Removal of the Harmful Nitrate Anions from Potable Water Using Different Methods and Materials, including Zero-Valent Iron
Abstract
:1. Introduction
2. Electrochemical Methods of Nitrate Removal from Water
2.1. Sulfamic Acid and Zinc Metal Method
2.2. Electrochemical Denitrification Method
2.2.1. Fe Electrode
2.2.2. Aluminum Electrode
2.2.3. Copper Electrode
2.2.4. Tin Electrode
3. Adsorption Method
4. Biological Denitrification
5. Zero Valent Iron
5.1. Methods for the Synthesis and Characterization of ZVI NPs
5.2. Characterization of ZVI Nanoparticles
5.2.1. XRD
5.2.2. TEM
5.2.3. Size and Size Distribution
5.2.4. SEM
5.2.5. UV–Vis Spectroscopy
5.2.6. Zeta-ζ Potential
6. Removing Nitrate Ions Using Zero-Valent Iron Nanoparticles
6.1. Effect of Nitrate Ions Dose on the Reduction Process by nZVI
6.2. Influence of the pH on NO3− Removal
6.3. Effect of nZVI Dosages
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SEM | Scanning electron microscope |
ZVI NPs | Zero-valent iron nanoparticles |
TEM | transmission electron microscope |
MS | Mössbauer spectroscopy |
XRD | X-ray diffraction |
FT-IR | The Fourier transform infrared spectroscopy |
CMC | Carboxymethyl cellulose |
XPS | X-ray photoelectron spectroscopy |
EDX | Energy-Dispersive X-Ray |
LPR | Linear-polarization resistance |
CV | Cyclic voltammetry |
FBR | Fluidized-bed reactor |
CA | Chronoamperometry |
SMZ | Surfactant-modified zeolites |
COD | Chemical oxygen demand |
GFH | Granular Ferric Hydroxide |
MC | Microbial cellulose |
MCS | Modified cassava straw |
DOC | Dissolved organic carbon |
CPB | Cetyl pyridinium bromide |
References
- Renfrew, M.M. Drinking Water Health Advisory: Pesticides (United States Environmental Protection Agency Office of Drinking Water Health Advisories). J. Chem. Educ. 1990, 67, A55. [Google Scholar] [CrossRef] [Green Version]
- Water quality for drinking: Who guidelines. In SpringerReference; Springer: New York, NY, USA, 2011.
- Naicker, R.; Mutanga, O.; Sibanda, M.; Peerbhay, K. 9-Discriminating tropical grasses grown under different nitrogen fertilizer regimes in KwaZulu-Natal, South Africa. In Hyperspectral Remote Sensing; Elsevier: Amsterdam, Netherlands, 2020; pp. 147–163. [Google Scholar]
- Zwakhals, S.L.; Giesbers, H.; Mac Gillavry, E.; Van Boven, P.F.; van der Veen, A.A. The Dutch National Atlas of Public Health. Bundesgesundheitsblatt Gesundh. Gesundh. 2004, 47, 882–889. [Google Scholar]
- Ebrahimi, S.; Roberts, D.J. Sustainable nitrate-contaminated water treatment using multi cycle ion-exchange/bioregeneration of nitrate selective resin. J. Hazard. Mater. 2013, 262, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.B.S.; Narayana, B. Spectrophotometric Methods for the Determination of Anti-diabetic Drug Glipizide in Pure and Pharmaceutical Formulations. Eurasian J. Anal. Chem. 2016, 12, 83–93. [Google Scholar] [CrossRef]
- Kodamatani, H.; Yamazaki, S.; Saito, K.; Tomiyasu, T.; Komatsu, Y. Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection. J. Chromatogr. A 2009, 1216, 3163–3167. [Google Scholar] [CrossRef]
- Thomsen, J.K.; Cox, R.P. Alkanesulphonates as eluents for the determination of nitrate and nitrite by ion chromatography with direct UV detection. J. Chromatogr. A 1990, 521, 53–61. [Google Scholar] [CrossRef]
- Kodamatani, H.; Yamazaki, S.; Saito, K.; Tomiyasu, T.; Komatsu, Y. Rapid Method for Simultaneous Determination of Nitrite and Nitrate in Water Samples Using Short-Column Ion-Pair Chromatographic Separation, Photochemical Reaction, and Chemiluminescence Detection. Anal. Sci. 2011, 27, 187. [Google Scholar] [CrossRef] [Green Version]
- Connolly, D.; Paull, B. Rapid determination of nitrate and nitrite in drinking water samples using ion-interaction liquid chromatography. Anal. Chim. Acta 2001, 441, 53–62. [Google Scholar] [CrossRef]
- Manea, F.; Remes, A.; Radovan, C.; Pode, R.; Picken, S.; Schoonman, J. Simultaneous electrochemical determination of nitrate and nitrite in aqueous solution using Ag-doped zeolite-expanded graphite-epoxy electrode. Talanta 2010, 83, 66–71. [Google Scholar] [CrossRef]
- Luo, X.; Wu, J.; Ying, Y. Voltammetric detection of nitrate in water sample based on in situ copper-modified electrode. Ionics 2013, 19, 1171–1177. [Google Scholar] [CrossRef]
- Wilde, E.W. Removal of Gadolinium Nitrate from Heavy Water; Office of Scientific and Technical Information (OSTI): Oak Ridge, TN, USA, 2000. [Google Scholar]
- Samatya, S.; Kabay, N.; Yüksel, Ü.; Arda, M.; Yüksel, M. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React. Funct. Polym. 2006, 66, 1206–1214. [Google Scholar] [CrossRef]
- Korngold, E. Removal of nitrates from potable water by ion exchange. Water. Air. Soil Pollut. 1973, 2, 15–22. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Hamoudi, S.; Saad, R.; Belkacemi, K. Adsorptive removal of phosphate and nitrate anions from aqueous solutions using ammonium-functionalized mesoporous silica. Ind. Eng. Chem. Res. 2007, 46, 8806–8812. [Google Scholar] [CrossRef]
- Fanning, J. The chemical reduction of nitrate in aqueous solution. Coord. Chem. Rev. 2000, 199, 159–179. [Google Scholar] [CrossRef]
- Jiang, D.; Zeng, G.; Huang, D.; Chen, M.; Zhang, C.; Huang, C.; Wan, J. Remediation of contaminated soils by enhanced nanoscale zero valent iron. Environ. Res. 2018, 163, 217–227. [Google Scholar] [CrossRef]
- Jang, J.H.; Gaur, A.; Song, H.-J.; Park, J. Denitrification of simulated nitrate-rich wastewater using sulfamic acid and zinc scrap. Chem. Pap. 2011, 65, 437–446. [Google Scholar] [CrossRef]
- Lee, S.; Maken, S.; Jang, J.-H.; Park, K.; Park, J.-W. Development of physicochemical nitrogen removal process for high strength industrial wastewater. Water Res. 2006, 40, 975–980. [Google Scholar] [CrossRef]
- Kistiakowsky, G.B. Reminiscences of Wartime Los Alamos. In Reminiscences Los Alamos 1943–1945; Springer: Berlin/Heidelberg, Germany, 1980; pp. 49–65. [Google Scholar]
- Zhu, I.; Getting, T. A review of nitrate reduction using inorganic materials. Environ. Technol. Rev. 2012, 1, 46–58. [Google Scholar] [CrossRef] [Green Version]
- De, D.; Englehardt, J.D.; Kalu, E.E. Electroreduction of Nitrate and Nitrite Ion on a Platinum-Group-Metal Catalyst-Modified Carbon Fiber Electrode Chronoamperometry and Mechanism Studies. J. Electrochem. Soc. 2000, 147, 4573. [Google Scholar] [CrossRef]
- Ghazouani, M.; Akrout, H.; Bousselmi, L. Efficiency of electrochemical denitrification using electrolysis cell containing BDD electrode. Desalin. Water Treat. 2015, 53, 1107–1117. [Google Scholar] [CrossRef]
- Lacasa, E.; Cañizares, P.; Llanos, J.; Rodrigo, M.A. Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media. J. Hazard. Mater. 2012, 214, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Feng, C.; Zhang, Z.; Sugiura, N. Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2–Pt anode and different cathodes. Electrochim. Acta. 2009, 54, 4600–4606. [Google Scholar] [CrossRef]
- Lacasa, E.; Llanos, J.; Cañizares, P.; Rodrigo, M.A. Electrochemical denitrificacion with chlorides using DSA and BDD anodes. Chem. Eng. J. 2012, 184, 66–71. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Chen, Z.; Wang, L.; Wu, P.; Wang, F. Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: High efficiency and N2 selectivity. Electrochim. Acta 2018, 291, 151–160. [Google Scholar] [CrossRef]
- Li, M.; Feng, C.; Zhang, Z.; Yang, S.; Sugiura, N. Treatment of nitrate contaminated water using an electrochemical method. Bioresour. Technol. 2010, 101, 6553–6557. [Google Scholar] [CrossRef]
- Dash, B.P.; Chaudhari, S. Electrochemical denitrificaton of simulated ground water. Water Res. 2005, 39, 4065–4072. [Google Scholar] [CrossRef]
- Bouzek, K.; Paidar, M.; Sadílková, A.; Bergmann, H. Electrochemical reduction of nitrate in weakly alkaline solutions. J. Appl. Electrochem. 2001, 31, 1185–1193. [Google Scholar] [CrossRef]
- Genders, J.D.; Hartsough, D.; Hobbs, D.T. Electrochemical reduction of nitrates and nitrites in alkaline nuclear waste solutions. J. Appl. Electrochem. 1996, 26, 1–9. [Google Scholar] [CrossRef]
- Polatides, C.; Kyriacou, G. Electrochemical reduction of nitrate ion on various cathodes? reaction kinetics on bronze cathode. J. Appl. Electrochem. 2005, 35, 421–427. [Google Scholar] [CrossRef]
- Jayadev, M. Internet Banking: The Second Wave (A Banker’s Guide to Internet Strategy in the Post Dotcom Era), Sanjiv Singhal, New Delhi: Tata Mcgraw-Hill Publishing Company Limited, 2003: 200p. Metamorph. A J. Manag. Res. 2003, 2, 103–108. [Google Scholar] [CrossRef]
- Mubita, T.M.; Dykstra, J.E.; Biesheuvel, P.M.; van der Wal, A.; Porada, S. Selective adsorption of nitrate over chloride in microporous carbons. Water Res. 2019, 164, 114885. [Google Scholar] [CrossRef]
- Li, W.; Xiao, C.; Zhao, Y.; Zhao, Q.; Fan, R.; Xue, J. Electrochemical Reduction of High-Concentrated Nitrate Using Ti/TiO2 Nanotube Array Anode and Fe Cathode in Dual-Chamber Cell. Catal. Letters. 2016, 146, 2585–2595. [Google Scholar] [CrossRef]
- Karabulut, B.Y.; Atasoy, A.D. Removal of Fluoride from Groundwater by Batch Electrocoagulation Process Using Al Plate Electrodes. Acad. Perspect. Procedia. 2019, 2, 1266–1274. [Google Scholar] [CrossRef] [Green Version]
- Massaï, H.; Loura, B.B.; Ketcha, M.J.; Chtaini, A. A Study of Stripping Voltammetric Behaviour of Cefadroxil Antibiotic in the Presence of Cu (II) and its Determination in Pharmaceutical Formulation. Port. Electrochim. Acta. 2009, 27, 691–698. [Google Scholar] [CrossRef]
- Badea, G.E. Electrocatalytic reduction of nitrate on copper electrode in alkaline solution. Electrochim. Acta. 2009, 54, 996–1001. [Google Scholar] [CrossRef]
- Çirmi, D.; Aydın, R.; Köleli, F. The electrochemical reduction of nitrate ion on polypyrrole coated copper electrode. J. Electroanal. Chem. 2015, 736, 101–106. [Google Scholar] [CrossRef]
- Pérez-Gallent, E.; Figueiredo, M.C.; Katsounaros, I.; Koper, M.T.M. Electrocatalytic reduction of Nitrate on Copper single crystals in acidic and alkaline solutions. Electrochim. Acta. 2017, 227, 77–84. [Google Scholar] [CrossRef]
- Katsounaros, I.; Ipsakis, D.; Polatides, C.; Kyriacou, G. Efficient electrochemical reduction of nitrate to nitrogen on tin cathode at very high cathodic potentials. Electrochim. Acta. 2006, 52, 1329–1338. [Google Scholar] [CrossRef]
- Ambrosioni, B.; Barthelemy, A.; Bejan, D.; Bunce, N.J. Electrochemical reduction of aqueous nitrate ion at tin cathodes. Can. J. Chem. 2014, 92, 228–233. [Google Scholar] [CrossRef]
- Katsounaros, I.; Kyriacou, G. Influence of nitrate concentration on its electrochemical reduction on tin cathode: Identification of reaction intermediates. Electrochim. Acta. 2008, 53, 5477–5484. [Google Scholar] [CrossRef]
- Katsounaros, I.; Kyriacou, G. Influence of the concentration and the nature of the supporting electrolyte on the electrochemical reduction of nitrate on tin cathode. Electrochim. Acta. 2007, 52, 6412–6420. [Google Scholar] [CrossRef]
- Öztürk, N.; Bektaş, T.E. Nitrate removal from aqueous solution by adsorption onto various materials. J. Hazard. Mater. 2004, 112, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Altundoğan, H.S.; Altundoğan, S.; Tümen, F.; Bildik, M. Arsenic adsorption from aqueous solutions by activated red mud. Waste Manag. 2002, 22, 357–363. [Google Scholar] [CrossRef]
- Hanafi, H.A. Removal of Nitrate and Nitrite Anions from Wastewater Using Activated Carbon Derived from Rice Straw. J. Environ. Anal. Toxicol. 2016, 6, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Başar, C.A. Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. J. Hazard. Mater. 2006, 135, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Mazarji, M.; Aminzadeh, B.; Baghdadi, M.; Bhatnagar, A. Removal of nitrate from aqueous solution using modified granular activated carbon. J. Mol. Liq. 2017, 233, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Mehrabi, N.; Soleimani, M.; Yeganeh, M.M.; Sharififard, H. Parameter optimization for nitrate removal from water using activated carbon and composite of activated carbon and Fe2O3 nanoparticles. RSC Adv. 2015, 5, 51470–51482. [Google Scholar] [CrossRef]
- Demiral, H.; Gündüzoğlu, G. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresour. Technol. 2010, 101, 1675–1680. [Google Scholar] [CrossRef]
- Ahmed, T.; Promi, S.I.; Rumpa, I.J. Color Removal from Tannery Wastewater Using Activated Carbon Generated from Rice Husk. World Environ. Water Resour. Congr. 2018, 2018, 1–7. [Google Scholar]
- Asl, M.K.; Hasani, A.H.; Naserkhaki, E. Evaluation of Nitrate Removal from Water Using Activated Carbon and Clinoptilolite by Adsorption Method. Biosci. Biotechnol. Res. Asia. 2016, 13, 1045–1054. [Google Scholar]
- Balasundaram, G.; Ananthasingh, T.; Kandy, A. Removal of Nitrate from Ground Water Using Neem Leaves as Adsorbent. In Proceedings of the ICLTET-2017, ACBES-2017, Kuala Lumpur, Malaysia, 22–24 May 2017. [Google Scholar]
- Abidar, F.; Morghi, M.; Ichou, A.A.; Soudani, A.; Chiban, M.; Sinan, F.; Zerbet, M. Removal of orthophosphate ions from aqueous solution using chitin as natural adsorbent. Desalin. Water Treat. 2015, 57, 14739–14749. [Google Scholar] [CrossRef]
- Zhan, Y.; Lin, J.; Zhu, Z. Removal of nitrate from aqueous solution using cetylpyridinium bromide (CPB) modified zeolite as adsorbent. J. Hazard. Mater. 2011, 186, 1972–1978. [Google Scholar] [CrossRef] [PubMed]
- Onyango, M.S.; Masukume, M.; Ochieng, A.; Otieno, F. Functionalised natural zeolite and its potential for treating drinking water containing excess amount of nitrate. Water SA. 2010, 36, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Baei, M.S.; Esfandian, H.; Nesheli, A.A. Removal of nitrate from aqueous solutions in batch systems using activated perlite: An application of response surface methodology. Asia-Pacific J. Chem. Eng. 2016, 11, 437–447. [Google Scholar] [CrossRef] [Green Version]
- el Ouardi, M.; Qourzal, S.; Alahiane, S.; Assabbane, A.; Douch, J. Effective Removal of Nitrates Ions from Aqueous Solution Using New Clay as Potential Low-Cost Adsorbent. J. Encapsulation Adsorpt. Sci. 2015, 05, 178–190. [Google Scholar] [CrossRef] [Green Version]
- Shrimali, M.; Singh, K.P. New methods of nitrate removal from water. Environ. Pollut. 2001, 112, 351–359. [Google Scholar] [CrossRef]
- Dehghani, M.; Shahsavani, S.; Shamsedini, N.; Javaheri, M.R. Removal of Nitrate From Aqueous Solution Using Rice Chaff. Jentashapir J. Heal. Res. 2015, 6, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Mo, W.; Kang, C.; Zhang, M.; Meng, M.; Chen, M. Adsorption of nitrate from aqueous solution onto modified cassava (Manihot esculenta) straw/Adsorpcja azotanów z roztworu wodnego na zmodyfikowanej słomie manioku Manihot esculenta. Ecol. Chem. Eng. S. 2012, 19, 629–638. [Google Scholar] [CrossRef]
- Dehghani, M.; Haidari, E.; Shahsavani, S.; Shamsedini, N. Removal of Nitrate in the Aqueous Phase Using Granular Ferric Hydroxide. Jundishapur J. Heal. Sci. 2015, 7, e26419. [Google Scholar] [CrossRef] [Green Version]
- Hafshejani, L.D.; Hooshmand, A.; Naseri, A.A.; Mohammadi, A.S.; Abbasi, F.; Bhatnagar, A. Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecol. Eng. 2016, 95, 101–111. [Google Scholar] [CrossRef]
- Stjepanović, M.; Velić, N.; Habuda-Stanić, M. Modified Hazelnut Shells as a Novel Adsorbent for the Removal of Nitrate from Wastewater. Water 2022, 14, 816. [Google Scholar] [CrossRef]
- Wang, Z.; Fei, X.; He, S.; Huang, J.; Zhou, W. Comparison of heterotrophic and autotrophic denitrification processes for treating nitrate-contaminated surface water. Sci. Total Environ. 2017, 579, 1706–1714. [Google Scholar] [CrossRef] [PubMed]
- Ghafari, S.; Hasan, M.; Aroua, M.K. Bio-electrochemical removal of nitrate from water and wastewater—A review. Bioresour. Technol. 2008, 99, 3965–3974. [Google Scholar] [CrossRef] [PubMed]
- Karanasios, K.A.; Vasiliadou, I.A.; Tekerlekopoulou, A.G.; Akratos, C.S.; Pavlou, S.; Vayenas, D.V. Effect of C/N ratio and support material on heterotrophic denitrification of potable water in bio-filters using sugar as carbon source. Int. Biodeterior. Biodegrad. 2016, 111, 62–73. [Google Scholar] [CrossRef]
- Moon, H.S.; Shin, D.Y.; Nam, K.; Kim, J.Y. A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier. Chemosphere 2008, 73, 723–728. [Google Scholar] [CrossRef]
- Gomez, M.A.; Galvez, J.M.; Hontoria, E.; González-López, J. Influence of ethanol concentration on biofilm bacterial composition from a denitrifying submerged filter used for contaminated groundwater. J. Biosci. Bioeng. 2003, 95, 245–251. [Google Scholar] [CrossRef]
- Biswas, S.; Bose, P. Zero-Valent Iron-Assisted Autotrophic Denitrification. J. Environ. Eng. 2005, 131, 1212–1220. [Google Scholar] [CrossRef]
- van Rijn, J.; Tal, Y.; Schreier, H.J. Denitrification in recirculating systems: Theory and applications. Aquac. Eng. 2006, 34, 364–376. [Google Scholar] [CrossRef]
- di Capua, F.; Milone, I.; Lakaniemi, A.-M.; Lens, P.N.L.; Esposito, G. High-rate autotrophic denitrification in a fluidized-bed reactor at psychrophilic temperatures. Chem. Eng. J. 2017, 313, 591–598. [Google Scholar] [CrossRef]
- Deng, S.; Li, D.; Yang, X.; Xing, W.; Li, J.; Zhang, Q. Biological denitrification process based on the Fe(0)–carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition. Bioresour. Technol. 2016, 219, 677–686. [Google Scholar] [CrossRef]
- Ovez, B.; Ozgen, S.; Yuksel, M. Biological denitrification in drinking water using Glycyrrhiza glabra and Arunda donax as the carbon source. Process Biochem. 2006, 41, 1539–1544. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Fu, L.; Gao, Y.; Zhao, H.; Zhou, W. Aerobic-heterotrophic nitrogen removal through nitrate reduction and ammonium assimilation by marine bacterium Vibrio sp. Y1–5. Bioresour. Technol. 2017, 230, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, A.; Godini, H.; Dehestani, S.; Yazdanbakhsh, A.R.; Mosavi, G.; Kazemnejad, A. Biological denitrification by Pseudomonas stutzeri immobilized on microbial cellulose. World J. Microbiol. Biotechnol. 2008, 24, 2397–2402. [Google Scholar] [CrossRef]
- Aslan, S.; Cakici, H. Biological denitrification of drinking water in a slow sand filter. J. Hazard. Mater. 2007, 148, 253–258. [Google Scholar] [CrossRef]
- Hurtado-Martinez, M.; Muñoz-Palazon, B.; Robles-Arenas, V.M.; Gonzalez-Martinez, A.; Gonzalez-Lopez, J. Biological nitrate removal from groundwater by an aerobic granular technology to supply drinking water at pilot-scale. J. Water Process Eng. 2021, 40, 101786. [Google Scholar] [CrossRef]
- Nancharaiah, Y.V.; Mohan, T.V.K.; Sai, P.M.S.; Venugopalan, V.P. Denitrification of high strength nitrate bearing acidic waters in granular sludge sequencing batch reactors. Int. Biodeterior. Biodegrad. 2017, 119, 28–36. [Google Scholar] [CrossRef]
- Khalil, A.M.E.; Eljamal, O.; Eljamal, R.; Sugihara, Y.; Matsunaga, N. Treatment and Regeneration of Nano-scale Zero-valent Iron Spent in Water Remediation. Evergreen 2017, 4, 21–28. [Google Scholar] [CrossRef]
- Li, X.; Elliott, D.W.; Zhang, W. Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects. Crit. Rev. Solid State Mater. Sci. 2006, 31, 111–122. [Google Scholar] [CrossRef]
- Li, L.; Fan, M.; Brown, R.C.; van Leeuwen, J.; Wang, J.; Wang, W.; Song, Y.; Zhang, P. Synthesis, Properties, and Environmental Applications of Nanoscale Iron-Based Materials: A Review. Crit. Rev. Environ. Sci. Technol. 2006, 36, 405–431. [Google Scholar] [CrossRef]
- Comba, S.; di Molfetta, A.; Sethi, R. A Comparison Between Field Applications of Nano-, Micro-, and Millimetric Zero-Valent Iron for the Remediation of Contaminated Aquifers Water. Air. Soil Pollut. 2010, 215, 595–607. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Awad, M.; Al-Farraj, A.S.; Al-Turki, A.M. Stability and Dynamic Aggregation of Bare and Stabilized Zero-Valent Iron Nanoparticles under Variable Solution Chemistry. Nanomater 2020, 10, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giasuddin, A.B.M.; Kanel, S.R.; Choi, H. Adsorption of Humic Acid onto Nanoscale Zerovalent Iron and Its Effect on Arsenic Removal. Environ. Sci. Technol. 2007, 41, 2022–2027. [Google Scholar] [CrossRef] [PubMed]
- Elliott, D.W.; Lien, H.-L.; Zhang, W. Nanoscale Zero-Valent Iron (nZVI) for Site Remediation. Environ. Appl. Nanomater. 2007, 10, 25–48. [Google Scholar]
- Stefaniuk, M.; Oleszczuk, P.; Sik Ok, Y. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chem. Eng. J. 2016, 287, 618–632. [Google Scholar] [CrossRef]
- Yusmartini, E.S.; Setiabudidaya, D. Ridwan, Marsi, Faizal, Synthesis and Characterization of Zero-Valent Iron Nanoparticles. Adv. Mater. Res. 2015, 1112, 62–65. [Google Scholar] [CrossRef]
- Yuan, J.; Balk, A.; Guo, H.; Fang, Q.; Patel, S.; Zhao, X.; Terlier, T.; Natelson, D.; Crooker, S.; Lou, J. Room-temperature magnetic order in air-stable ultrathin iron oxide. Nano Lett. 2019, 19, 3777–3781. [Google Scholar] [CrossRef] [Green Version]
- Amiri, S.; Vatanpour, V.; Mansourpanah, Y.; Khataee, A. Recent trends in application of nanoscale zero-valent metals and metal single atoms in membrane processes. J. Environ. Chem. Eng. 2022, 10, 107457. [Google Scholar] [CrossRef]
- El-Lateef, H.M.A.; Ali, M.M.K.; Saleh, M.M. Adsorption and removal of cationic and anionic surfactants using zero-valent iron nanoparticles. J. Mol. Liq. 2018, 268, 497–505. [Google Scholar] [CrossRef]
- Shi, Z.; Fan, D.; Johnson, R.L.; Tratnyek, P.G.; Nurmi, J.T.; Wu, Y.; Williams, K.H. Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation. J. Contam. Hydrol. 2015, 181, 17–35. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.S.d.; Lago, F.R.; Yokoyama, L.; Fonseca, F.V. Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15. J. Mater. Res. Technol. 2017, 6, 178–183. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Hooker, S. Characterization of Stabilized Zero Valent Iron Nanoparticles. In Materials Challenges and Testing for Supply of Energy and Resources; Springer: Berlin/Heidelberg, Germany, 2011; pp. 173–188. [Google Scholar]
- Singh, R.; Misra, V.; Singh, R.P. Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J. Nanoparticle Res. 2011, 13, 4063–4073. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Li, X.; Cao, J.; Zhang, W.; Wang, H.P. Characterization of zero-valent iron nanoparticles. Adv. Colloid Interface Sci. 2006, 120, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Dukhin, A. Preface. Stud. Interface Sci 2002, v–vi, 23. [Google Scholar]
- He, X.; Min, X.; Peng, T.; Zhao, F.; Ke, Y.; Wang, Y.; Jiang, G.; Xu, Q.; Wang, J. Mechanochemically Activated Microsized Zero-Valent Iron/Pyrite Composite for Effective Hexavalent Chromium Sequestration in Aqueous Solution. J. Chem. Eng. Data 2020, 65, 1936–1945. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Li, X.-Q.; Zhang, W.-X.; Wang, H.P. A method for the preparation of stable dispersion of zero-valent iron nanoparticles.Colloids Surfaces A Physicochem. Eng. Asp. 2007, 308, 60–66. [Google Scholar] [CrossRef]
- Sepehri, S.; Heidarpour, M.; Abedi-Koupai, J. Nitrate removal from aqueous solution using natural zeolite-supported zero-valent iron nanoparticles. Soil Water Res. 2014, 9, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.Y.; Liang, S.; Zeng, S.S.; Lei, S.J. Chemical Reduction of Nitrate in Aqueous Solution by Iron Powder. Adv. Mater. Res. 2013, 777, 71–76. [Google Scholar] [CrossRef]
- Li, C.-W.; Chen, Y.-M.; Yen, W.-S. Pressurized CO2/zero valent iron system for nitrate removal. Chemosphere 2007, 68, 310–316. [Google Scholar] [CrossRef]
- Lemaignen, L.; Tong, C.; Begon, V.; Burch, R.; Chadwick, D. Catalytic denitrification of water with palladium-based catalysts supported on activated carbons. Catal. Today 2002, 75, 43–48. [Google Scholar] [CrossRef]
- Shanableh, A.; Darwish, N.; Bhattacharjee, S.; Al-Khayyat, G.; Khalil, M.; Mousa, M.; Tayara, A.; Al-Samarai, M. Phosphorous removal by nanoscale zero-valent iron (nZVI) and chitosan-coated nZVI (CS-nZVI). Desalin. Water Treat. 2020, 184, 282–291. [Google Scholar] [CrossRef]
- Choe, S.; Liljestrand, H.M.; Khim, J. Nitrate reduction by zero-valent iron under different pH regimes. Appl. Geochem. 2004, 19, 335–342. [Google Scholar] [CrossRef]
- Siciliano, A. Use of Nanoscale Zero-Valent Iron (NZVI) Particles for Chemical Denitrification under Different Operating Conditions. Metals 2015, 5, 1507–1519. [Google Scholar] [CrossRef] [Green Version]
- Ruangchainikom, C.; Liao, C.H.; Anotai, J.; Lee, M.T. Innovative process using Fe0/CO2 for the removal of nitrate from groundwater. Water Supply 2005, 5, 41–48. [Google Scholar] [CrossRef]
- Fard, A.K.; Rhadfi, T.; Mckay, G.; Al-marri, M.; Abdala, A.; Hilal, N.; Hussien, M.A. Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents. Chem. Eng. J. 2016, 293, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Li, L.; Lu, Y.; Cheng, Y.; Wang, Y.; Ning, Q.; Wang, B.; Zhang, L. Guangming Zeng, Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review. Environ. Int. 2019, 124, 265–277. [Google Scholar] [CrossRef]
- Lopes, D.V.; Sillanpää, M.; Wolkersdorfer, C. Nitrate Reduction of the Siilinjärvi/Finland Mine Water with Zero-valent Iron and Iron Waste as Alternative Iron Sources. Mine Water Environ. 2020, 39, 280–290. [Google Scholar] [CrossRef]
- Chaithawiwat, K.; Vangnai, A.; McEvoy, J.M.; Pruess, B.; Krajangpan, S.; Khan, E. Impact of nanoscale zero valent iron on bacteria is growth phase dependent. Chemosphere 2016, 144, 352–359. [Google Scholar] [CrossRef]
- Afkhami, A.; Madrakian, T.; Karimi, Z. The effect of acid treatment of carbon cloth on the adsorption of nitrite and nitrate ions. J. Hazard. Mater. 2007, 144, 427–431. [Google Scholar] [CrossRef]
- Zhang, H.-X.; Dou, Q.; Jin, X.-H.; Sun, D.-X.; Wang, D.-D.; Yang, T.-R. Magnetic Pb(II) Ion-Imprinted Polymer Prepared by Surface Imprinting Technique and its Adsorption Properties. Sep. Sci. Technol. 2015, 50, 901–910. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Ji, M.; Choi, Y.; Jung, W.; Lee, S.; Kim, S.; Lee, G.; Suk, H.; Kim, H.; Min, B.; et al. Removal of Nitrate from Water by Adsorption onto Zinc Chloride Treated Activated Carbon. Sep. Sci. Technol. 2008, 43, 886–907. [Google Scholar] [CrossRef]
- Xie, Y.; Li, S.; Wang, F.; Liu, G. Removal of perchlorate from aqueous solution using protonated cross-linked chitosan. Chem. Eng. J. 2010, 156, 56–63. [Google Scholar] [CrossRef]
- Mizuta, K. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour. Technol. 2004, 95, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Mallavarapu, M.; Naidu, R. Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Appl. Clay Sci. 2010, 48, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Godini, H.; Rezaee, A.; Khavanin, A.; Ahmadabadi, A.N.; Rastegar, S.; Hossini, H. Heterotrophic Biological Denitrification Using Microbial Cellulose as Carbon Source. J. Polym. Environ. 2010, 19, 283–287. [Google Scholar] [CrossRef]
- Hosni, K.; Srasra, E. Nitrate adsorption from aqueous solution by MII-Al-CO3 layered double hydroxide. Inorg. Mater. 2008, 44, 742–749. [Google Scholar] [CrossRef]
- Islam, M.; Patel, R. Nitrate sorption by thermally activated Mg/Al chloride hydrotalcite-like compound. J. Hazard. Mater. 2009, 169, 524–531. [Google Scholar] [CrossRef]
- Islam, M.; Patel, R. Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency. Desalination 2010, 256, 120–128. [Google Scholar] [CrossRef]
- Chatterjee, S.; Woo, S.H. The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater. 2009, 164, 1012–1018. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—A short review. Adv. Colloid Interface Sci. 2009, 152, 26–38. [Google Scholar] [CrossRef]
- Cengeloglu, Y.; Tor, A.; Ersoz, M.; Arslan, G. Removal of nitrate from aqueous solution by using red mud. Sep. Purif. Technol. 2006, 51, 374–378. [Google Scholar] [CrossRef]
- Karimi, M.; Entezari, M.H.; Chamsaz, M. Sorption studies of nitrate ion by a modified beet residue in the presence and absence of ultrasound. Ultrason. Sonochem. 2010, 17, 711–717. [Google Scholar] [CrossRef] [PubMed]
No. | Adsorbents | Adsorbed Amount (mg/L) for 1 g of Absorbent | Nitrate Dose(mg/L) | Contact Time/min | pH | T/°C | Refs. |
---|---|---|---|---|---|---|---|
1 | Activated Carbon Derived from Rice Straw | 10 | 50 | 1440 | 3–9 | 25 | [49] |
2 | Modified granular activated carbon | 5 | 40 | 120 | 7 | 30 | [51] |
3 | Activated carbon and composite of Fe2O3 nanoparticles and activated carbon | 23–107 | 66–234 | 120 | 3–8 | 30 | [52] |
4 | Zeolite-Supported Zero-Valent Iron Nanoparticles | 10 | 100 | 1440 | 5.5 | 25 | [112] |
5 | Sulphuric acid Treated carbon cloth | 12.4 | 115 | 60 | 7 | 25 | [115] |
6 | Powdered activated carbon | 62 | - | 60 | 5 | 25 | [116] |
7 | Carbon nanotubes | 155 | - | 60 | 5 | 25 | [116] |
8 | Untreated coconut granular activated carbon | 0.17 | 1.0 | 120 | 5.5 | 25 | [117] |
9 | Zinc chloride treated coconut granular activated carbon | 10.2 | 5–200 | 120 | 5.5 | 25 | [117] |
10 | Coconut shell activated carbon | 16.5 | 5–200 | - | 2–4 | 30 | [118] |
11 | Bamboo-charcoal | 6.44 | - | - | 2–4 | 30 | [118] |
12 | Bamboo powder charcoal | 1.25 | - | 120 | 5.4 | 10 | [119] |
13 | Halloysite | 0.54 | 0–10 | 1020 | 5.4 | 25 | [120] |
14 | HDTMA modified QLD-bentonite | 12.8 | 100 | 1020 | 25 | [120] | |
15 | Calcined hydrotalcite-type compounds | 61.7 | 12.7–236 | 1440 | 8.5 | 25 | [121] |
16 | Layered double hydroxides | 20 | 0–1000 | 240 | 5 | 21 | [122] |
17 | Chitosan coated zeolite | 37.2 | 10–3100 | 4320 | 5 | 20 | [123] |
18 | Chitosan hydrobeads | 92.1 | 1–1000 | 1440 | 5 | 30 | [124] |
19 | Chitosan beads | 90.7 | 25–1000 | 1440 | - | 30 | [124] |
20 | Conditioned cross-linked chitosanbeads | 104.0 | 25–1000 | 1440 | - | 30 | [124] |
21 | Pure alkaline lignin | 11.16 | 1–30 | 2880 | - | 30 | [125] |
22 | Sugarcane bagasse | 8.74 | 1–30 | 2880 | - | 30 | [126] |
23 | Pure cellulose | 8.31 | 1–30 | 2880 | - | 30 | [127] |
24 | Rice hull | 8.18 | 1–30 | 2880 | - | 30 | [128] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Lateef, H.M.A.; Khalaf, M.M.; Al-Fengary, A.E.-d.; Elrouby, M. Removal of the Harmful Nitrate Anions from Potable Water Using Different Methods and Materials, including Zero-Valent Iron. Molecules 2022, 27, 2552. https://doi.org/10.3390/molecules27082552
El-Lateef HMA, Khalaf MM, Al-Fengary AE-d, Elrouby M. Removal of the Harmful Nitrate Anions from Potable Water Using Different Methods and Materials, including Zero-Valent Iron. Molecules. 2022; 27(8):2552. https://doi.org/10.3390/molecules27082552
Chicago/Turabian StyleEl-Lateef, Hany M. Abd, Mai M. Khalaf, Alaa El-dien Al-Fengary, and Mahmoud Elrouby. 2022. "Removal of the Harmful Nitrate Anions from Potable Water Using Different Methods and Materials, including Zero-Valent Iron" Molecules 27, no. 8: 2552. https://doi.org/10.3390/molecules27082552
APA StyleEl-Lateef, H. M. A., Khalaf, M. M., Al-Fengary, A. E. -d., & Elrouby, M. (2022). Removal of the Harmful Nitrate Anions from Potable Water Using Different Methods and Materials, including Zero-Valent Iron. Molecules, 27(8), 2552. https://doi.org/10.3390/molecules27082552