Structure and Intermolecular Interactions in Aqueous Solutions of Polyethylene Glycol
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Dilute Solutions
3.2. Concentrated Solutions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PEG | poly(ethylene) glycol |
SANS | small-angle neutron scattering |
radius of gyration | |
form factor | |
structure factor |
References
- Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 2001, 53, 283–318. [Google Scholar] [PubMed]
- Jeon, S.I.; Lee, J.H.; Andrade, J.D.; De Gennes, P.G. Protein—Surface interactions in the presence of polyethylene oxide: I. Simplified theory. J. Colloid Interface Sci. 1991, 142, 149–158. [Google Scholar] [CrossRef]
- Zalipsky, S. Chemistry of polyethylene glycol conjugates with biologically active molecules. J. Colloid Interface Sci. 1995, 16, 157–182. [Google Scholar] [CrossRef]
- Greenwald, R.B.; Choe, Y.H.; McGuire, J.; Conover, C.D. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 2003, 55, 217–250. [Google Scholar] [CrossRef]
- Roberts, M.J.; Bentley, M.D.; Harris, J.M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 2002, 54, 459–476. [Google Scholar]
- Gabizon, A.; Shmeeda, H.; Horowitz, A.T.; Zalipsky, S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid–PEG conjugates. Adv. Drug Deliv. Rev. 2004, 56, 1177–1192. [Google Scholar]
- Zhang, Y.; Kohler, N.; Zhang, M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002, 23, 1553–1561. [Google Scholar] [CrossRef]
- Yoo, J.W.; Chambers, E.; Mitragotri, S. Factors that control the circulation time of nanoparticles in blood: Challenges, solutions and future prospects. Curr. Pharm. Des. 2010, 16, 2298–2307. [Google Scholar]
- Artykulnyi, O.P.; Shibaev, A.V.; Avdeev, M.M.; Ivankov, O.I.; Bulavin, L.A.; Petrenko, V.I.; Philippova, O.E. Structural investigations of poly(ethylene glycol)-dodecylbenzenesulfonic acid complexes in aqueous solutions. J. Mol. Liq. 2020, 308, 113045. [Google Scholar] [CrossRef]
- Jokerst, J.V.; Lobovkina, T.; Zare, R.N.; Gambhir, S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6, 715–728. [Google Scholar] [CrossRef] [Green Version]
- Knop, K.; Hoogenboom, P.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem. Int. 2010, 49, 6288–6308. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Joshi, N.; Chattopadhyay, K.; De, G. A facile synthesis of PEG-coated magnetite (Fe3O4) nanoparticles and their prevention of the reduction of Cytochrome C. ACS Appl. Mater. Interfaces 2012, 4, 142–149. [Google Scholar] [CrossRef]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, 16, 023501. [Google Scholar] [CrossRef]
- McPherson, A. Introduction to protein crystallization. Methods 2004, 34, 254–265. [Google Scholar] [CrossRef] [Green Version]
- McPherson, A.; Gavira, J.A. Introduction to protein crystallization. Acta Crystallogr. F Struct. Biol. Commun. 2014, 70, 2–20. [Google Scholar] [CrossRef] [Green Version]
- Gurnev, P.A.; Stanley, C.B.; Aksoyoglu, M.A.; Hong, K.; Parsegian, V.A.; Bezrukov, S.M. Poly(ethylene glycol)s in semidilute regime: Radius of gyration in the bulk and partitioning into a nanopore. Macromolecules 2017, 50, 2477–2483. [Google Scholar] [CrossRef] [Green Version]
- Brunner, M.; Garvey, C.J.; Warr, G.G.; Atkin, R. Conformation of poly (ethylene glycol) in aqueous cholinium amino acid hybrid solvents. J. Colloid Interface Sci. 2021, 602, 334–343. [Google Scholar] [CrossRef]
- Burchard, W. Polymer characterization: Quasi-elastic and elastic light scattering. Macromol. Symp. 1988, 18, 334–343. [Google Scholar] [CrossRef]
- Hammouda, B.; Ho, D.; Kline, S. SANS from poly(ethylene oxide)/water systems. Macromolecules 2002, 35, 8578–8585. [Google Scholar] [CrossRef]
- Hammouda, B. Clustering in polar media. J. Chem. Phys. 2010, 133, 084901. [Google Scholar] [CrossRef]
- Chatterjee, T.; Nakatani, A.I.; Adden, R.; Brackhagen, M.; Redwine, D.; Shen, H.; Li, Y.; Wilson, T.; Sammler, R.L. Structure and properties of aqueous methylcellulose gels by small-angle neutron scattering. Biomacromolecules 2002, 13, 3355–3369. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, B.; Ho, D.L.; Kline, S. Insight into clustering in poly(ethylene oxide) solutions. Macromolecules 2004, 37, 6932–6937. [Google Scholar] [CrossRef]
- Hammouda, B.; Ho, D. Insight into chain dimensions in PEO/water solutions. J. Polym. Sci. Part B 2007, 45, 2196–2200. [Google Scholar] [CrossRef]
- Pedersen, J.S.; Sommer, C. Temperature dependence of the virial coefficients and the chi parameter in semi-dilute solutions of PEG. Prog. Colloid Polym. Sci. 2005, 130, 70–78. [Google Scholar]
- Pedersen, J.S. Analysis of small-angle scattering data from colloids and polymer solutions: Modeling and least-squares fitting. Adv. Colloid Interface Sci. 1997, 70, 171–210. [Google Scholar] [CrossRef]
- Petrenko, V.; Bulavin, L.; Avdeev, M.; Garamus, V.; Koneracka, M.; Kopcansky, P. Structure and interaction of poly(ethylene glycol) in aqueous solutions. Small-angle neutron scattering data. Macromol. Symp. 2014, 335, 20–23. [Google Scholar] [CrossRef]
- Hammouda, B. The mystery of clustering in macromolecular media. Polymer 2009, 50, 5293–5297. [Google Scholar] [CrossRef]
- Rubinson, K.A.; Krueger, S. Poly(ethylene glycol)s 2000–8000 in water may be planar: A small-angle neutron scattering (SANS) structure study. Polymer 2009, 50, 4852–4858. [Google Scholar] [CrossRef]
- Rubinson, K.A.; Hubbard, J. Experimental compressibilities and average intermolecular distances of poly(ethylene glycol) molecular masses 2000–8000 Da in aqueous solution. Polymer 2009, 50, 2618–2623. [Google Scholar] [CrossRef]
- Saffer, E.M.; Lackey, M.A.; Griffin, D.M.; Kishore, S.; Tew, G.N.; Bhatia, S.R. SANS study of highly resilient poly(ethylene glycol) hydrogels. Soft Matter 2014, 10, 1905–1916. [Google Scholar] [CrossRef]
- Lancz, G.; Avdeev, M.V.; Petrenko, V.I.; Garamus, V.M.; Koneracká, M.; Kopčanský, P. SANS study of poly(ethylene glycol) solutions in D2O. Acta Phys. Pol. A 2010, 118, 980–982. [Google Scholar] [CrossRef]
- Petrenko, V.I.; Avdeev, M.V.; Garamus, V.M.; Bulavin, L.A.; Kopcansky, P. Impact of polyethylene glycol on aqueous micellar solutions of sodium oleate studied by small-angle neutron scattering. Coll. Surf. A 2015, 480, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Artykulnyi, O.P.; Petrenko, V.I.; Bulavin, L.A.; Almasy, L.; Grigoryeva, N.A.; Avdeev, M.V.; Aksenov, V.L. On the impact of polyethylene glycol on the structure of aqueous micellar solutions of sodium oleate according to small-angle neutron scattering. J. Surf. Investig. 2018, 12, 1142–1148. [Google Scholar] [CrossRef]
- Artykulnyi, O.P.; Petrenko, V.I.; Bulavin, L.A.; Ivankov, O.I.; Avdeev, M.V. Impact of poly (ethylene glycol) on the structure and interaction parameters of aqueous micellar solutions of anionic surfactants. J. Mol. Liq. 2019, 276, 806–811. [Google Scholar] [CrossRef]
- Kubovcikova, M.; Gapon, I.V.; Zavisova, V.; Koneracka, M.; Petrenko, V.I.; Soltwedel, O.; Almasy, L.; Avdeev, M.V.; Kopcansky, P. On the adsorption properties of magnetic fluids: Impact of bulk structure. J. Magn. Magn. Mater. 2017, 427, 67–70. [Google Scholar] [CrossRef]
- Avdeev, M.V.; Feoktystov, A.V.; Kopcansky, P.; Lancz, G.; Garamus, V.M.; Willumeit, R.; Timko, M.; Koneracka, M.; Zavisova, V.; Tomasovicova, N.; et al. Structure of water-based ferrofluids with sodium oleate and polyethylene glycol stabilization by small-angle neutron scattering: Contrast-variation experiments. J. Appl. Cryst. 2010, 43, 959–969. [Google Scholar] [CrossRef]
- Zavisova, V.; Koneracka, M.; Muckova, M.; Lazova, J.; Jurikova, A.; Lancz, G.; Tomasovicova, N.; Timko, M.; Kovac, J.; Vavra, I.; et al. Magnetic fluid poly(ethylene glycol) with moderate anticancer activity. J. Magn. Magn. Mater. 2011, 323, 1408–1412. [Google Scholar] [CrossRef] [Green Version]
- Stuhrmann, H.B.; Burkhardt, N.; Dietrich, G.; Jünemann, R.; Meerwinck, W.; Schmitt, M.; Wadzack, J.; Willumeit, R.; Zhao, J.; Nierhaus, K.H. Proton-and deuteron spin targets in biological structure research. Nucl. Instrum. Methods Phys. Res. Sect. A. 1995, 356, 124–132. [Google Scholar] [CrossRef]
- Wignall, G.D.; Bates, F.S. Absolute calibration of small-angle neutron scattering data. Nucl. Instrum. Methods Phys. Res. Sect. A. 1987, 20, 28–40. [Google Scholar] [CrossRef]
- Dinc, C.Ö.; Kibarer, G.; Güner, A. Solubility profiles of poly(ethylene glycol)/solvent systems. II. Comparison of thermodynamic parameters from viscosity measurements. J. Appl. Polym. Sci. 2010, 117, 1100–1119. [Google Scholar] [CrossRef]
- Özdemir, C.; Güner, A. Solution thermodynamics of poly(ethylene glycol)/water systems. J. Appl. Polym. Sci. 2006, 101, 203–216. [Google Scholar] [CrossRef]
- Debye, P. Molecular-weight determination by light scattering. J. Phys. Chem. 1947, 51, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Venable, R.M.; MacKerell, A.D., Jr.; Pastor, R.W. Molecular dynamics studies of polyethylene oxide and polyethylene glycol: Hydrodynamic radius and shape anisotropy. Biophys. J. 2008, 95, 1590–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondal, J.; Choi, E.; Yethiraj, A. Atomistic simulations of poly(ethylene oxide) in water and an ionic liquid at room temperature. Macromolecules 2014, 47, 438–446. [Google Scholar] [CrossRef]
- Kharel, A.; Lodge, T.P. Coil dimensions of poly(ethylene oxide) in an ionic liquid by small-angle neutron scattering. Macromolecules 2017, 50, 8739–8744. [Google Scholar] [CrossRef]
- Masimov, E.A.; Pashayev, B.G.; Gasanov, G.S.; Gadzhieva, S.N. Viscometric determination of the conformations and sizes of polyethylene glycol macromolecules in aqueous solutions. Russ. J. Phys. Chem. A 2019, 93, 1054–1058. [Google Scholar] [CrossRef]
- Fairclough, J.P.A.; Hamley, I.W.; Terrill, N.J. X-ray scattering in polymers and micelles. Radiat. Phys. Chem. 1999, 56, 159–173. [Google Scholar] [CrossRef]
- Fehér, B.; Varga, I.; Pedersen, J.S. Effect of concentration and ionic strength on the lower critical solution temperature of poly(N-isopropylacrylamide) investigated by small-angle X-ray scattering. Soft Mater. 2022, in press. [Google Scholar] [CrossRef]
- Hammouda, B. Temperature effect on the nanostructure of SDS micelles in water. J. Res. Natl. Inst. Stand. Technol. 2013, 118, 151–167. [Google Scholar] [CrossRef]
- Pisárčik, M.; Pupák, M.; Devínsky, F.; Almásy, L.; Tian, Q.; Bukovský, M. Urea-based gemini surfactants: Synthesis, aggregation behavior and biological activity. Colloids Surf. A 2016, 497, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Petrenko, V.I.; Avdeev, M.V.; Almásy, L.; Bulavin, L.A.; Aksenov, V.L.; Rosta, L.; Garamus, V.M. Interaction of mono-carboxylic acids in benzene studied by small-angle neutron scattering. Colloids Surf. A 2009, 337, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Branca, C.; Faraone, A.; Magazu, S.; Maisano, G.; Migliardo, P.; Triolo, A.; Triolo, R.; Villari, V. Effects of isotopic substitution on the conformational properties of polymeric aqueous solutions. Phys. B 2000, 332, 276–278. [Google Scholar] [CrossRef]
PEG Molecular Mass | PEG Mass Fraction | , cm−1 | , nm | B, cm−1 | A |
---|---|---|---|---|---|
400 g/mol | 0.005 | 0.007(3) | 0.4(1) | 0.002 | – |
0.01 | 0.01(1) | 0.57(6) | 0.006 | – | |
0.0 | 0.036(2) | 0.89(1) | 0.02 | 0.016(2) | |
0.05 | 0.075(4) | 0.85(6) | 0.01 | 0.038(2) | |
0.1 | 0.13(1) | 0.80(6) | 0.03 | 0.08(7) | |
1000 g/mol | 0.006 | 0.025(1) | 0.75(5) | 0.002 | – |
0.01 | 0.041(2) | 0.75(4) | 0.002 | – | |
0.025 | 0.076(1) | 1.47(4) | 0.02 | 0.06(1) | |
0.115 | 0.30(1) | 1.09(4) | 0.06 | 0.16(1) | |
0.205 | 0.26(1) | 1.11(4) | 0.12 | 0.16(1) | |
10,000 g/mol | 0.005 | 0.07(2) | 3.04(4) | 0.003 | – |
0.01 | 0.171(1) | 2.87(2) | 0.009 | – | |
0.02 | 0.207(1) | 2.49(2) | 0.01 | – | |
0.04 | 0.33(1) | 1.49(3) | 0.08 | 0.11(1) | |
0.08 | 0.271(1) | 1.24(3) | 0.11 | 0.13(1) | |
20,000 g/mol | 0.005 | 0.246(3) | 4.94(5) | 0.003 | – |
0.01 | 0.302(3) | 4.22(3) | 0.006 | – | |
0.02 | 0.361(2) | 2.99(2) | 0.01 | – | |
0.04 | 0.39(1) | 1.52(3) | 0.10 | 0.15(1) | |
0.08 | 0.260(5) | 1.12(4) | 0.12 | 0.13(1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almásy, L.; Artykulnyi, O.P.; Petrenko, V.I.; Ivankov, O.I.; Bulavin, L.A.; Yan, M.; Haramus, V.M. Structure and Intermolecular Interactions in Aqueous Solutions of Polyethylene Glycol. Molecules 2022, 27, 2573. https://doi.org/10.3390/molecules27082573
Almásy L, Artykulnyi OP, Petrenko VI, Ivankov OI, Bulavin LA, Yan M, Haramus VM. Structure and Intermolecular Interactions in Aqueous Solutions of Polyethylene Glycol. Molecules. 2022; 27(8):2573. https://doi.org/10.3390/molecules27082573
Chicago/Turabian StyleAlmásy, László, Oleksandr P. Artykulnyi, Viktor I. Petrenko, Oleksandr I. Ivankov, Leonid A. Bulavin, Minhao Yan, and Vasil M. Haramus. 2022. "Structure and Intermolecular Interactions in Aqueous Solutions of Polyethylene Glycol" Molecules 27, no. 8: 2573. https://doi.org/10.3390/molecules27082573
APA StyleAlmásy, L., Artykulnyi, O. P., Petrenko, V. I., Ivankov, O. I., Bulavin, L. A., Yan, M., & Haramus, V. M. (2022). Structure and Intermolecular Interactions in Aqueous Solutions of Polyethylene Glycol. Molecules, 27(8), 2573. https://doi.org/10.3390/molecules27082573