The Hypopigmentation Mechanism of Tyrosinase Inhibitory Peptides Derived from Food Proteins: An Overview
Abstract
:1. Introduction
2. The Origin of Anti-Tyrosinase Peptides from Food Proteins
2.1. Anti-Tyrosinase Peptides of Terrestrial Origin
2.2. Anti-Tyrosinase Peptides of Aquatic Origin
Origin | Source | Peptides Sequences or Hydrolysates | Molecular Weight (Da) | Acitivity Evaluation | References |
---|---|---|---|---|---|
Terrestrial origin | Potato | Solunum tuberosum peels hydrolysates | 485,980 | 990.44 μg KE/μg peptides | [22] |
Vicia faba pods | Broad bean pods hydrolysates | 26,102 | 135.80 μg KE/μg peptides | [23] | |
Chinese quince seeds | RHAKF | 658 | IC50: 0.93 mg/mL | [15] | |
Defatted walnut meal | FPY | 425 | IC50: 1.11 mmol/L | [42] | |
Liquid rice starch | LQPSHY | 744 | IC50: 0.16 mmol/L | [28] | |
Rice starch | Strain hydrolysates | <1000 | 107.70 mgKAeq/g | [31] | |
Chicken feather meal | Proteolysates | <3000 | IC50: 0.04 µg/mL | [24] | |
Egg white | IRW | 340 | IC50: 2.90 mmol/L | [32] | |
Egg white | GYSLGNWVCAAK | 1268 | IC50: 3.04 mmol/L | [5] | |
Milk | MHIR | 555.30 | IC50: 0.08 mmol/L | [21] | |
Camel milk | αS-casein hydrolysates | >10,000 | 0.2 mg/mL (peptides): 39.26% | [17] | |
Ganoderma lucidum | VLT | 639 | 5.0 mg/mL (peptides): 16.00% | [43] | |
Porcine skin | Proteolysates | <3000 | 5.0 mg/mL (peptides): 69.80% | [44] | |
Chia seeds | Proteolysates | <3000 | IC50: 0.66 mg/mL | [45] | |
Sorghum grain kafirins | Proteolysates | <1000 | Peptides solution: 14.20% | [46] | |
Aquatic origin | Rhopilema hispidum | Collagen hydrolysates | <10,000 | Collagen solution: 64.00% | [47] |
Sea cucumber | Body wall gelatin | 700–1700 | 0.1 mg/mL (peptides): 30.80% | [35] | |
Grass carp fish | FTGML | 567 | IC50: 1.89 mmol/L | [13] | |
Mackerel meat | VWWW | 680 | IC50: 1.25 mmol/L | [32] | |
Tuna (backbone protein) | VKAGFAWTANQQLS | 1519 | IC50: 0.60 mmol/L | [32] | |
Milk fish scale | MSCP | / | IC50: 0.75 mg/mL | [25] | |
Bigeye tuna and thunnus obesus skin | Proteolysates | 50,000–100,000; <1000 | 5.0 mg/mL: 63.10% (50,000–100,000); 56.10% (<1000) | [26] | |
Zebrafish | Phosvitin-derived peptide Pt5 | / | 0.1 mg/mL (peptides): 16.00% | [48] |
3. The Preparation of Anti-Tyrosinase Peptides from Food Protein
3.1. Enzymatic Hydrolysis
3.2. Solid Phase Synthesis
4. The Possible Hypopigmentation Mechanisms of Anti-Tyrosinase Peptides from Food Proteins
4.1. Mechanism of Anti-Tyrosinase Peptides by Anti-Oxidation
4.2. Mechanism of Anti-Tyrosinase Peptides by Occupying the Bioactive Site of Tyrosinase
4.2.1. TIPs Inhibit Tyrosinase Activity by Chelating with Binuclear Copper II Ions Catalytic Core
4.2.2. TIPs Inhibit Tyrosinase Activity by Binding to Amino Acid Residues of Tyrosinase Hydrophobic Cavity
4.2.3. Emerging Bioinformatic Technologies Used in Exploring Novel TIPs
4.3. Mechanism of TIPs by Regulating Related Gene Expression
4.3.1. CAMP/PKA/CREB Signaling Pathway
4.3.2. PI3K/AKT/GSK3β Signaling Pathway
4.3.3. MEK/ERK/MITF Signaling Pathway
4.3.4. P38 MAPK/CREB/MITF Signaling Pathway
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, X.; Ni, M.; Zhang, Y.; Zhang, G.; Pan, J.; Gong, D. Comparing the inhibitory abilities of epigallocatechin-3-gallate and gallocatechin gallate against tyrosinase and their combined effects with kojic acid. Food Chem. 2021, 349, 129172. [Google Scholar] [CrossRef] [PubMed]
- Zolghadri, S.; Bahrami, A.; Khan, M.T.H.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, L.L.; Wang, X.L.; Chen, K.; Dong, X.W.; Kong, L.M.; Zhao, D.Y.; Hider, R.C.; Zhou, T. Novel hydroxypyridinone derivatives containing an oxime ether moiety: Synthesis, inhibition on mushroom tyrosinase and application in anti-browning of fresh-cut apples. Food Chem. 2018, 242, 174–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, H.J.; Sun, D.Q.; Chu, S.H.; Zhang, J.J.; Hu, G.Z.; Yang, R. Inhibitory effects of four anthraquinones on tyrosinase activity: Insight from spectroscopic analysis and molecular docking. Int. J. Biol. Macromol. 2020, 160, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.G.; Gan, C.Y. Multifunctional tyrosinase inhibitor peptides with copper chelating, UV-absorption and antioxidant activities: Kinetic and docking studies. Foods 2021, 10, 675. [Google Scholar] [CrossRef]
- Ullah, S.; Park, Y.; Park, C.; Lee, S.; Kang, D.; Yang, J.; Akter, J.; Chun, P.; Moon, H.R. Antioxidant, anti-tyrosinase and anti-melanogenic effects of (E)-2,3-diphenylacrylic acid derivatives. Bioogram. Med. Chem. 2019, 27, 2192–2200. [Google Scholar] [CrossRef]
- Sun, L.P.; Guo, Y.; Zhang, Y.X.; Zhuang, Y.L. Antioxidant and anti-tyrosinase activities of phenolic extracts from rape bee pollen and inhibitory melanogenesis by cAMP/MITF/TYR pathway in B16 mouse melanoma cells. Front. Pharmacol. 2017, 8, 104. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.J.; Liu, J.R.; Sheu, J.F.; Lin, C.W.; Chuang, C.L. Study on skin care properties of milk kefir whey. Asian-Australas. J. Anim. Sci. 2006, 19, 905–908. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, J.; Nam, Y.J.; Kim, H.J.; No, K.T. Isolindleyin exerts anti-melanogenic effects in human epidermal melanocytes via direct binding to tyrosinase. Biochem. Bioph. Res. Commun. 2021, 534, 802–807. [Google Scholar] [CrossRef]
- Wang, H.M.; Chen, C.Y.; Chen, C.Y.; Oh, M.L.; Chou, Y.T.; Chang, H.C.; Lee, C.H.; Wang, C.Z.; Chu, I.M. (−)-N-Formylanonaine from michelia alba as a human tyrosinase inhibitor and antioxidant. Bioogra. Med. Chem. 2010, 18, 5241–5247. [Google Scholar] [CrossRef]
- Ashooriha, M.; Khoshneviszadeh, M.; Khoshneviszadeh, M.; Rafiei, A.; Kardan, M.; Yazdian-Robati, R.; Emami, S. Kojic acid–natural product conjugates as mushroom tyrosinase inhibitors. Eur. J. Med. Chem. 2020, 201, 112480. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Hu, X.; Zhang, Y.; Pan, J.H.; Gong, D.M.; Zhang, G.W. Inhibitory mechanism of epicatechin gallate in tyrosinase inhibitory interaction, conformational change and computational simulation. Food Funct. 2020, 11, 4892–4902. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.Z.; Ma, T.X.; Sha, X.M.; Zhang, L.; Tu, Z.C. Improving tyrosinase inhibitory activity of grass carp fish scale gelatin hydrolysate by gastrointestinal digestion: Purification, identification and action mechanism. LWT Food Sci. Technol. 2020, 159, 113205. [Google Scholar] [CrossRef]
- Yap, P.G.; Gan, C.Y. Chicken egg white—Advancing from food to skin health therapy: Optimization of hydrolysis condition and identification of tyrosinase inhibitor peptides. Foods 2020, 9, 1312. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.J.; Huang, L.X.; Zhang, C.H.; Xie, P.J.; Cheng, J.; Wang, X.; Liu, L.J. Skin-care functions of peptides prepared from Chinese quince seed protein: Sequences analysis, tyrosinase inhibition and molecular docking study. Ind. Crop. Prod. 2020, 148, 112331. [Google Scholar] [CrossRef]
- Ochiai, A.; Tanaka, S.; Imai, Y.; Yoshida, H.; Kanaoka, T.; Kanaoka, T.; Taniguchi, M. New tyrosinase inhibitory decapeptide: Molecular insights into the role of tyrosine residues. J. Biocci. Bioeng. 2016, 121, 607–613. [Google Scholar] [CrossRef]
- Addar, L.; Bensouici, C.; Zennia, S.S.A.; Haroun, S.B.; Mati, A. Antioxidant, tyrosinase and urease inhibitory activities of camel αS-casein and its hydrolysate fractions. Small Ruminant. Res. 2019, 173, 30–35. [Google Scholar] [CrossRef]
- Yu, Q.; Fan, L.P. Understanding the combined effect and inhibition mechanism of 4-hydroxycinnamic acid and ferulic acid as tyrosinase inhibitors. Food Chem. 2021, 352, 129369. [Google Scholar] [CrossRef]
- Choi, H.; Young Ryu, I.; Chou, I.; Ullah, S.; Jin Jung, H.; Park, Y.; Hwang, Y.J.; Jeong, Y.; Hong, S.; Chun, P.; et al. Identification of (Z)-2-benzylidene-dihydroimidazothiazolone derivatives as tyrosinase inhibitors: Anti-melanogenic effects and in silico studies. Comput. Struct. Biotechnol. J. 2022, 20, 899–912. [Google Scholar] [CrossRef]
- Zhou, J.H.; Liu, C.W.; Zhao, S.M.; Liu, Y.; Zhang, S.; Zhao, Q.; Wang, F.; Xu, G.; Huang, J.A.; Liu, Z.H. Improved yield of theaflavin-3,3’-digallate from bacillus megaterium tyrosinase via directed evolution. Food Chem. 2022, 375, 131848. [Google Scholar] [CrossRef]
- Kong, S.; Choi, H.R.; Kim, Y.J.; Lee, Y.S.; Park, K.C.; Kwak, S.Y. Milk protein-derived antioxidant tetrapeptides as potential hypopigmenting agents. Antioxidants 2020, 9, 1106. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, S.T.; Al-Azzouny, R.A.; Ali, O.S. Purification and functional characterization of a novel tyrosinase (diphenolase) inhibitory peptides prepared from Solunum tuberosum peels protein via enzymatic hydrolysis. Biocatal. Agric. Biotechnol. 2019, 17, 331–338. [Google Scholar] [CrossRef]
- El-Sayed, S.T.; Al-Azzouny, R.A.; Ali, O.S. Purification of a novel monophenolase inhibitory peptides prepared from Vicia faba pods protein via enzymatic hydrolysis. Biocatal. Agric. Biotechnol. 2019, 19, 101123. [Google Scholar] [CrossRef]
- Pongkai, P.; Saisavoey, T.; Sangtanoo, P.; Sangvanich, P.; Karnchanatat, A. Effects of protein hydrolysate from chicken feather meal on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. Food Sci. Biotechnol. 2017, 26, 1199–1208. [Google Scholar] [CrossRef]
- Chen, Y.P.; Wu, H.T.; Wang, G.H.; Liang, C.H. Improvement of skin condition on skin moisture and anti-melanogenesis by collagen peptides from milkfish (Chanos chanos) scales. Mater. Sci. Eng. 2018, 382, 22067. [Google Scholar] [CrossRef]
- Park, S.H.; Jo, Y.J. Static hydrothermal processing and fractionation for production of a collagen peptide with anti-oxidative and anti-aging properties. Process. Biochem. 2019, 83, 176–182. [Google Scholar] [CrossRef]
- Madhosingh, C.; Sundberg, L. Purification and properties of tyrosinase inhibitor from mushroom. FEBS. Lett. 1974, 49, 156–158. [Google Scholar] [CrossRef] [Green Version]
- Ferri, M.; Graen-Heedfeld, J.; Bretz, K.; Guillon, F.; Michelini, E.; Calabretta, M.M.; Lamborghini, M.; Gruarin, N.; Roda, A.; Kraft, A.; et al. Peptide fractions obtained from rice by-products by means of an environment-friendly process show in vitro health-related bioactivities. PLoS ONE 2017, 12, e170954. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.F.; Zou, G.L.; Li, C.H. Antitumor and immunomodulatory activities of a water-soluble polysaccharide from Chaenomeles speciosa. Carbohydr. Polym. 2015, 132, 323–329. [Google Scholar] [CrossRef]
- Ochiai, A.; Tanaka, S.; Tanaka, T.; Taniguchi, M. Rice bran protein as a potent source of antimelanogenic peptides with tyrosinase inhibitory activity. J. Nat. Prod. 2016, 79, 2545–2551. [Google Scholar] [CrossRef]
- Babini, E.; Taneyo-Saa, D.L.; Tassoni, A.; Ferri, M.; Kraft, A.; Gran-Heedfeld, J.; Bretz, K.; Roda, A.; Michelini, E.; Calabretta, M.M.; et al. Microbial fermentation of industrial rice-starch byproduct as valuable source of peptide fractions with health-related activity. Microorganisms 2020, 8, 986. [Google Scholar] [CrossRef] [PubMed]
- Thaha, A.; Wang, B.S.; Chang, Y.W.; Hsia, S.M.; Huang, T.C.; Shiau, C.Y.; Hwang, D.F.; Chen, T.Y. Food-derived bioactive peptides with anti-oxidative capacity, xanthine oxidase and tyrosinase inhibitory activity. Processes 2021, 9, 747. [Google Scholar] [CrossRef]
- Zhang, J.B.; Zhao, Y.Q.; Wang, Y.M.; Chi, C.F.; Wang, B. Eight collagen peptides from hydrolysate fraction of spanish mackerel skins: Isolation, identification, and in vitro antioxidant activity evaluation. Mar. Drugs 2019, 17, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, N.; Seki, S.; Ueda, F. Effects of composite supplement containing collagen peptide and ornithine on skin conditions and plasma IGF-1 levels—A randomized, double-blind, placebo-controlled trial. Mar. Drugs 2018, 16, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.F.; Wang, Y.M.; Tang, Q.J.; Wang, Y.; Chang, Y.J.; Zhao, Q.; Xue, C.H. Anti-oxidation activities of low-molecular-weight gelatin hydrolysate isolated from the sea cucumber Stichopus japonicus. J. Ocean Univ. China. 2010, 9, 94–98. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhang, Y.S.; Liu, X.M.; Huang, L.H.; Chen, Z.Y.; Cheng, J.R. Influence of hydrolysis behaviour and microfluidisation on the functionality and structural properties of collagen hydrolysates. Food Chem. 2017, 227, 211–218. [Google Scholar] [CrossRef]
- Jung, S.; Kim, D.H.; Son, J.H.; Nam, K.; Ahn, D.U.; Jo, C. The functional property of egg yolk phosvitin as a melanogenesis inhibitor. Food Chem. 2012, 135, 993–998. [Google Scholar] [CrossRef]
- Schurink, M.; Van Berkel, W.J.H.; Wichers, H.J.; Boeriu, C.G. Novel peptides with tyrosinase inhibitory activity. Peptides 2007, 28, 485–495. [Google Scholar] [CrossRef]
- Shen, Z.W.; Wang, Y.J.; Guo, Z.; Tan, T.Y.; Zhang, Y. Novel tyrosinase inhibitory peptide with free radical scavenging ability. J. Enzyme Inhib. Med. Chem. 2019, 34, 1633–1640. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.C.; Tseng, T.S.; Hsiao, N.W.; Lin, Y.L.; Wen, Z.H.; Tsai, C.C.; Lee, Y.C.; Lin, H.H.; Tsai, K.C. Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Sci. Rep. 2015, 5, 7995. [Google Scholar] [CrossRef] [Green Version]
- Joompang, A.; Jangpromma, N.; Choowongkomon, K.; Payoungkiattikun, W.; Tankrathok, A.; Viyoch, J.; Luangpraditkun, K.; Klaynongsruang, S. Evaluation of tyrosinase inhibitory activity and mechanism of Leucrocin I and its modified peptides. J. Biosci. Bioeng. 2020, 130, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.X.; Wang, Z.C.; Chen, J.X.; Li, H.R.; Wang, Y.B.; Ren, D.F.; Lu, J. Separation, identification, and molecular docking of defatted walnut (Juglans regia L.) meal. Food Chem. 2021, 353, 129471. [Google Scholar] [CrossRef] [PubMed]
- Krobthong, S.; Yingchutrakul, Y.; Samutrtai, P.; Choowongkomon, K. The C–terminally shortened analogs of a hexapeptide derived from Lingzhi hydrolysate with enhanced tyrosinase-inhibitory activity. Arch. Pharm. 2021, 354, e2100204. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.P.; Min, S.G.; Jo, Y.J. Anti-oxidative and anti-aging activities of porcine by-product collagen hydrolysates produced by commercial proteases: Effect of hydrolysis and ultrafiltration. Molecules 2019, 24, 1104. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Toalá, J.E.; Liceaga, A.M. Identification of chia seed (Salvia hispanica L.) peptides with enzyme inhibition activity towards skin-aging enzymes. Amino Acids. 2020, 52, 1149–1159. [Google Scholar] [CrossRef]
- Castro-Jacome, T.P.; Alcantara-Quintana, L.E.; Montalvo-Gonzalez, E.; Chacon-Lopez, A.; Kalixto-Sanchez, M.A.; Rivera, M.D.; Lopez-Garcia, U.M.; Tovar-Perez, E.G. Skin-protective properties of peptide extracts produced from white sorghum grain kafirins. Ind. Crop. Prod. 2021, 167, 113551. [Google Scholar] [CrossRef]
- Ab Aziz, N.A.; Salim, N.; Zarei, M.; Saari, N.; Yusoff, F.M. Extraction, anti-tyrosinase, and antioxidant activities of the collagen hydrolysate derived from Rhopilema hispidum. Prep. Biochem. Biotechnol. 2021, 51, 44–53. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Su, X.R.; Liu, S.S.; Yang, S.S.; Jiang, C.Y.; Zhang, Y.; Zhang, S.C. Zebrafish phosvitin-derived peptide Pt5 inhibits melanogenesis via cAMP pathway. Fish Physiol. Biochem. 2017, 43, 517–525. [Google Scholar] [CrossRef]
- Ookubo, N.; Michiue, H.; Kitamatsu, M.; Kamamura, M.; Nishikia, T.I.; Ohmoria, I.; Matsuia, H. The transdermal inhibition of melanogenesis by a cell-membrane-permeable peptide delivery system based on poly-arginine. Biomaterials 2014, 35, 4508–4516. [Google Scholar] [CrossRef]
- Kim, H.; Choi, J.; Cho, J.K.; Kim, S.Y.; Lee, Y.S. Solid-phase synthesis of kojic acid-tripeptides and their tyrosinase inhibitory activity, storage stability, and toxicity. Bioorg. Med. Chem. Lett. 2004, 14, 2843–2846. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Jung, S.H. Recent development of signaling pathways inhibitors of melanogenesis. Cell Signal. 2017, 40, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, S.A.; Pintado, M.E. Bioactive peptides derived from marine sources: Biological and functional properties. Trends. Food Sci. Tech. 2022, 119, 348–370. [Google Scholar] [CrossRef]
- Li, C.Y.; Fu, Y.; Dai, H.J.; Wang, Q.; Gao, R.C.; Zhang, Y.H. Recent progress in preventive effect of collagen peptides on photoaging skin and action mechanism. FSHW 2022, 11, 218–229. [Google Scholar] [CrossRef]
- Lakhan, M.K.; Lynch, M. Skin pigmentation. Pigment. Probl. 2021, 49, 447–452. [Google Scholar] [CrossRef]
- Nie, H.L.; Liu, L.; Yang, H.Q.; Guo, H.Z.; Liu, X.; Tan, Y.H.; Wang, W.; Quan, J.; Zhu, L.M. A novel heptapeptide with tyrosinase inhibitory activity identified from a phage display library. Appl. Biochem. Biotechnol. 2020, 181, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.Y.; Wang, G.C.; Zeng, Q.H.; Li, Y.F.; Wu, Y.; Liu, H.Q.; Wang, J.J.; Zhao, Y. Synthesis, antioxidant and anti-tyrosinase activity of 1,2,4-triazole hydrazones as antibrowning agents. Food Chem. 2021, 341, 128265. [Google Scholar] [CrossRef]
- Hu, Z.Z.; Sha, X.M.; Zhang, L.; Huang, S.; Tu, Z.C. Effect of grass carp scale collagen peptide FTGML on cAMP-PI3K/Akt and MAPK signaling pathways in B16F10 melanoma cells and correlation between anti-melanin and antioxidant properties. Foods 2022, 11, 391. [Google Scholar] [CrossRef]
- Jara, J.R.; Aroca, P.; Solano, F.; Martinez, J.H.; Lozano, J.A. The role of sulfhydryl compounds in mammalian melanogenesis effect of cysteine and glutathione upon tyrosinase and the intermediates of the pathway. Biochim. Biophys. Acta. 1988, 967, 296–303. [Google Scholar] [CrossRef]
- Baskaran, R.; Chauhan, S.S.; Parthasarathi, R.; Mogili, N.S. In silico investigation and assessment of plausible novel tyrosinase inhibitory peptides from sesame seeds. LWT Food Sci. Technol. 2021, 147, 111619. [Google Scholar] [CrossRef]
- Bagherzadeh, K.; Talari, F.S.; Sharifi, A.; Ganjali, M.R.; Saboury, A.A.; Amanlou, M. A new insight into mushroom tyrosinase inhibitors: Docking, pharmacophore-based virtual screening, and molecular modeling studies. J. Biomol. Struct. Dyn. 2015, 33, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Sepehri, N.; Khoshneviszadeh, M.; Farid, S.M.; Moayedi, S.S.; Asgari, M.S.; Moazzam, A.; Hosseini, S.; Adibi, H.; Larijani, B.; Pirhadi, S.; et al. Design, synthesis, biological evaluation, and molecular docking study of thioxo-2,3-dihydroquinazolinone derivative as tyrosinase inhibitors. J. Mol. Struct. 2022, 125, 132283. [Google Scholar] [CrossRef]
- Ghani, U. Carbazole and hydrazone derivatives as new competitive inhibitors of tyrosinase: Experimental clues to binuclear copper active site binding. Bioorg. Chem. 2019, 83, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.D.L.; Pham, K.T. Copper-chelating peptide from salmon by-product proteolysate. Int. J. Food Eng. 2020, 16, 20190280. [Google Scholar] [CrossRef]
- Deri, B.; Kanteev, M.; Goldfeder, M.; Lecina, D.; Guallar, V.; Adir, N.; Fishman, A. The unravelling of the complex pattern of tyrosinase inhibition. Sci. Rep. 2016, 6, 34993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldfeder, M.; Kanteev, M.; Isaschar-Ovdat, S.; Adir, N.; Fishman, A. Determination of tyrosinase substrate-binding modes reveals mechanistic differences between type-3 copper proteins. Nat. Commun. 2014, 5, 4505. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, R.; Oliva, P.; Prencipe, F.; Manfredini, S.; Germano, M.P.; De Luca, L.; Ricci, F.; Corallo, D.; Aveic, S.; Mariotto, E.; et al. Cinnamic acid derivatives linked to arylpiperazines as novel potent inhibitors of tyrosinase activity and melanin synthesis. Eur. J. Med. Chem. 2022, 231, 114147. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Molina, P.; Garcia-Molina, F.; Teruel-Puche, J.A.; Rodriguez-Lopez, J.N.; Garcia-Canovas, F.; Munoz-Munoz, J.L. Considerations about the kinetic mechanism of tyrosinase in its action on monophenols: A review. Mol. Catal. 2022, 518, 112072. [Google Scholar] [CrossRef]
- Mann, T.; Gerwat, W.; Batzer, J.; Eggers, K.; Scherner, C.; Wenck, H.; Stab, F.; Hearing, V.J.; Rohm, K.H.; Kolbe, L. Inhibition of human tyrosinase requires molecular motifs distinctively different from mushroom tyrosinase. J. Investig. Dermatol. 2018, 138, 1601–1608. [Google Scholar] [CrossRef] [Green Version]
- BIOPEP. Available online: https://biochemia.uwm.edu.pl/biopep-uwm/ (accessed on 19 April 2022).
- Kongsompong, S.; E-kobon, T.; Chumnanpuen, P. K-nearest neighbor and random forest-based prediction of putative tyrosinase inhibitory peptides of abalone haliotis diversicolor. Molecules 2021, 26, 3671. [Google Scholar] [CrossRef]
- HELPDOCK. Available online: http://huanglab.phys.hust.edu.cn/hpepdock/ (accessed on 19 April 2022).
- Lee, H.R.; Jung, J.M.; Seo, J.Y.; Chang, S.E.; Song, Y.S. Anti-melanogenic property of ginsenoside Rf from Panax ginseng via inhibition of CREB/MITF pathway in melanocytes and ex vivo human skin. J. Ginseng. Res. 2021, 45, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Jian, D.; Jiang, D.J.; Su, J.; Chen, W.; Hu, X.L.; Kuang, Y.H.; Xie, H.F.; Li, J.; Chen, X. Diethylstilbestrol enhances melanogenesis via cAMP-PKA-mediating up-regulation of tyrosinase and MITF in mouse B16 melanoma cells. Steroids 2011, 76, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.H.; Yao, C.; Oh, J.H.; Park, C.H.; Tian, Y.D.; Han, M.; Kim, J.E.; Chung, J.H.; Jin, Z.H.; Lee, D.H. Vasoactive intestinal peptide stimulates melanogenesis in B16F10 mouse melanoma cells via CREB/MITF/tyrosinase signaling. Biochem. Bioph. Res. Commun. 2016, 477, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Yoon, J.H.; Youn, K.; Jun, M. Decursin prevents melanogenesis by suppressing MITF expression through the regulation of PKA/CREB, MAPKs, and PI3K/Akt/GSK-3β cascades. Biomed. Pharmacother. 2022, 147, 112651. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.Q.; Yotsumoto, H.; Tian, Y.; Sakamoto, K. α-Mangostin suppressed melanogenesis in B16F10 murine melanoma cells through GSK3β and ERK signaling pathway. Biochem. Biophys. Rep. 2021, 26, 100949. [Google Scholar] [CrossRef] [PubMed]
- Shirasugi, I.; Kamada, M.; Matsui, T.; Sakakibara, Y.; Liu, M.C.; Suiko, M. Sulforaphane inhibited melanin synthesis by regulating tyrosinase gene expression in B16 mouse melanoma cells. Biosci. Biotechnol. Biochem. 2020, 74, 579–582. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.C.; Lin, H.; Huang, M.C. The lactoferricin B-derived peptide, LfB17-34, induces melanogenesis in B16F10 cells. Int. J. Mol. Med. 2017, 39, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Oh, G.W.; Ko, S.C.; Heo, S.Y.; Nguyen, V.T.; Kim, G.; Jang, C.H.; Park, W.S.; Choi, I.W.; Qian, Z.J.; Jung, W.K. A novel peptide purified from the fermented microalga Pavlova lutheri attenuates oxidative stress and melanogenesis in B16F10 melanoma cells. Process. Biochem. 2015, 50, 1318–1326. [Google Scholar] [CrossRef]
- Kang, B.; Kim, Y.; Park, T.J.; Kang, H.Y. Dasatinib, a second-generation tyrosine kinase inhibitor, induces melanogenesis via ERK-CREB-MITF-tyrosinase signaling in normal human melanocytes. Biochem. Bioph. Res. Commun. 2020, 523, 1034–1039. [Google Scholar] [CrossRef]
- Huang, H.C.; Liao, C.C.; Peng, C.C.; Lim, J.M.; Siao, J.H.; Wei, C.M.; Chen, C.C.; Wu, C.S.; Chang, T.M. Dihydromyricetin from Ampelopsis grossedentata inhibits melanogenesis through down-regulation of MAPK, PKA and PKC signaling pathways. Chem.-Biol. Interact. 2016, 258, 166–174. [Google Scholar] [CrossRef]
- Fu, T.; Chai, B.W.; Shi, Y.L.; Dang, Y.Y.; Ye, X.Y. Fargesin inhibits melanin synthesis in murine malignant and immortalized melanocytes by regulating PKA/CREB and P38/MAPK signaling pathways. J. Dermatol. Sci. 2019, 94, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Lan, Y.H.; Yang, X.C.; Gu, Y.G.; Lu, H.G. TGFβ2 upregulates tyrosinase activity through opsin-3 in human skin melanocytes in vitro. J. Investig. Dermatol. 2021, 141, 2679–2689. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Kim, G.; Lee, Y.; Kim, H.; Song, M.J.; Lee, D.H.; Chung, J.H. A natural compound harmine decreases melanin synthesis through regulation of the DYRK1A/NFATC3 pathway. J. Dermatol. Sci. 2021, 103, 16–24. [Google Scholar] [CrossRef] [PubMed]
Peptide Sequences | Tyrosinase Inhibition Activity | Interaction Forces and Residues | References |
---|---|---|---|
IQSPHFF | IC50: 1.70 mmol/L | Hydrogen bond: Lys229, Gly250, Ser276 | [56] |
π–π stacking: His266 | |||
FTGML | IC50: 1.89 mmol/L | Hydrogen bond: Lys147, Trp53 | [13] |
π–π stacking: Trp53 | |||
π–Alkyl: Ile39, Phe41 | |||
Attractive Charge: Asp51 | |||
NGVQPKY | / | Hydrogen bond: Asn260, His94, His296 | [41] |
π–π stacking: His263 | |||
π–Alkyl: Val283 | |||
CNGVQPK | / | Hydrogen bond: Pro277, Leu275, Gly281, Gly257 | [41] |
π–Alkyl: Asn260, Glu256, Met257 | |||
IR | / | Hydrogen bond: His85, His94, Glu256, His259, Asn260, His263, Gly281, His296 | [60] |
π–Alkyl: His244, His263 | |||
Alkyl: Val283, Ala286 | |||
LK | / | Hydrogen bond: His61, His85, Glu256, His259, His263, Met280, His296 | [60] |
π–Alkyl: His244, His263 | |||
π–Amide stacking: His244, His263 | |||
Alkyl: Val283, Ala286 | |||
VY | / | Hydrogen bond: His85, His263, Gly281, His296 | [60] |
π–π stacking: His263 | |||
π–Alkyl: His85 | |||
Alkyl: Val283 | |||
π–Sigma: Val283 | |||
π–Amide stacking: His85 | |||
GYSLGNWVCAAK | IC50: 3.04 mmol/L | Hydrogen bond: Tyr65, His259, His263, Arg268, Gly281, Glu322 | [5] |
Hydrophobic Interaction: Ala80, Cys83, Arg321, His85, Val283, Asn81, | |||
Glu189, His244, Val248, Asn260, Phe264, Ala323 | |||
Covalent bond: CuB | |||
ECGYF | IC50: 0.46 mmol/L | Hydrogen bond: Met280, Tyr65, Asn260, His263 | [39] |
Hydrophobic interaction: Phe264, Pro284 | |||
FPY | IC50: 3.22 mmol/L | Hydrogen bond: Asn260, Pro81 | [42] |
π–π stacking: Ser282, His263 | |||
π–Alkyl: Ala286, Val283 | |||
π–Sigma: Val283 | |||
π–Cation: His259 | |||
RHAKF | IC50: 1.15 mg/mL | Hydrogen bond: Gln351, Asp336, Ile96, Gln74, His76 | [15] |
Donor–Donor interaction: Gln74 | |||
π–Alkyl: Ile328 | |||
π–Cation: Lys5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Chen, S.; Li, L.; Zeng, Y.; Hu, X. The Hypopigmentation Mechanism of Tyrosinase Inhibitory Peptides Derived from Food Proteins: An Overview. Molecules 2022, 27, 2710. https://doi.org/10.3390/molecules27092710
Song Y, Chen S, Li L, Zeng Y, Hu X. The Hypopigmentation Mechanism of Tyrosinase Inhibitory Peptides Derived from Food Proteins: An Overview. Molecules. 2022; 27(9):2710. https://doi.org/10.3390/molecules27092710
Chicago/Turabian StyleSong, Yuqiong, Shengjun Chen, Laihao Li, Yaoxun Zeng, and Xiao Hu. 2022. "The Hypopigmentation Mechanism of Tyrosinase Inhibitory Peptides Derived from Food Proteins: An Overview" Molecules 27, no. 9: 2710. https://doi.org/10.3390/molecules27092710
APA StyleSong, Y., Chen, S., Li, L., Zeng, Y., & Hu, X. (2022). The Hypopigmentation Mechanism of Tyrosinase Inhibitory Peptides Derived from Food Proteins: An Overview. Molecules, 27(9), 2710. https://doi.org/10.3390/molecules27092710