Batch and Flow Synthesis of CeO2 Nanomaterials Using Solid-State Microwave Generators
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis Procedure
2.2. Crystallinity of the Materials
2.3. Particle Size and Morphology
2.4. ROS Scavenging Properties
2.5. Energy Efficiency
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of the CeO2 Nanomaterials
3.3. Characterization of the Materials
3.4. Determination of the Peroxidase Activity
3.5. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bêche, E.; Charvin, P.; Perarnau, D.; Abanades, S.; Flamant, G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interf. Anal. 2008, 40, 264–267. [Google Scholar] [CrossRef]
- Mullins, D.R. The surface chemistry of cerium oxide. Surf. Sci. Rep. 2015, 70, 42–85. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.B.; Faisal, M.; Rahman, M.M.; Jamal, A. Exploration of CeO2 nanoparticles as a chemisensor and photocatalyst for environmental applications. Sci. Total Env. 2011, 409, 2987–2992. [Google Scholar] [CrossRef] [PubMed]
- Beie, H.J.; Gnörich, A. Oxygen gas sensors based on CeO2 thick and thin films. Sens. Act. B Chem. 1991, 4, 393–399. [Google Scholar] [CrossRef]
- Jasinski, P.; Suzuki, T.; Anderson, H.U. Nanocrystalline undoped ceria oxygen sensor. Sens. Act. B Chem. 2003, 95, 73–77. [Google Scholar] [CrossRef]
- Tschöpe, A. Interface defect chemistry and effective conductivity in polycrystalline cerium oxide. J. Electroceramics 2005, 14, 5–23. [Google Scholar] [CrossRef]
- Wu, H.; Yin, J.-J.; Wamer, W.C.; Zeng, M.; Martin, Y. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J. Food Drug Anal. 2014, 22, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Cheng, N.; Zhang, J.; Huang, H.; Yuan, Y.; He, X.; Luo, Y.; Huang, K. Nanoscale Cerium Oxide: Synthesis, Biocatalytic Mechanism, and Applications. Catalysts 2021, 11, 1123. [Google Scholar] [CrossRef]
- Díaz de Greñu, B.; Torres, J.; García-González, J.; Muñoz-Pina, S.S.; de los Reyes, R.; Costero, A.M.; Amorós, P.; Ros-Lis, J.V. Microwave-Assisted Synthesis of Covalent Organic Frameworks: A Review. ChemSusChem 2021, 14, 208–233. [Google Scholar] [CrossRef]
- Prado-Gonjal, J.; Schmidt, R.; Espíndola-Canuto, J.; Ramos-Alvarez, P.; Morán, E. Increased ionic conductivity in microwave hydrothermally synthesized rare-earth doped ceria Ce1−xRExO2−(x/2). J. Power Sources 2012, 209, 163–171. [Google Scholar] [CrossRef]
- Kumar, E.; Selvarajan, P.; Muthuraj, D. Synthesis and characterization of CeO2 nanocrystals by solvothermal route. Mat. Res. 2013, 16, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.H.; Zhu, J.M.; Zhu, J.J.; Xu, J.Z.; Chen, H.Y. Preparation of monodispersed nanocrystalline CeO2 powders by microwave irradiation. Chem. Commun. 2001, 10, 937–938. [Google Scholar] [CrossRef]
- Phuruangrat, A.; Thongtem, S.; Thongtem, T. Microwave-assisted hydrothermal synthesis and characterization of CeO2 nanowires for using as a photocatalytic material. Mat. Lett. 2017, 196, 61–63. [Google Scholar] [CrossRef]
- Sun, C.; Li, H.; Zhang, H.; Wang, Z.; Chen, L. Controlled synthesis of CeO2 nanorods by a solvothermal method. Nanotechnology 2005, 16, 1454. [Google Scholar] [CrossRef]
- Riccardi, C.S.; Lima, R.C.; Dos Santos, M.L.; Bueno, P.R.; Varela, J.A.; Longo, E. Preparation of CeO2 by a simple microwave–hydrothermal method. Solid State Ion. 2009, 180, 288–291. [Google Scholar] [CrossRef]
- Roggenbuck, J.; Schäfer, H.; Tsoncheva, T.; Minchev, C.; Hanss, J.; Tiemann, M. Mesoporous CeO2: Synthesis by nanocasting, characterisation and catalytic properties. Microp. Mesop. Mat. 2007, 101, 335–341. [Google Scholar] [CrossRef]
- Polychronopoulou, K.; Zedan, A.F.; Katsiotis, M.S.; Baker, M.A.; AlKhoori, A.A.; AlQaradawi, S.Y.; AlHassan, S. Rapid microwave assisted sol-gel synthesis of CeO2 and CexSm1-xO2 nanoparticle catalysts for CO oxidation. Molec. Catal. 2017, 428, 41–55. [Google Scholar] [CrossRef]
- Dinani, S.T.; Kubbutat, P.; Kulozik, U. Assessment of heating profiles in model food systems heated by different microwave generators: Solid-state (semiconductor) versus traditional magnetron technology. Innov. Food Sci. Emer. Technol. 2020, 63, 102376. [Google Scholar] [CrossRef]
- Gupta, M.; Wong Wai Leong, E. Microwave and Metals; John Willey & Sons: Hoboken, NJ, USA, 2007; ISBN 978-0-470-82272-2. [Google Scholar]
- Britton, J.; Raston, C.L. Multi-step continuous-flow synthesis. Chem. Soc. Rev. 2017, 46, 1250–1271. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Ju, P.; Wang, Z.; Zhang, Y.; Zhai, X.; Jiang, F.; Sun, C. Colorimetric detection of H2O2 based on the enhanced peroxidase mimetic activity of nanoparticles decorated Ce2(WO4)3 nanosheets. Spectrochim. Acta A Mol. Biomol. Spectr. 2020, 239, 118499. [Google Scholar] [CrossRef]
- Scherrer, P. Estimation of the size and internal structure of colloidal particles by means of rontgen rays. Nachr. Ges. Wiss. Gott. 1918, 2, 96–100. [Google Scholar]
- Environmental Protection Agency. AVERT, U.S. National Weighted Average CO2 Marginal Emission Rate, Year 2019 Data; U.S. Environmental Protection Agency: Washington, DC, USA, 2020.
Material | Reactor | pH | Power (W) | Time (min) |
---|---|---|---|---|
B11L | Batch | 11 | 50 | 2:30 |
B11M | Batch | 11 | 100 | 1:00 |
B11H | Batch | 11 | 200 | 0:30 |
B12L | Batch | 12 | 50 | 2:30 |
B12M | Batch | 12 | 100 | 1:00 |
B12H | Batch | 12 | 200 | 0:30 |
NCB12H 1 F12H | Batch Flow | 12 12 | 200 200 | 0:30 0:30 |
NCF12H 1 | Flow | 12 | 200 | 0:30 |
Material 1 | n2 | Particle Size | Particle Size Median (nm) |
---|---|---|---|
B11L a | 146 | 45 ± 14 | 44.3 |
B11M a | 158 | 43 ± 15 | 42.0 |
B11H a | 78 | 46 ± 15 | 43.6 |
B12L b | 117 | 30 ± 10 | 28.4 |
B12M c | 107 | 40 ± 20 | 33.3 |
B12H c | 159 | 37 ± 11 | 35.8 |
F12H b,c | 80 | 34 ± 15 | 32.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Carrillo, C.; Torres García, J.; Benítez, M.; El Haskouri, J.; Amorós, P.; Ros-Lis, J.V. Batch and Flow Synthesis of CeO2 Nanomaterials Using Solid-State Microwave Generators. Molecules 2022, 27, 2712. https://doi.org/10.3390/molecules27092712
Rodríguez-Carrillo C, Torres García J, Benítez M, El Haskouri J, Amorós P, Ros-Lis JV. Batch and Flow Synthesis of CeO2 Nanomaterials Using Solid-State Microwave Generators. Molecules. 2022; 27(9):2712. https://doi.org/10.3390/molecules27092712
Chicago/Turabian StyleRodríguez-Carrillo, Cristina, Juan Torres García, Miriam Benítez, Jamal El Haskouri, Pedro Amorós, and Jose V. Ros-Lis. 2022. "Batch and Flow Synthesis of CeO2 Nanomaterials Using Solid-State Microwave Generators" Molecules 27, no. 9: 2712. https://doi.org/10.3390/molecules27092712
APA StyleRodríguez-Carrillo, C., Torres García, J., Benítez, M., El Haskouri, J., Amorós, P., & Ros-Lis, J. V. (2022). Batch and Flow Synthesis of CeO2 Nanomaterials Using Solid-State Microwave Generators. Molecules, 27(9), 2712. https://doi.org/10.3390/molecules27092712