Micelle Formation in Aqueous Solutions of the Cholesterol-Based Detergent Chobimalt Studied by Small-Angle Scattering
Abstract
:1. Introduction
2. Results and Discussion
2.1. Critical Micelle Concentration
2.2. Small-Angle Scattering
3. Materials and Methods
3.1. Determination of Chobimalt Critical Micelle Concentration Using Fluorescence Probe
3.2. Small-Angle Neutron Scattering (SANS)
3.3. Small-Angle X-ray Scattering (SAXS)
3.4. Sample Preparation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Nagarajan, R. Constructing a Molecular Theory of Self-Assembly: Interplay of Ideas from Surfactants and Block Copolymers. Adv. Colloid Interface Sci. 2017, 244, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Zemb, T.; Dubois, M.; Demé, B.; Gulik-Krzywicki, T. Self-Assembly of Flat Nanodiscs in Salt-Free Catanionic Surfactant Solutions. Science 1999, 283, 816–819. [Google Scholar] [CrossRef]
- Dufourc, E.J. Bicelles and Nanodiscs for Biophysical Chemistry. Biochim. Biophys. Acta (BBA)—Biomembr. 2021, 1863, 183478. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Das, M.; Mahler, F.; Ahmed, W.; Wang, H.; Mortensen, J.S.; Hariharan, P.; Ghani, L.; Byrne, B.; Guan, L.; et al. 3,4-Bis(Hydroxymethyl)Hexane-1,6-diol-based Maltosides (HDMs) for Membrane-Protein Study: Importance of Detergent Rigidity–Flexibility Balance in Protein Stability. Chem. Asian J. 2022, 17, e202200941. [Google Scholar] [CrossRef] [PubMed]
- Ehsan, M.; Wang, H.; Katsube, S.; Munk, C.F.; Du, Y.; Youn, T.; Yoon, S.; Byrne, B.; Loland, C.J.; Guan, L.; et al. Glyco-Steroidal Amphiphiles (GSAs) for Membrane Protein Structural Study. ChemBioChem 2022, 23, e202200027. [Google Scholar] [CrossRef]
- Sadaf, A.; Kim, S.; Bae, H.E.; Wang, H.; Nygaard, A.; Uegaki, Y.; Du, Y.; Munk, C.F.; Katsube, S.; Sung Lee, H.; et al. Conformationally Flexible Core-Bearing Detergents with a Hydrophobic or Hydrophilic Pendant: Effect of Pendant Polarity on Detergent Conformation and Membrane Protein Stability. Acta Biomater. 2021, 128, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Trinh, T.K.H.; Qiu, W.; Thornton, M.; Carpenter, E.E.; Guo, Y. A Property Fine-Tuned Sulfobetaine Cholesterol Derivative for Membrane Protein Structural Biology. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2021, 1865, 129908. [Google Scholar] [CrossRef] [PubMed]
- Anandan, A.; Vrielink, A. Detergents in Membrane Protein Purification and Crystallisation. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2016; Volume 922, pp. 13–28. [Google Scholar]
- Howell, S.C.; Mittal, R.; Huang, L.; Travis, B.; Breyer, R.M.; Sanders, C.R. CHOBIMALT: A Cholesterol-Based Detergent. Biochemistry 2010, 49, 9572–9583. [Google Scholar] [CrossRef] [PubMed]
- Siposova, K.; Petrenko, V.I.; Garcarova, I.; Sedlakova, D.; Almásy, L.; Kyzyma, O.A.; Kriechbaum, M.; Musatov, A. The Intriguing Dose-Dependent Effect of Selected Amphiphilic Compounds on Insulin Amyloid Aggregation: Focus on a Cholesterol-Based Detergent, Chobimalt. Front. Mol. Biosci. 2022, 9, 955282. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Choi, M.C.; Al Adem, K.; Lukman, S.; Kim, T.-Y. Aggregation and Cellular Toxicity of Pathogenic or Non-Pathogenic Proteins. Sci. Rep. 2020, 10, 5120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, A.; Millett, I.S.; Doniach, S.; Uversky, V.N.; Fink, A.L. Partially Folded Intermediates in Insulin Fibrillation. Biochemistry 2003, 42, 11404–11416. [Google Scholar] [CrossRef]
- Das, A.; Shah, M.; Saraogi, I. Molecular Aspects of Insulin Aggregation and Various Therapeutic Interventions. ACS Bio Med Chem Au 2022, 2, 205–221. [Google Scholar] [CrossRef]
- Akbarian, M.; Yousefi, R.; Farjadian, F.; Uversky, V.N. Insulin Fibrillation: Toward Strategies for Attenuating the Process. Chem. Commun. 2020, 56, 11354–11373. [Google Scholar] [CrossRef] [PubMed]
- Kotlarchyk, M.; Chen, S. Analysis of Small Angle Neutron Scattering Spectra from Polydisperse Interacting Colloids. J. Chem. Phys. 1983, 79, 2461–2469. [Google Scholar] [CrossRef]
- Pedersen, J.S. Analysis of Small-Angle Scattering Data from Micelles and Microemulsions: Free-Form Approaches and Model Fitting. Curr. Opin. Colloid Interface Sci. 1999, 4, 190–196. [Google Scholar] [CrossRef]
- Ivanović, M.T.; Hermann, M.R.; Wójcik, M.; Pérez, J.; Hub, J.S. Small-Angle X-Ray Scattering Curves of Detergent Micelles: Effects of Asymmetry, Shape Fluctuations, Disorder, and Atomic Details. J. Phys. Chem. Lett. 2020, 11, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Petrenko, V.I.; Avdeev, M.V.; Garamus, V.M.; Bulavin, L.A.; Aksenov, V.L.; Rosta, L. Micelle Formation in Aqueous Solutions of Dodecylbenzene Sulfonic Acid Studied by Small-Angle Neutron Scattering. Colloids Surf. A Physicochem. Eng. Asp. 2010, 369, 160–164. [Google Scholar] [CrossRef]
- Shi, X.; Tian, Q.; Henderson, M.J.; Li, N.; Zhang, J.; Dai, X.; Royal, G.; Yan, M.; Almásy, L. Structure and Transport of Polystyrene-b-Poly(Acrylic Acid) Micelles Incorporating Uranyl Carbonate: A Model for NOM–U(vi) Colloids. Environ. Sci. Nano 2022, 9, 2587–2595. [Google Scholar] [CrossRef]
- Tian, Q.; Zhang, D.; Li, N.; Henderson, M.J.; Li, Q.; Royal, G.; Courtois, J.; Yan, M.; Zhu, Z.; Almásy, L. Structural Study of Polystyrene-b-Poly(Acrylic Acid) Micelles Complexed with Uranyl: A SAXS Core–Shell Model Analysis. Langmuir 2020, 36, 4820–4826. [Google Scholar] [CrossRef] [PubMed]
- Sunaina; Mehta, S.K.; Ganguli, A.K.; Vaidya, S. Small-Angle X-Ray Scattering as an Effective Tool to Understand the Structure and Rigidity of the Reverse Micelles with the Variation of Surfactant. J. Mol. Liq. 2021, 326, 115302. [Google Scholar] [CrossRef]
- Artykulnyi, O.P.; Shibaev, A.V.; Avdeev, M.M.; Ivankov, O.I.; Bulavin, L.A.; Petrenko, V.I.; Philippova, O.E. Structural Investigations of Poly(ethylene glycol)-dodecylbenzenesulfonic Acid Complexes in Aqueous Solutions. J. Mol. Liq. 2020, 308, 113045. [Google Scholar] [CrossRef]
- Petrenko, V.I.; Artykulnyi, O.P.; Bulavin, L.A.; Almásy, L.; Garamus, V.M.; Ivankov, O.I.; Grigoryeva, N.A.; Vekas, L.; Kopcansky, P.; Avdeev, M.V. On the Impact of Surfactant Type on the Structure of Aqueous Ferrofluids. Colloids Surf. A Physicochem. Eng. Asp. 2018, 541, 222–226. [Google Scholar] [CrossRef]
- Li, H.; Wang, K.; Tuo, X.; Almásy, L.; Tian, Q.; Sun, G.; Henderson, M.J.; Li, Q.; Wacha, A.; Courtois, J.; et al. Thickness Determination of Ultrathin Poly(Acrylic Acid) Shell on γ-Fe2O3 Nanocore via Small-Angle Scattering. Mater. Chem. Phys. 2018, 204, 236–242. [Google Scholar] [CrossRef]
- Thompson, K.D.; Danielson, E.P.; Peterson, K.N.; Nocevski, N.O.; Boock, J.T.; Berberich, J.A. The Amphoteric Surfactant N,N -Dimethyldodecylamine N-Oxide Unfolds β-Lactoglobulin above the Critical Micelle Concentration. Langmuir 2022, 38, 4090–4101. [Google Scholar] [CrossRef]
- Birdi, K.S. Interaction of Sodium Dodecyl Sulfate with the Hydrophobic Fluorescent Probe, 2-p-Toluidinylnaphthalene-6-Sulfonate. Comment. J. Phys. Chem. 1977, 81, 934–935. [Google Scholar] [CrossRef]
- Glatter, O. A New Method for the Evaluation of Small-Angle Scattering Data. J. Appl. Crystallogr. 1977, 10, 415–421. [Google Scholar] [CrossRef]
- Moore, P.B. Small-Angle Scattering. Information Content and Error Analysis. J. Appl. Crystallogr. 1980, 13, 168–175. [Google Scholar] [CrossRef]
- SasView—Small Angle Scattering Analysis. Available online: https://www.sasview.org/ (accessed on 30 December 2022).
- Glatter, O. The Interpretation of Real-Space Information from Small-Angle Scattering Experiments. J. Appl. Crystallogr. 1979, 12, 166–175. [Google Scholar] [CrossRef]
- Svergun, D.I.; Koch, M.H.J. Small-Angle Scattering Studies of Biological Macromolecules in Solution. Rep. Prog. Phys. 2003, 66, 1735–1782. [Google Scholar] [CrossRef]
- Tian, Q.; Yan, G.; Bai, L.; Li, X.; Zou, L.; Rosta, L.; Wacha, A.; Li, Q.; Krakovský, I.; Yan, M.; et al. Phase Mixing and Separation in Polyester Polyurethane Studied by Small-Angle Scattering: A Polydisperse Hard Sphere Model Analysis. Polymer 2018, 147, 1–7. [Google Scholar] [CrossRef]
- Kotlarchyk, M.; Stephens, R.B.; Huang, J.S. Study of Schultz Distribution to Model Polydispersity of Microemulsion Droplets. J. Phys. Chem. 1988, 92, 1533–1538. [Google Scholar] [CrossRef]
- Greenwood, A.I.; Tristram-Nagle, S.; Nagle, J.F. Partial Molecular Volumes of Lipids and Cholesterol. Chem. Phys. Lipids 2006, 143, 1–10. [Google Scholar] [CrossRef]
- He, L.; Garamus, V.M.; Funari, S.S.; Malfois, M.; Willumeit, R.; Niemeyer, B. Comparison of Small-Angle Scattering Methods for the Structural Analysis of Octyl-β-Maltopyranoside Micelles. J. Phys. Chem. B 2002, 106, 7596–7604. [Google Scholar] [CrossRef]
- Mondal, S.; Pan, A.; Das, S.; Moulik, S.P.; Ghosh, S. The Cholesterol Aided Micelle to Vesicle Transition of a Cationic Gemini Surfactant (14-4-14) in Aqueous Medium. RSC Adv. 2016, 6, 26019–26025. [Google Scholar] [CrossRef]
- Gaudin, T.; Lu, H.; Fayet, G.; Berthauld-Drelich, A.; Rotureau, P.; Pourceau, G.; Wadouachi, A.; van Hecke, E.; Nesterenko, A.; Pezron, I. Impact of the Chemical Structure on Amphiphilic Properties of Sugar-Based Surfactants: A Literature Overview. Adv. Colloid Interface Sci. 2019, 270, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Breibeck, J.; Rompel, A. Successful Amphiphiles as the Key to Crystallization of Membrane Proteins: Bridging Theory and Practice. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2019, 1863, 437–455. [Google Scholar] [CrossRef]
- Ericsson, C.A.; Söderman, O.; Garamus, V.M.; Bergström, M.; Ulvenlund, S. Effects of Temperature, Salt, and Deuterium Oxide on the Self-Aggregation of Alkylglycosides in Dilute Solution. 2. n-Tetradecyl-β-D-maltoside. Langmuir 2005, 21, 1507–1515. [Google Scholar] [CrossRef]
- Siposova, K.; Petrenko, V.I.; Ivankov, O.I.; Musatov, A.; Bulavin, L.A.; Avdeev, M.V.; Kyzyma, O.A. Fullerenes as an Effective Amyloid Fibrils Disaggregating Nanomaterial. ACS Appl. Mater. Interfaces 2020, 12, 32410–32419. [Google Scholar] [CrossRef]
- Almásy, L. New Measurement Control Software on the Yellow Submarine SANS Instrument at the Budapest Neutron Centre. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2021, 15, 527–531. [Google Scholar] [CrossRef]
- Gaudin, T.; Rotureau, P.; Pezron, I.; Fayet, G. Investigating the Impact of Sugar-Based Surfactants Structure on Surface Tension at Critical Micelle Concentration with Structure-Property Relationships. J. Colloid Interface Sci. 2018, 516, 162–171. [Google Scholar] [CrossRef]
- Ericsson, C.A.; Söderman, O.; Garamus, V.M.; Bergström, M.; Ulvenlund, S. Effects of Temperature, Salt, and Deuterium Oxide on the Self-Aggregation of Alkylglycosides in Dilute Solution. 1. n-Nonyl-β-D-glucoside. Langmuir 2004, 20, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Marchant, R.E. Novel Polysaccharide Surfactants: The Effect of Hydrophobic and Hydrophilic Chain Length on Surface Active Properties. J. Colloid Interface Sci. 1996, 177, 419–426. [Google Scholar] [CrossRef]
- Argudo, P.G.; Spitzer, L.; Ibarboure, E.; Jerome, F.; Cramail, H.; Lecommandoux, S. Mannose-Based Surfactant as Biofunctional Nanoemulsion Stabilizer. Colloids Surf. B Biointerfaces 2022, 220, 112877. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Ruiz, S.; Soltwedel, O.; Micciulla, S.; Sreij, R.; Feoktystov, A.; von Klitzing, R.; Hellweg, T.; Wellert, S. Sugar Surfactant Based Microemulsions at Solid Surfaces: Influence of the Oil Type and Surface Polarity. Langmuir 2016, 32, 11928–11938. [Google Scholar] [CrossRef]
Sample | C, mM | Dmax, nm | Rg, nm | I0, cm−1 | |
---|---|---|---|---|---|
SANS | Chobimalt in D2O-DCl | 0.34 | 13.3 | 4.12 | 0.27 |
0.69 | 13.1 | 4.15 | 0.56 | ||
1 | 13.3 | 4.07 | 0.80 | ||
1.72 | 13.0 | 4.07 | 1.35 | ||
3.44 | 13.2 | 4.08 | 2.56 | ||
6.88 | 14.0 | 4.06 | 5.11 | ||
Chobimalt in D2O | 0.25 | 12.0 | 4.21 | 0.0754 | |
0.5 | 12.5 | 4.17 | 0.185 | ||
0.75 | 13.0 | 4.24 | 0.416 | ||
1 | 13.3 | 4.19 | 0.779 | ||
SAXS | Chobimalt in H2O-HCl | 1.72 | 15.0 | 5.96 | 0.249 |
3.44 | 14.5 | 5.58 | 1.14 | ||
6.88 | 14.8 | 5.55 | 2.13 | ||
Chobimalt in H2O | 1 | 14.5 | 5.25 | 0.229 | |
5 | 15.0 | 5.57 | 1.5 | ||
10 | 13.8 | 5.45 | 2.85 |
Sample | C, mM | φ, Vol.% | Core Radius, nm | Shell Thickness, nm | SLD Shell, 1010 cm−2 | PD Index | |
---|---|---|---|---|---|---|---|
Chobimalt in D2O-DCl | 0.17 | 0.014 | 1.0(5) | 3.1(5) | 2.1(3) | 0.19(1) | 218(33) |
0.34 | 0.027 | 1.1(4) | 3.1(5) | 2.1(2) | 0.22(1) | 235(32) | |
0.69 | 0.055 | 1.4(5) | 2.9(5) | 1.9(2) | 0.24(1) | 252(32) | |
1.00 | 0.079 | 1.6(3) | 2.8(3) | 1.9(1) | 0.24(1) | 270(18) | |
1.72 | 0.136 | 1.7(3) | 2.7(3) | 1.92(5) | 0.24(1) | 270(18) | |
3.44 | 0.273 | 1.8(1) | 2.6(1) | 2.15(5) | 0.27(1) | 270(7) | |
6.88 | 0.546 | 1.75(7) | 2.72(7) | 2.08(2) | 0.26(1) | 283(4) | |
Chobimalt in D2O | 0.10 | 0.008 | 1.1(5) | 2.8(5) | 1.8(5) | 0.3(1) | 189(35) |
0.25 | 0.020 | 1.1(3) | 3.1(5) | 2.1(3) | 0.24(2) | 235(27) | |
0.50 | 0.040 | 1.2(2) | 3.1(5) | 2.1 (2) | 0.25(1) | 252(23) | |
1.00 | 0.080 | 1.5(2) | 2.8(5) | 2.1(1) | 0.25(1) | 252(22) |
Sample | C, mM | φ, Vol.% | Re, nm | Rp, nm | Shell Thickness, nm | Micelle Shell SLD, 1010 cm−2 | |
---|---|---|---|---|---|---|---|
Chobimalt in D2O-DCl | 0.17 | 0.014 | 0.9(2) | 3.0(2) | 3.1(2) | 2.3(2) | 308(14) |
0.34 | 0.027 | 0.9(2) | 3.0(2) | 3.2(2) | 2.1(1) | 324(13) | |
0.69 | 0.055 | 0.9(1) | 3.3(1) | 3.2(2) | 2.1(1) | 340(13) | |
1.00 | 0.079 | 0.9(1) | 3.6(1) | 3.2(1) | 1.92(5) | 363(7) | |
1.72 | 0.136 | 0.9(1) | 3.8(1) | 3.2(1) | 1.95(3) | 373(6) | |
3.44 | 0.273 | 0.9(1) | 4.0(1) | 3.1(1) | 2.10(3) | 360(6) | |
6.88 | 0.546 | 0.92(7) | 4.05(3) | 3.18(6) | 2.06(1) | 384(5) | |
Chobimalt in D2O | 0.10 | 0.008 | 0.8(3) | 3.0(3) | 3.1(2) | 2.2(2) | 294(20) |
0.25 | 0.020 | 0.9(2) | 3.3(3) | 3.2(2) | 2.3(1) | 346(16) | |
0.50 | 0.040 | 0.9(1) | 3.7(1) | 3.1(1) | 2.3(1) | 345(7) | |
1.00 | 0.079 | 0.9(1) | 3.8(1) | 3.2(1) | 2.32(5) | 373(7) |
Sample | C, mM | φ, Vol.% | Core Radius, nm | Shell Thickness, nm | SLD Shell, 1010 cm−2 | PD Index |
---|---|---|---|---|---|---|
Chobimalt in H2O | 1.0 | 0.079 | 4.14(5) | 2.13(7) | 12.78(8) | 0.21(1) |
5.0 | 0.397 | 4.48(1) | 1.48(2) | 14.00(5) | 0.17(1) | |
10.0 | 0.793 | 4.45(1) | 1.49(1) | 13.97(2) | 0.18(1) | |
Chobimalt in H2O-HCl | 1.72 | 0.136 | 4.42(2) | 1.88(5) | 13.64(5) | 0.22(1) |
3.44 | 0.273 | 4.46(1) | 1.71(1) | 13.33(5) | 0.17(1) | |
6.88 | 0.546 | 4.45(1) | 1.61(1) | 13.88(1) | 0.16(1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artykulnyi, O.P.; Siposova, K.; Kriechbaum, M.; Musatov, A.; Almásy, L.; Petrenko, V. Micelle Formation in Aqueous Solutions of the Cholesterol-Based Detergent Chobimalt Studied by Small-Angle Scattering. Molecules 2023, 28, 1811. https://doi.org/10.3390/molecules28041811
Artykulnyi OP, Siposova K, Kriechbaum M, Musatov A, Almásy L, Petrenko V. Micelle Formation in Aqueous Solutions of the Cholesterol-Based Detergent Chobimalt Studied by Small-Angle Scattering. Molecules. 2023; 28(4):1811. https://doi.org/10.3390/molecules28041811
Chicago/Turabian StyleArtykulnyi, Oleksandr P., Katarina Siposova, Manfred Kriechbaum, Andrey Musatov, László Almásy, and Viktor Petrenko. 2023. "Micelle Formation in Aqueous Solutions of the Cholesterol-Based Detergent Chobimalt Studied by Small-Angle Scattering" Molecules 28, no. 4: 1811. https://doi.org/10.3390/molecules28041811
APA StyleArtykulnyi, O. P., Siposova, K., Kriechbaum, M., Musatov, A., Almásy, L., & Petrenko, V. (2023). Micelle Formation in Aqueous Solutions of the Cholesterol-Based Detergent Chobimalt Studied by Small-Angle Scattering. Molecules, 28(4), 1811. https://doi.org/10.3390/molecules28041811