Mechanism of One-Step Hydrothermally Synthesized Titanate Catalysts for Ozonation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Activities of Titania Catalysts
2.2. Physico-Chemical Characteristics of Synthesized Titania Catalysts
2.3. Active Oxidizing Species of Synthesized Titanate Catalysts
3. Materials and Methods
3.1. Materials
3.2. Synthesis of TiO2 Nanomaterials
3.3. Experiments of Catalytic Ozonation
3.4. Characterization of TiO2 Nanomaterials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hiskia, A.; Dionysiou, D.D.; Antoniou, M.; Kaloudis, T. Water Treatment for Purification from Cyanobacteria and Cyanotoxins, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020; p. 272. [Google Scholar]
- Ledakowicz, S.; Pazdzior, K. Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Integrated with Biological Methods. Molecules 2021, 26, 870. [Google Scholar] [CrossRef] [PubMed]
- Imamovic, B.; Trebse, P.; Omeragic, E.; Becic, E.; Pecet, A.; Dedic, M. Stability and Removal of Benzophenone-Type UV Filters from Water Matrices by Advanced Oxidation Processes. Molecules 2022, 27, 1874. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.C.; Xu, X.F. Hydrothermal synthesis and photocatalytic activity of CdO2 nanocrystals. J. Hazard. Mater. 2009, 163, 1310–1314. [Google Scholar] [CrossRef] [PubMed]
- Hu, E.L.; Shang, S.M.; Chiu, K.L. Removal of Reactive Dyes in Textile Effluents by Catalytic Ozonation Pursuing on-Site Effluent Recycling. Molecules 2019, 24, 2755. [Google Scholar] [CrossRef] [Green Version]
- Inchaurrondo, N.S.; Font, J. Clay, Zeolite and Oxide Minerals: Natural Catalytic Materials for the Ozonation of Organic Pollutants. Molecules 2022, 27, 2151. [Google Scholar] [CrossRef]
- Song, S.; Liu, Z.W.; He, Z.Q.; Zhang, A.L.; Chen, J.M. Impacts of Morphology and Crystallite Phases of Titanium Oxide on the Catalytic Ozonation of Phenol. Environ. Sci. Technol. 2010, 44, 3913–3918. [Google Scholar] [CrossRef]
- Yang, Y.X.; Ma, J.; Qin, Q.D.; Zhai, X.D. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. J. Mol. Catal. A-Chem. 2007, 267, 41–48. [Google Scholar] [CrossRef]
- Yang, Y.X.; Ma, J.; Zhang, J.; Wang, S.J.; Qin, Q.D. Ozonation of Trace Nitrobenzene in Water in the Presence of a TiO2/Silica-Gel Catalyst. Ozone-Sci. Eng. 2009, 31, 45–52. [Google Scholar] [CrossRef]
- Wang, S.J.; Ma, J.; Yang, Y.X.; Zhang, J.; Liang, T. Degradation and Transformation of Organic Compounds in Songhua River Water by Catalytic Ozonation in the Presence of TiO(2)/Zeolite. Ozone-Sci. Eng. 2011, 33, 236–242. [Google Scholar] [CrossRef]
- Anandan, S.; Wu, J.J. Effective Degradation of Fipronil Using Combined Catalytic Ozonation Processes. Ozone-Sci. Eng. 2015, 37, 186–190. [Google Scholar] [CrossRef]
- Rosal, R.; Gonzalo, M.S.; Boltes, K.; Leton, P.; Vaquero, J.J.; Garcia-Calvo, E. Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid. J. Hazard. Mater. 2009, 172, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Keri, O.; Kocsis, E.; Karajz, D.A.; Nagy, Z.K.; Parditka, B.; Erdelyi, Z.; Szabo, A.; Hernadi, K.; Szilagyi, I.M. Photocatalytic Crystalline and Amorphous TiO2 Nanotubes Prepared by Electrospinning and Atomic Layer Deposition. Molecules 2021, 26, 5917. [Google Scholar] [CrossRef] [PubMed]
- Appadurai, T.; Subramaniyam, C.M.; Kuppusamy, R.; Karazhanov, S.; Subramanian, B. Electrochemical Performance of Nitrogen-Doped TiO2 Nanotubes as Electrode Material for Supercapacitor and Li-Ion Battery. Molecules 2019, 24, 2952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udrescu, A.; Florica, S.; Chivu, M.; Mercioniu, I.; Matei, E.; Baibarac, M. Rhodamine B Photodegradation in Aqueous Solutions Containing Nitrogen Doped TiO2 and Carbon Nanotubes Composites. Molecules 2021, 26, 7237. [Google Scholar] [CrossRef] [PubMed]
- Kitano, M.; Wada, E.; Nakajima, K.; Hayashi, S.; Miyazaki, S.; Kobayashi, H.; Hara, M. Protonated Titanate Nanotubes with Lewis and Bronsted Acidity: Relationship between Nanotube Structure and Catalytic Activity. Chem. Mater. 2013, 25, 385–393. [Google Scholar] [CrossRef]
- Sandoval, A.; Hernandez-Ventura, C.; Klimova, T.E. Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis. Fuel 2017, 198, 22–30. [Google Scholar] [CrossRef]
- Yu, J.G.; Yu, H.G.; Cheng, B.; Trapalis, C. Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes. J. Mol. Catal. A-Chem. 2006, 249, 135–142. [Google Scholar] [CrossRef]
- Liu, Z.W.; Qiu, J.P.; Zheng, C.C.; Li, L.Q. Degradation of the Ammonia Wastewater in Aqueous Medium with Ozone in Combination with Mesoporous TiO2 Catalytic. AIP Conf. Proc. 2017, 1820. [Google Scholar]
- Xing, S.T.; Lu, X.Y.; Zhang, X.J.; Zhang, Y.Y.; Ma, Z.C.; Wu, Y.S. Mechanism for catalytic ozonation of p-nitrophenol in water with titanate nanotube supported manganese oxide. RSC Adv. 2015, 5, 101975–101981. [Google Scholar] [CrossRef]
- Tsai, C.C.; Teng, H.S. Regulation of the physical characteristics of Titania nanotube aggregates synthesized from hydrothermal treatment. Chem. Mater. 2004, 16, 4352–4358. [Google Scholar] [CrossRef]
- Molnar, J.; Agbaba, J.; Dalmacija, B.; Klasnja, M.; Watson, M.; Kragulj, M. Effects of Ozonation and Catalytic Ozonation on the Removal of Natural Organic Matter from Groundwater. J. Environ. Eng. 2012, 138, 804–808. [Google Scholar] [CrossRef]
- Lanao, M.; Ormad, M.P.; Ibarz, C.; Miguel, N.; Ovelleiro, J.L. Bactericidal Effectiveness of O3, O3/H2O2 and O3/TiO2 on Clostridium perfringens. Ozone-Sci. Eng. 2008, 30, 431–438. [Google Scholar] [CrossRef]
- Ormad, M.P.; Miguel, N.; Lanao, M.; Mosteo, R.; Ovelleiro, J.L. Effect of Application of Ozone and Ozone Combined with Hydrogen Peroxide and Titanium Dioxide in the Removal of Pesticides From Water. Ozone-Sci. Eng. 2010, 32, 25–32. [Google Scholar] [CrossRef]
- Chen, Y.H.; Hsieh, D.C.; Shang, N.C. Efficient mineralization of dimethyl phthalate by catalytic ozonation using TiO2/Al2O3 catalyst. J. Hazard. Mater. 2011, 192, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Maxim, F.; Ferreira, P.; Vilarinho, P.M. Influence of the neutralization process on the preparation of titanate nanotubes by hydrothermal synthesis. J. Porous Mat. 2011, 18, 37–45. [Google Scholar] [CrossRef]
- Tsai, C.C.; Teng, H.S. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem. Mater. 2006, 18, 367–373. [Google Scholar] [CrossRef]
- Lu, D.Z.; Yang, M.C.; Kumar, K.K.; Wu, P.; Neena, D. Investigation of Structure and Photocatalytic Degradation of Organic Pollutants for Protonated Anatase/Titanate Nanosheets during Thermal Treatment. Acs Sustain. Chem. Eng. 2018, 6, 4801–4808. [Google Scholar] [CrossRef]
- Uematsu, E.; Itadani, A.; Hashimoto, H.; Uematsu, K.; Toda, K.; Sato, M. Tubular Titanates: Alkali-Metal Ion-Exchange Features and Carbon Dioxide Adsorption at Room Temperature. Ind. Eng. Chem. Res. 2019, 58, 5168–5174. [Google Scholar] [CrossRef]
- Gao, T.; Fjellvag, H.; Norby, P. Crystal Structures of Titanate Nanotubes: A Raman Scattering Study. Inorg. Chem. 2009, 48, 1423–1432. [Google Scholar] [CrossRef]
- Huang, X.W.; Yang, W.Q.; Zhang, G.S.; Yan, L.; Zhang, Y.C.; Jiang, A.H.; Xu, H.L.; Zhou, M.; Liu, Z.J.; Tang, H.D.; et al. Alternative synthesis of nitrogen and carbon co-doped TiO2 for removing fluoroquinolone antibiotics in water under visible light. Catal. Today 2021, 361, 11–16. [Google Scholar] [CrossRef]
- Ge, T.; Jiang, Z.; Shen, L.; Li, J.; Lu, Z.; Zhang, Y.; Wang, F. Synthesis and application of Fe3O4/FeWO4 composite as an efficient and magnetically recoverable visible light-driven photocatalyst for the reduction of Cr(VI). Sep. Purif. Technol. 2021, 263, 118401. [Google Scholar] [CrossRef]
- Jaramillo-Fierro, X.; González, S.; Medina, F. La-Doped ZnTiO3/TiO2 Nanocomposite Supported on Ecuadorian Diatomaceous Earth as a Highly Efficient Photocatalyst Driven by Solar Light. Molecules 2021, 26, 6232. [Google Scholar] [CrossRef] [PubMed]
- Giarola, M.; Sanson, A.; Monti, F.; Mariotto, G.; Bettinelli, M.; Speghini, A.; Salviulo, G. Vibrational dynamics of anatase TiO2: Polarized Raman spectroscopy and ab initio calculations. Phys. Rev. B 2010, 81, 174305. [Google Scholar] [CrossRef]
- Ma, R.Z.; Fukuda, K.; Sasaki, T.; Osada, M.; Bando, Y. Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations. J. Phys. Chem. B 2005, 109, 6210–6214. [Google Scholar] [CrossRef]
- Bamberger, C.E.; Begun, G.M. Sodium Titanates: Stoichiometry and Raman Spectra. J. Am. Ceram. Soc. 1987, 70, C-48–C-51. [Google Scholar] [CrossRef]
- Ma, W.F.; Hu, J.Z.; Yoza, B.A.; Wang, Q.H.; Zhang, X.F.; Li, Q.X.; Guo, S.H.; Chen, C.M. Kaolinite based catalysts for efficient ozonation of recalcitrant organic chemicals in water. Appl. Clay Sci. 2019, 175, 159–168. [Google Scholar] [CrossRef]
- Yuan, L.; Shen, J.M.; Chen, Z.L.; Guan, X.H. Role of Fe/pumice composition and structure in promoting ozonation reactions. Appl. Catal. B-Environ. 2016, 180, 707–714. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, W.C.; Lu, S.; Ma, J. Influencing investigation of metal ions on heterogeneous catalytic ozonation by ceramic honeycomb for the degradation of nitrobenzene in aqueous solution with neutral pH. Sep. Purif. Technol. 2019, 210, 167–174. [Google Scholar] [CrossRef]
- Reda, S.M.; Khairy, M.; Mousa, M.A. Photocatalytic activity of nitrogen and copper doped TiO2 nanoparticles prepared by microwave-assisted sol-gel process. Arab. J. Chem. 2020, 13, 86–95. [Google Scholar] [CrossRef]
- Takadama, H.; Kim, H.M.; Kokubo, T.; Nakamura, T. An X-ray photoelectron spectroscopy study of the process of apatite formation on bioactive titanium metal. J. Biomed Mater. Res. 2001, 55, 185–193. [Google Scholar] [CrossRef]
- Wang, L.M.; Zhou, B.B.; Huang, X.X.; Dong, L.Q.; Cheng, K.; Weng, W.J. Cell responses on a H2Ti3O7 nanowire film. RSC Adv. 2017, 7, 33606–33613. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Alonso, M.D.; Garcia-Rodriguez, S.; Suarez, S.; Portela, R.; Sanchez, B.; Coronado, J.M. Operando DRIFTS study of the role of hydroxyls groups in trichloroethylene photo-oxidation over titanate and TiO2 nanostructures. Catal. Today 2013, 206, 32–39. [Google Scholar] [CrossRef]
- Jiang, J.; Gao, Q.; Chen, Z. Gold nanocatalysts supported on protonic titanate nanotubes and titania nanocrystals. J. Mol. Catal. A-Chem. 2008, 280, 233–239. [Google Scholar] [CrossRef]
- Wang, Y.X.; Xie, Y.B.; Sun, H.Q.; Xiao, J.D.; Cao, H.B.; Wang, S.B. Hierarchical shape-controlled mixed-valence calcium manganites for catalytic ozonation of aqueous phenolic compounds. Catal. Sci. Technol. 2016, 6, 2918–2929. [Google Scholar] [CrossRef]
- Wang, D.; Xu, H.D.; Ma, J.; Lu, X.H.; Qi, J.Y.; Song, S. Morphology Control Studies of MnTiO3 Nanostructures with Exposed {0001} Facets as a High-Performance Catalyst for Water Purification. ACS Appl. Mater. Int. 2018, 10, 31631–31640. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.X.; Yu, G.; Wang, Y.J. Revisiting the role of reactive oxygen species for pollutant abatement during catalytic ozonation: The probe approach versus the scavenger approach. Appl. Catal. B-Environ. 2021, 280, 119418. [Google Scholar] [CrossRef]
- Song, Z.L.; Wang, M.X.; Wang, Z.; Wang, Y.F.; Li, R.Y.; Zhang, Y.T.; Liu, C.; Liu, Y.; Xu, B.B.; Qi, F. Insights into Heteroatom-Doped Graphene for Catalytic Ozonation: Active Centers, Reactive Oxygen Species Evolution, and Catalytic Mechanism. Environ. Sci. Technol. 2019, 53, 5337–5348. [Google Scholar] [CrossRef]
- Afzal, S.; Quan, X.; Zhang, J.L. High surface area mesoporous nanocast LaMO3 (M = Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism. Appl. Catal. B-Environ. 2017, 206, 692–703. [Google Scholar] [CrossRef]
- Wang, Y.X.; Xie, Y.B.; Sun, H.Q.; Xiao, J.D.; Cao, H.B.; Wang, S.B. Efficient Catalytic Ozonation over Reduced Graphene Oxide for p-Hydroxylbenzoic Acid (PHBA) Destruction: Active Site and Mechanism. Acs Appl. Mater. Int. 2016, 8, 9710–9720. [Google Scholar] [CrossRef]
- Han, R.R.; Fang, Y.S.; Sun, P.; Xie, K.; Zhai, Z.C.; Liu, H.X.; Liu, H. N-Doped Biochar as a New Metal-Free Activator of Peroxymonosulfate for Singlet Oxygen-Dominated Catalytic Degradation of Acid Orange 7. Nanomaterials 2021, 11, 2288. [Google Scholar] [CrossRef]
Sample ID | Crystal Size (nm) | D(101)/D(110) (Å) 1 | SBET (m2/g) |
---|---|---|---|
Raw anatase | 22.7 | 3.54 | 66.95 |
A-5 | 21.2 | 3.54 | 75.83 |
A-7.5 | 21.6 | 3.54 | 108.6 |
A-10 | NA | NA | 219.3 |
A-15 | NA | NA | 16.26 |
Raw rutile | 21.6 | 3.27 | 26.91 |
R-5 | 21.8 | 3.28 | 66.59 |
R-7.5 | 22 | 3.27 | 82.12 |
R-10 | 21.6 | 3.28 | 228.8 |
R-15 | NA | NA | 12.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Jiang, A.; Huang, X.; Yuan, T.; Wu, H.; Li, L.; Liu, Z. Mechanism of One-Step Hydrothermally Synthesized Titanate Catalysts for Ozonation. Molecules 2022, 27, 2706. https://doi.org/10.3390/molecules27092706
Zhang G, Jiang A, Huang X, Yuan T, Wu H, Li L, Liu Z. Mechanism of One-Step Hydrothermally Synthesized Titanate Catalysts for Ozonation. Molecules. 2022; 27(9):2706. https://doi.org/10.3390/molecules27092706
Chicago/Turabian StyleZhang, Geshan, Anhua Jiang, Xinwen Huang, Tian Yuan, Hanrui Wu, Lichun Li, and Zongjian Liu. 2022. "Mechanism of One-Step Hydrothermally Synthesized Titanate Catalysts for Ozonation" Molecules 27, no. 9: 2706. https://doi.org/10.3390/molecules27092706
APA StyleZhang, G., Jiang, A., Huang, X., Yuan, T., Wu, H., Li, L., & Liu, Z. (2022). Mechanism of One-Step Hydrothermally Synthesized Titanate Catalysts for Ozonation. Molecules, 27(9), 2706. https://doi.org/10.3390/molecules27092706