] [CrossRef]
- Shah, M.Y.; Rauf, S.; Mushtaq, N.; Tayyab, Z.; Ali, N.; Yousaf, M.; Xing, Y.; Akbar, M.; Lund, P.D.; Yang, C.P.; et al. Semiconductor Fe-doped SrTiO3-δ perovskite electrolyte for low-temperature solid oxide fuel cell (LT-SOFC) operating below 520 °C. Int. J. Hydrogen Energy 2020, 45, 14470–14479. [Google Scholar] [CrossRef]
- Dwivedi, S. ScienceDirect Solid oxide fuel cell: Materials for anode, cathode and electrolyte. Int. J. Hydrogen Energy 2020, 45, 23988–24013. [Google Scholar] [CrossRef]
- Hussain, S.; Yangping, L. Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte. Energy Transit. 2020, 4, 113–126. [Google Scholar] [CrossRef]
- Baharuddin, N.A.; Muchtar, A.; Somalu, M.R.; Anwar, M.; Hameed, M.A.S.A.K.A.; Mah, J. Effects of sintering temperature on the structural and electrochemical properties of SrFe0.5Ti0.5O3-δ perovskite cathode. Int. J. Appl. Ceram. Technol. 2018, 15, 338–348. [Google Scholar] [CrossRef]
- Somalu, M.R.; Muchtar, A.; Daud, W.R.W.; Brandon, N.P. Screen-printing inks for the fabrication of solid oxide fuel cell films: A review. Renew. Sustain. Energy Rev. 2017, 75, 426–439. [Google Scholar] [CrossRef]
- Somalu, M.R.; Yufit, V.; Brandon, N. The effect of solids loading on the screen-printing and properties of nickel/scandia-stabilized-zirconia anodes for solid oxide fuel cells. Int. J. Hydrogen Energy 2012, 38, 9500–9510. [Google Scholar] [CrossRef]
- Adler, S.B. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes. Chem. Rev. 2004, 104, 4791–4844. [Google Scholar] [CrossRef]
- Hjalmarsson, P.; Mogensen, M.B. La0.99Co0.4Ni0.6O3-δ-Ce0.8Gd0.2O1.95 as composite cathode for solid oxide fuel cells. J. Power Sources 2010, 196, 7237–7244. [Google Scholar] [CrossRef]
- Deseure, J.; Bultel, Y.; Dessemond, L.; Siebert, E. Theoretical optimisation of a SOFC composite cathode. Electrochim. Acta 2005, 50, 2037–2046. [Google Scholar] [CrossRef]
- S.A., M.A.; Raharjo, J.; Anwar, M.; Khaerudini, D.S.; Muchtar, A.; Spiridigliozzi, L.; Somalu, M.R. Carbonate-based lanthanum strontium cobalt ferrite (LSCF)-samarium-doped ceria (SDC) composite cathode for low-temperature solid oxide fuel cells. Appl. Sci. 2020, 10, 3761. [Google Scholar] [CrossRef]
- Benamira, M.; Ringuedé, A.; Cassir, M.; Horwat, D.; Lenormand, P.; Ansart, F.; Bassat, J.M.; Viricelle, J.P. Enhancing oxygen reduction reaction of YSZ / La2NiO4+δ using an ultrathin La2NiO4+δ interfacial layer. J. Alloys Compd. 2018, 746, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Hildenbrand, N.; Nammensma, P.; Blank, D.H.; Bouwmeester, H.J.; Boukamp, B.A. Influence of configuration and microstructure on performance of La2NiO4+δ intermediate-temperature solid oxide fuel cells cathodes. J. Power Sources 2013, 238, 442–453. [Google Scholar] [CrossRef]
Symmetrical Cell | Number of Layers | Film Thickness (µm) | Porosity (%) | ASR (Ωcm2) |
---|---|---|---|---|
9SFT-1SDC (1×) | 1 | 6.42 | 21.52 | 1.25 |
9SFT-1SDC (3×) | 3 | 13.40 | 23.00 | 0.65 |
9SFT-1SDC (5×) | 5 | 19.54 | 25.59 | 0.22 |
9SFT-1SDC (7×) | 7 | 25.60 | 22.87 | 0.12 |
9SFT-1SDC (9×) | 9 | 30.95 | 13.98 | 2.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd Aziz, A.J.; Baharuddin, N.A.; Somalu, M.R.; Muchtar, A. Layering Optimization of the SrFe0.9Ti0.1O3−δ–Ce0.8Sm0.2O1.9 Composite Cathode. Molecules 2022, 27, 2549. https://doi.org/10.3390/molecules27082549
Abd Aziz AJ, Baharuddin NA, Somalu MR, Muchtar A. Layering Optimization of the SrFe0.9Ti0.1O3−δ–Ce0.8Sm0.2O1.9 Composite Cathode. Molecules. 2022; 27(8):2549. https://doi.org/10.3390/molecules27082549
Chicago/Turabian StyleAbd Aziz, Azreen Junaida, Nurul Akidah Baharuddin, Mahendra Rao Somalu, and Andanastuti Muchtar. 2022. "Layering Optimization of the SrFe0.9Ti0.1O3−δ–Ce0.8Sm0.2O1.9 Composite Cathode" Molecules 27, no. 8: 2549. https://doi.org/10.3390/molecules27082549
APA StyleAbd Aziz, A. J., Baharuddin, N. A., Somalu, M. R., & Muchtar, A. (2022). Layering Optimization of the SrFe0.9Ti0.1O3−δ–Ce0.8Sm0.2O1.9 Composite Cathode. Molecules, 27(8), 2549. https://doi.org/10.3390/molecules27082549