Effect of Co-Treatment of Olanzapine with SEP-363856 in Mice Models of Schizophrenia
Abstract
:1. Introduction
2. Results
2.1. Olanzapine and SEP-363586 Combinations Exhibited a Synergistic Effect in the Apomorphine-Induced Climbing Test
2.2. SEP-363856 Potentiates the Antipsychotic Properties of Olanzapine in MK-80-Induced Hyperactivity Test
2.3. Combined Treatment of SEP-363856 and Olanzapine Reversed MK-801-Induced Cognitive Impairment Symptoms in Mice
2.4. Co-Administration of Olanzapine and SEP-363856 Protects against Olanzapine-Induced Weight Gain
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drugs and Treatments
4.3. Animal Studies
4.3.1. Apomorphine-Induced Climbing Behavior
4.3.2. MK-801-Induced Hyperactivity
4.3.3. Morris Water Maze Test
4.3.4. Weight Gain Test
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Insel, T.R. Rethinking schizophrenia. Nature 2010, 468, 187–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parnaudeau, S.; Bolkan, S.S.; Kellendonk, C. The Mediodorsal Thalamus: An Essential Partner of the Prefrontal Cortex for Cognition. Biol. Psychiatry. 2018, 83, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Zhang, Y.; Chen, Y.; Qiu, Y.; Yu, M.; Xu, X.; Liu, X.; Liu, B.F.; Zhang, L.; Zhang, G. Synthesis and Biological Evaluation of Fused Tricyclic Heterocycle Piperazine (Piperidine) Derivatives as Potential Multireceptor Atypical Antipsychotics. J. Med. Chem. 2018, 61, 10017–10039. [Google Scholar] [CrossRef] [PubMed]
- Tandon, R.; Gaebel, W.; Barch, D.M.; Bustillo, J.; Gur, R.E.; Heckers, S.; Malaspina, D.; Owen, M.J.; Schultz, S.; Tsuang, M.; et al. Definition and description of schizophrenia in the DSM-5. Schizophr. Res. 2013, 150, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, H.Y. Update on typical and atypical antipsychotic drugs. Annu. Rev. Med. 2013, 64, 393–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumeister, A.A. The chlorpromazine enigma. J. Hist. Neurosci. 2013, 22, 14–29. [Google Scholar] [CrossRef]
- Krogmann, A.; Peters, L.; von Hardenberg, L.; Bödeker, K.; Nöhles, V.B.; Correll, C.U. Keeping up with the therapeutic advances in schizophrenia: A review of novel and emerging pharmacological entities. CNS Spectr. 2019, 24, 38–69. [Google Scholar] [CrossRef]
- Meltzer, H.Y.; Share, D.B.; Jayathilake, K.; Salomon, R.M.; Lee, M.A. Lurasidone Improves Psychopathology and Cognition in Treatment-Resistant Schizophrenia. J. Clin. Psychopharmacol. 2020, 40, 240–249. [Google Scholar] [CrossRef]
- Johnsen, E.; Kroken, R.A.; Løberg, E.M.; Rettenbacher, M.; Joa, I.; Larsen, T.K.; Reitan, S.K.; Walla, B.; Alisauskiene, R.; Anda, L.G.; et al. Amisulpride, aripiprazole, and olanzapine in patients with schizophrenia-spectrum disorders (BeSt InTro): A pragmatic, rater-blind, semi-randomised trial. Lancet Psychiat. 2020, 7, 945–954. [Google Scholar] [CrossRef]
- Babic, I.; Gorak, A.; Engel, M.; Sellers, D.; Else, P.; Osborne, A.L.; Pai, N.; Huang, X.F.; Nealon, J.; Weston-Green, K. Liraglutide prevents metabolic side-effects and improves recognition and working memory during antipsychotic treatment in rats. J. Psychopharmacol. 2018, 32, 578–590. [Google Scholar] [CrossRef] [Green Version]
- Bhana, N.; Perry, C.M. Olanzapine: A review of its use in the treatment of bipolar I disorder. CNS Drugs 2001, 15, 871–904. [Google Scholar] [CrossRef] [PubMed]
- Mcevoy, J.P.; Lieberman, J.A.; Stroup, T.S.; Davis, S.M.; Meltzer, H.Y.; Rosenheck, R.A.; Swartz, M.S.; Perkins, D.O.; Keefe, R.S.; Davis, C.E.; et al. Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. Am. J. Psychiat. 2006, 163, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Uchida, S.; Kato, Y.; Hirano, K.; Kagawa, Y.; Yamada, S. Brain neurotransmitter receptor-binding characteristics in rats after oral administration of haloperidol, risperidone and olanzapine. Life Sci. 2007, 80, 1635–1640. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.C.; Wyler, S.C.; Wan, R.; Castorena, C.M.; Ahmed, N.; Mathew, D.; Lee, S.; Liu, C.; Elmquist, J.K. The atypical antipsychotic olanzapine causes weight gain by targeting serotonin receptor 2C. J. Clin. Investig. 2017, 127, 3402–3406. [Google Scholar] [CrossRef] [Green Version]
- Dedic, N.; Jones, P.G.; Hopkins, S.C.; Lew, R.; Shao, L.; Campbell, J.E.; Spear, K.L.; Large, T.H.; Campbell, U.C.; Hanania, T.; et al. SEP-363856, a Novel Psychotropic Agent with a Unique, Non-D(2) Receptor Mechanism of Action. J. Pharmacol. Exp. Ther. 2019, 371, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Koblan, K.S.; Kent, J.; Hopkins, S.C.; Krystal, J.H.; Cheng, H.; Goldman, R.; Loebel, A. A Non-D2-Receptor-Binding Drug for the Treatment of Schizophrenia. N. Engl. J. Med. 2020, 382, 1497–1506. [Google Scholar] [CrossRef]
- Begni, V.; Sanson, A.; Luoni, A.; Sensini, F.; Grayson, B.; Munni, S.; Neill, J.C.; Riva, M.A. Towards Novel Treatments for Schizophrenia: Molecular and Behavioural Signatures of the Psychotropic Agent SEP-363856. Int. J. Mol. Sci. 2021, 22, 4119. [Google Scholar] [CrossRef]
- Yuan, X.; Kang, Y.; Zhuo, C.; Huang, X.F.; Song, X. The gut microbiota promotes the pathogenesis of schizophrenia via multiple pathways. Biochem. Biophys. Res. Commun. 2019, 512, 73–380. [Google Scholar] [CrossRef]
- Bradaia, A.; Trube, G.; Stalder, H.; Norcross, R.D.; Ozmen, L.; Wettstein, J.G.; Pinard, A.; Buchy, D.; Gassmann, M.; Hoener, M.C.; et al. The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc. Natl. Acad. Sci. USA 2009, 106, 20081–20086. [Google Scholar] [CrossRef] [Green Version]
- Guillin, O.; Abi-Dargham, A.; Laruelle, M. Neurobiology of dopamine in schizophrenia. Int. Rev. Neurobiol. 2007, 78, 1–39. [Google Scholar]
- Revel, F.G.; Moreau, J.L.; Pouzet, B.; Mory, R.; Bradaia, A.; Buchy, D.; Metzler, V.; Chaboz, S.; Groebke Zbinden, K.; Galley, G.; et al. A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol. Psychiatr. 2013, 18, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Duggal, H.S. Aripirazole-olanzapine combination for treatment of schizophrenia. Can. J. Psychiat. 2004, 49, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Jiang, K.; Li, Q.; Zhang, Y.; Cheng, Y.; Lin, Z.; Xuan, J. Cost-effectiveness of olanzapine in the first-line treatment of schizophrenia in China. J. Med. Econ. 2019, 22, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Ribarič, S. The pharmacological properties and therapeutic use of apomorphine. Molecules 2012, 5, 5289–5309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugale, R.R.; Hirani, K.; Morelli, M.; Chopde, C.T. Role of neuroactive steroid allopregnanolone in antipsychotic-like action of olanzapine in rodents. Neuropsychopharmacology 2004, 29, 1597–1609. [Google Scholar] [CrossRef] [Green Version]
- De Paz-Campos, M.A.; Ortiz, M.I.; Chávez Piña, A.E.; Zazueta-Beltrán, L.; Castañeda-Hernández, G. Synergistic effect of the interaction between curcumin and diclofenac on the formalin test in rats. Phytomedicine 2014, 21, 1543–1548. [Google Scholar] [CrossRef]
- Bradford, A.M.; Savage, K.M.; Jones, D.N.; Kalinichev, M. Validation and pharmacological characterization of MK-801-induced locomotor hyperactivity in BALB/C mice as an assay for detection of novel antipsychotics. Psychopharmacology 2010, 212, 155–170. [Google Scholar] [CrossRef]
- Mahmood, D.; Akhtar, M.; Jahan, K.; Goswami, D. Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801. J. Basic Clin. Physiol. Pharmacol. 2016, 27, 463–471. [Google Scholar] [CrossRef]
- Alberati, D.; Moreau, J.L.; Mory, R.; Pinard, E.; Wettstein, J.G. Pharmacological evaluation of a novel assay for detecting glycine transporter 1 inhibitors and their antipsychotic potential. Pharmacol. Biochem. Behav. 2010, 97, 185–191. [Google Scholar] [CrossRef]
- Da Silveira, V.T.; Röpke, J.; Matosinhos, A.L.; Issy, A.C.; Del Bel, E.A.; de Oliveira, A.C.; Moreira, F.A. Effects of the monoamine stabilizer (-)-OSU6162 on locomotor and sensorimotor responses predictive of antipsychotic activity. Naunyn Schmiedebergs Arch Pharmacol. 2018, 391, 761–768. [Google Scholar] [CrossRef]
- Wolf, S.A.; Bick-Sander, A.; Fabel, K.; Leal-Galicia, P.; Tauber, S.; Ramirez-Rodriguez, G.; Müller, A.; Melnik, A.; Waltinger, T.P.; Ullrich, O.; et al. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun. Signal. 2010, 8, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunez, J. Morris Water Maze Experiment. J. Vis. Exp. 2008, 19, 897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukhanov, I.; Espinoza, S.; Yakovlev, D.S.; Hoener, M.C.; Sotnikova, T.D.; Gainetdinov, R.R. TAAR1-dependent effects of apomorphine in mice. Int. J. Neuropsychopharmacol. 2014, 17, 1683–1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindemann, L.; Ebeling, M.; Kratochwil, N.A.; Bunzow, J.R.; Grandy, D.K.; Hoener, M.C. Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 2005, 85, 372–385. [Google Scholar] [CrossRef]
- Miller, G.M.; Verrico, C.D.; Jassen, A.; Konar, M.; Yang, H.; Panas, H.; Bahn, M.; Johnson, R.; Madras, B.K. Primate trace amine receptor 1 modulation by the dopamine transporter. J. Pharmacol. Exp. Ther. 2005, 3, 983–994. [Google Scholar] [CrossRef] [Green Version]
- Nagai, Y.; Takayama, K.; Nishitani, N.; Andoh, C.; Koda, M.; Shirakawa, H.; Nakagawa, T.; Nagayasu, K.; Yamanaka, A.; Kaneko, S. The Role of Dorsal Raphe Serotonin Neurons in the Balance between Reward and Aversion. Int. J. Mol. Sci. 2020, 6, 2160. [Google Scholar] [CrossRef] [Green Version]
- Dodd, S.; Carvalho, A.F.; Puri, B.K.; Maes, M.; Bortolasci, C.C.; Morris, G.; Berk, M. Trace Amine-Associated Receptor 1 (TAAR1): A new drug target for psychiatry? Neurosci. Biobehav. Rev. 2021, 120, 537–541. [Google Scholar] [CrossRef]
- Revel, F.G.; Moreau, J.L.; Gainetdinov, R.R.; Bradaia, A.; Sotnikova, T.D.; Mory, R.; Durkin, S.; Zbinden, K.G.; Norcross, R.; Meyer, C.A.; et al. TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc. Natl. Acad. Sci. USA 2011, 108, 8485–8490. [Google Scholar] [CrossRef] [Green Version]
- Correll, C.U.; Newcomer, J.W.; Silverman, B.; DiPetrillo, L.; Graham, C.; Jiang, Y.; Du, Y.; Simmons, A.; Hopkinson, C.; McDonnell, D.; et al. Effects of Olanzapine Combined with Samidorphan on Weight Gain in Schizophrenia: A 24-Week Phase 3 Study. Am. J. Psychiatr. 2020, 177, 1168–1178. [Google Scholar] [CrossRef]
- Gainetdinov, R.R.; Mohn, A.R.; Caron, M.G. Genetic animal models: Focus on schizophrenia. Trends Neurosci. 2001, 24, 527–533. [Google Scholar] [CrossRef]
- Giraldo-Chica, M.; Rogers, B.P.; Damon, S.M.; Landman, B.A.; Woodward, N.D. Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia. Biol. Psychiat. 2018, 83, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Berridge, C.W.; Devilbiss, D.M. Psychostimulants as cognitive enhancers: The prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder. Biol. Psychiat. 2011, 69, e101–e111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.C.; Seo, M.K.; Park, S.W.; Lee, J.G.; Kim, Y.H. Differential Effects of Olanzapine and Haloperidol on MK-801-induced Memory Impairment in Mice. Clin. Psychopharmacol. Neurosci. 2016, 14, 279–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abi-Dargham, A.; Moore, H. Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia. Neuroscientist 2003, 9, 404–416. [Google Scholar] [CrossRef]
- Li, L.; Yoo, E.S.; Li, X.; Wyler, S.C.; Chen, X.; Wan, R.; Arnold, A.G.; Birnbaum, S.G.; Jia, L.; Sohn, J.W.; et al. The atypical antipsychotic risperidone targets hypothalamic melanocortin 4 receptors to cause weight gain. J. Exp. Med. 2021, 218, e20202484. [Google Scholar] [CrossRef]
- Bugda Gwilt, K.; González, D.P.; Olliffe, N.; Oller, H.; Hoffing, R.; Puzan, M.; El Aidy, S.; Miller, G.M. Actions of Trace Amines in the Brain-Gut-Microbiome Axis via Trace Amine-Associated Receptor-1 (TAAR1). Cell. Mol. Neurobiol. 2020, 40, 191–201. [Google Scholar] [CrossRef]
- Guerrero-Solano, J.A.; Bautista, M.; Velázquez-González, C.; De la O-Arciniega, M.; González-Olivares, L.G.; Fernández-Moya, M.; Jaramillo-Morales, O.A. Antinociceptive Synergism of Pomegranate Peel Extract and Acetylsalicylic Acid in an Animal Pain Model. Molecules 2021, 26, 5434. [Google Scholar] [CrossRef]
- Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Montiel-Ruiz, R.M.; González-Trujano, M.E.; Déciga-Campos, M. Synergistic interactions between the antinociceptive effect of Rhodiola rosea extract and B vitamins in the mouse formalin test. Phytomedicine 2013, 20, 1280–1287. [Google Scholar] [CrossRef]
Dose (mg/kg Body Weight) | Inhibition Ratio (%) | |||
---|---|---|---|---|
Group (n = 8) | SEP-363856 | Olanzapine | Total | |
(1) | 9.1 | 0.9 | 10 | 63% |
(2) | 4.55 | 0.45 | 5 | 41% |
(3) | 2.275 | 0.225 | 2.5 | 27% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, L.; Ren, X.; Xu, J.; Ma, Y.; Xue, Y.; Zhuang, T.; Zhang, G. Effect of Co-Treatment of Olanzapine with SEP-363856 in Mice Models of Schizophrenia. Molecules 2022, 27, 2550. https://doi.org/10.3390/molecules27082550
Liang L, Ren X, Xu J, Ma Y, Xue Y, Zhuang T, Zhang G. Effect of Co-Treatment of Olanzapine with SEP-363856 in Mice Models of Schizophrenia. Molecules. 2022; 27(8):2550. https://doi.org/10.3390/molecules27082550
Chicago/Turabian StyleLiang, Lingzhi, Xia Ren, Junyi Xu, Yurong Ma, Yunlin Xue, Tao Zhuang, and Guisen Zhang. 2022. "Effect of Co-Treatment of Olanzapine with SEP-363856 in Mice Models of Schizophrenia" Molecules 27, no. 8: 2550. https://doi.org/10.3390/molecules27082550
APA StyleLiang, L., Ren, X., Xu, J., Ma, Y., Xue, Y., Zhuang, T., & Zhang, G. (2022). Effect of Co-Treatment of Olanzapine with SEP-363856 in Mice Models of Schizophrenia. Molecules, 27(8), 2550. https://doi.org/10.3390/molecules27082550