The Bioactive Profile, Nutritional Value, Health Benefits and Agronomic Requirements of Cherry Silverberry (Elaeagnus multiflora Thunb.): A Review
Abstract
:1. Introduction
2. Selection of Varieties and Cultivation Characteristics
Cultivation of Elaeagnus multiflora
3. Biologically Active Compounds in Elaeagnus multiflora Thunb.
4. Health-Promoting Properties of Elaeagnus multiflora Thunb.
4.1. Antioxidant Activity
4.2. Antimicrobial Properties of Elaeagnus
4.3. Antidiabetic Activity
4.4. Anticancer Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Piłat, B.; Zadernowski, R. Bioactive Substances—Positive and Negative Effects of their Addition to Foodstuffs. Przemysł Spożywczy 2017, 71, 24–27. [Google Scholar]
- Lachowicz, S.; Bieniek, A.; Gil, Z.; Bielska, N.; Markuszewski, B. Phytochemical parameters and antioxidant activity of new cherry silverberry biotypes (Elaeagnus multiflora Thunb.). Eur. Food Res. Technol. 2019, 245, 1997–2005. [Google Scholar] [CrossRef] [Green Version]
- Bieniek, A.; Dragańska, E.; Prancketis, V. Assessment of climatic conditions for Actinidia arguta cultivation in north-eastern Poland. Zemdirb. Agric. 2016, 103, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Latocha, P. The Nutritional and Health Benefits of Kiwiberry (Actinidia arguta)—A Review. Plant Foods Hum. Nutr. 2017, 72, 325–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czaplicki, S.; Ogrodowska, D.; Zadernowski, R.; Konopka, I. Effect of sea-buckthorn (Hippophaë rhamnoides L.) pulp oil consumption on fatty acids and vitamin A and E accumulation in adipose tissue and liver of rats. Plant Foods Hum. Nutr. 2017, 72, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Viapiana, A.; Wesolowski, M. The phenolic contents and antioxidant activities of infusions of Sambucus nigra L. Plant Foods Hum. Nutr. 2017, 72, 82–87. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of the World’s Biodiversity for Food and Agriculture; Bélanger, J.J., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2019. [Google Scholar]
- Lachowicz, S.; Kapusta, I.; Świeca, M.; Stinco, C.M.; Meléndez-Martínez, A.J.; Bieniek, A. In vitro Antioxidant and Antidiabetic potency of fruits and leaves of Elaeagnus multiflora Thunb. and their isoprenoids and polyphenolics profile. Antioxidants 2020, 9, 436. [Google Scholar] [CrossRef]
- Bieniek, A.; Piłat, B.; Szałkiewicz, M.; Markuszewski, B.; Gojło, E. Evaluation of yield, morphology and quality of (Elaeagnus multiflora Thunb.) biotypes under conditions of north-eastern Poland. Pol. J. Nat. Sci. 2017, 32, 61–70. [Google Scholar]
- Wani, T.A.; Wani, S.M.; Ahmad, M.; Ahmad, M.; Ganil, A.; Masoodi, F.A. Bioacrive profile, health benefits and safety evaluation of sea buckthorn (Hippophaë rhamnoides L.): A review. Cogent Food Agric. 2016, 2, 1128519. [Google Scholar]
- Bieniek, A.; Kawecki, Z.; Piotrowicz-Cieślak, A.I. The content of some organic ingredients in the fruit of less known fruit plants. Biul. Nauk. 2002, 14, 11–17. (In Polish) [Google Scholar]
- Lee, M.S.; Lee, Y.K.; Park, O.J. Cherry silverberry (Elaeagnus multiflora) extracts exere anti-inflammatory effects by inhibiting COX-2 and Akt signals in HT-29 colon cancer cells. Food Sci Biotechnol. 2010, 19, 1673–1677. [Google Scholar] [CrossRef]
- Lee, J.H.; Seo, W.T.; Cho, K.M. Determination of phytochemical contents and biological activities from the fruits of Elaeagnus multiflora. Int. J. Food Sci. Nutr. 2011, 16, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Nowak, K.W.; Mielnik, P.; Sięda, M.; Staniszewska, I.; Bieniek, A. The effect of ultrasound treatment on the extraction of lycopene and β-carotene from cherry silverberry fruits. AIMS Agric. Food 2021, 6, 247–254. [Google Scholar] [CrossRef]
- Przybylska, S. Lycopene-a bioactive carotenoid offering multiple health benefits: A review. Int. J. Food Sci. Technol. 2020, 55, 11–32. [Google Scholar] [CrossRef]
- Di Mascio, P.; Kaiser, S.; Sies, H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 1989, 274, 532–538. [Google Scholar] [CrossRef]
- Yoon, K.Y.; Hong, J.Y.; Shin, S.R. Analysis on the Components of the Elaeagnus multiflora Thunb. Leaves. Korean J. Food Preserv. 2007, 14, 639–644. [Google Scholar]
- Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Aspects. Med. 2003, 24, 345–351. [Google Scholar] [CrossRef]
- Patel, S. Plant genus Elaeagnus: Underutilized lycopene and linoleic acid reserve with permaculture potential. Fruits 2015, 70, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Ahmadiani, A.; Hosseiny, J.; Semnanian, S.; Javan, M.; Saeedi, F.; Kamalinejad, M.; Saremi, S. Antinociceptive and antiflammatory effects of Elaeagnus angustifolia fruit extract. J. Ethnopharmacol. 2000, 72, 287–292. [Google Scholar] [CrossRef]
- Szałkiewicz, M.; Kawecki, Z. Oliwnik wielokwiatowy (Elaeagnus multiflora Thunb.)—Nowa roślina sadownicza. Biul. Nauk. 2003, 22, 285–290. (In Polish) [Google Scholar]
- Grygorieva, O.; Klymenko, S.; Ilinska, A.; Brindza, J. Variation of fruits morphometric parameters of Elaeagnus multiflora Thunb., germplasm collection. Potravin. Slovak J. Food Sci. 2018, 12, 527–532. [Google Scholar] [CrossRef] [Green Version]
- You, Y.H.; Kim, K.B.; An Ch, S.; Kim, J.H.; Song, S.D. Geographical Distribution and Soil Characteristics of Elaeagnus Plants in Korea. Korean J. Ecol. 1994, 17, 159–170. [Google Scholar]
- Sakamura, F.; Suga, T. Changes in chemical components of ripening oleaster fruits. Phytochemistry 1987, 26, 2481–2484. [Google Scholar] [CrossRef]
- Ismail, M.; Hussain, M.; Mahar, S.; Iqbal, S. Investigation on Total Phenolic Contents of Elaeagnus Multiflora. Asian J. Chemstry 2015, 27, 4587–4590. [Google Scholar] [CrossRef]
- Bieniek, A.; Lachowicz, S. Oliwnik wielokwiatowy—Alternatywa dla produkcji ekologicznej. In Proceedings of the Conference materials X FairFruit and Vegetable Industry of TSW, Warsaw Expo, Nadarzyn, Poland, 15–16 January 2020. (In Polish). [Google Scholar]
- Shin, S.R.; Hong, J.Y.; Yoon, K.Y. Antioxidant properties and total phenolic contents of cherry Elaeagnus (Elaeagnus multiflora Thunb.) leaf extracts. Food Sci. Biotechnol. 2008, 17, 608–612. [Google Scholar]
- Kim, S.A.; Oh, S.I.; Lee, M.S. Antioxidative and cytotoxic effects of solvent fractions from Elaeagnus multiflora. Korean J. Food Nutr. 2007, 20, 134–142. [Google Scholar]
- Kim, S.T.; Kim, S.W.; Ha, J.; Gal, S.W. Elaeagnus multiflora fruit extract inhibits melanin biosynthesis via regulation of tyrosinase gene on translational level. Res. J. Biotechnol. 2014, 9, 1–6. [Google Scholar]
- Lee, Y.S.; Chang, Z.Q.; Oh, B.C.; Park, S.C.; Shin, S.R.; Kim, N.W. Antioxidant activity, anti-inflammatory activity, and whitening effects of extracts of Elaeagnus multiflora Thunb. J. Med. Food 2007, 10, 126–133. [Google Scholar] [CrossRef]
- Bieniek, A. Oliwnik szansa na zwiększenie bioróżnorodności w sadownictwie. Truskawka Malina Jagody 2021, 1, 51–53. (In Polish) [Google Scholar]
- Kim, S.; OH, S.; Lee, M. Antioxidative and Cytoxic Effects of Ethanol Extracts from Elaeagnus multiflora. Korean J. Food Nutr. 2008, 21, 403–409. [Google Scholar]
- Houng, J.Y.; Nam, H.S.; Lee, Y.S.; Yoon, K.Y.; Kim, N.W.; Shin, S.R. Study on the antioxidant activity of extracts from the fruit of Elaeagnus multiflora Thunb. Korean J. Food Preserv. 2006, 13, 413–419. [Google Scholar]
- Chang, Z.Q.; Park, S.C.; Oh, B.C.; Lee, Y.S.; Shin, S.R.; Kim, N. Antiplatet aggregation and antiinflammatory activity for extracts of Elaeagnus multiflora. Korean J. Med. Crop Sci. 2006, 51, 516–517. [Google Scholar]
- Bieniek, A. „Cud—Jagoda, czyli oliwnik wielokwiatowy. Szkółkarstwo 2016, 6, 48–53. (In Polish) [Google Scholar]
- Lachowicz, S.; Bieniek, A.; Wiśniewski, R.; Gil, Z.; Bielska, N.; Markuszewski, B. Profil parametrów fitochemicznych i właściwości przeciwoksydacyjne owoców oliwnika wielokwiatowego (Elaeagnusmultiflora Thunb.). Materiały z konf. Naukowej “Miejsce ogrodnictwa we wpółczesnym życiu człowieka I ochronie środowiska Warszawa 2019, 35. (In Polish) [Google Scholar]
- Lachowicz-Wiśniewska, S.; Kapusta, I.; Stinco, C.M.; Meléndez-Martínez, A.J.; Bieniek, A.; Ochmian, I.; Gil, Z. Distribution of Polyphenolic and Isoprenoid Compounds and Biological Activity Differences between in the Fruit Skin+ Pulp, Seeds, and Leaves of New Biotypes of Elaeagnusmultiflora Thunb. Antioxidants 2021, 10, 849. [Google Scholar] [CrossRef]
- Chinnici, F.; Spinabelli, U.; Riponi, C.; Amati, A. Optimization of the determination of organic acids and sugars in fruit juices by ion-exclusion liquid chromatography. J. Food Compos. Anal. 2005, 18, 121–130. [Google Scholar] [CrossRef]
- Zielińska, A.; Nowak, I. Tokoferole i tokotrienole jako witamina E. Chemik 2014, 68, 585–591. (In Polish) [Google Scholar]
- Hryniewski, T. Drzewa i krzewy. In Vademecum Miłośnika Przyrody; Wyd. Mulico Oficyna Wydawnicza: Warsaw, Poland, 2008. (In Polish) [Google Scholar]
- Kołbasina, E. Jagodnyje Liany i Redkije Kustarniki; Izdatielskij Dom MSP: Moscow, Russia, 2003; p. 112. (In Russion) [Google Scholar]
- Kozioł, A. Anti-aging active substances and application methods based on nanotechnology. Kosmetologia Estetyczna 2020, 2, 213–218. [Google Scholar]
- Pawlowski, R. Substancje czynne w ziołach. Hod. Trzody Chlewnej 2013, 11–12. (In Polish) [Google Scholar]
- Kim, N.W.; Yoo, E.Y.; Kim, S.L. Analysis on the Components of the Emit of Elaeagnus multiflora Thumb. Korean J. Food Preserv. 2003, 10, 534–539. [Google Scholar]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci. 2012, 77, C1064–C1070. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Y.; Cha, H.S.; Shin, S.R.; Jeong, Y.J.; Youn, K.S.; Kim, M.H.; Kim, N.W. Optimization of manufacturing condition and physicochemical properties for mixing beverage added extract of Elaeagnus multiflora Thunb. fruits. Korean J. Food Preserv. 2007, 14, 269–275. [Google Scholar]
- Mikulic-Petkovsek, M.M.; Stampar, F.; Veberic, R. Parameters of inner quality of the apple scab resistant and susceptible apple cultivars (Malus domestica Borkh.). Sci. Hortic. 2007, 114, 37–44. [Google Scholar] [CrossRef]
- Keutgen, A.; Pawelzik, E. Modifications of taste-relevant compounds in strawberry fruit under NaCl salinity. Food Chem. 2007, 105, 1487–1494. [Google Scholar] [CrossRef]
- Janda, K.; Kasprzak, M.; Wolska, J. Witamina C–budowa, właściwości, funkcje i występowanie. Pom. J. Life Sci. 2015, 61, 419–425. (In Polish) [Google Scholar] [CrossRef]
- Yew, W.W.; Chang, K.C.; Leung, C.C.; Chan, D.P.; Zhang, Y. Vitamin C and Mycobacterium tuberculosis persisters. Antimicrob. Agents Chemother. 2018, 62, e01641-18. [Google Scholar] [CrossRef] [Green Version]
- Wasiuk, E. Łoch mnogocwietkowyj kak płodowaja kultura. Materiały z VIII Międzynarodowej konferencji sadowniczej pt. Sowremennyje naucznyje issliedowanija w sadowodstwie. Jałta 2000, 2, 34–36. [Google Scholar]
- Khattak, K.F. Free radical scavenging activity, phytochemical composition and nutrient analysis of Elaeagnus umbellata berry. J Medic Plants Res. 2012, 6, 5196–5203. [Google Scholar]
- Senica, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue honeysuckle (Lonicera cearulea L. subs. edulis) berry; A rich source of some nutrients and their differences among four different cultivars. Sci. Hortic. 2018, 238, 215–221. [Google Scholar] [CrossRef]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Normy Żywienia Dla Populacji Polski i ich Zastosowanie; Narodowy Instytut Zdrowia Publicznego-Państwowy Zakład Higieny: Warsaw, Poland, 2020; pp. 68–437. [Google Scholar]
- Bal, L.M.; Meda, V.; Naik, S.N.; Satya, S. Sea buckthorn berries: A potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Res. Int. 2011, 44, 1718–1727. [Google Scholar] [CrossRef]
- Glew, R.H.; Ayaz, F.A.; Sanz, C.; VanderJagt, D.J.; Huang, H.S.; Chuang, L.T.; Strnad, M. Changes in sugars, organic acids and amino acids in medlar (Mespilus germanica L.) during fruit development and maturation. Food Chem. 2003, 83, 363–369. [Google Scholar] [CrossRef]
- Mazza, G. Compositional and functional properties of saskatoon berry and blueberry. Int. J. Fruit Sci. 2005, 5, 101–120. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Cheng, L. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’apple flesh. Food Chem. 2010, 123, 1013–1018. [Google Scholar] [CrossRef]
- Olszowy, M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef]
- Piłat, B. Owoce rokitnika (Hippophae rhamnoides L.) jako źródło substancji biologicznie aktywnych. Ph.D. Thesis, Biblioteka UWM, Olsztyn, Poland, 2014. (In Polish). [Google Scholar]
- Teleszko, M.; Wojdyło, A.; Rudzinska, M.; Oszmianski, J.; Golis, T. Analysis of lipophilic and hydrophilic bioactive compounds content in sea buckthorn (Hippophae rhamnoides L.) berries. J. Agric. Food Chem. 2015, 63, 4120–4129. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.M.; Joo, O.S. Quality and antioxidant charactistics of Elaeagnus multiflora wine through the thermal processing of juice. Korean J. Food Preserv. 2014, 21, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Lachowicz, S.; Oszmiański, J.; Kalisz, S. Effects of various polysaccharide clarification agents and reaction time on content of polyphenolic compound, antioxidant activity, turbidity and colour of chokeberry juice. LWT 2018, 92, 347–360. [Google Scholar] [CrossRef]
- Spínola, V.; Pinto, J.; Llorent-Martínez, E.J.; Castilho, P.C. Changes in the phenolic compositions of Elaeagnus umbellata and Sambucus lanceolata after in vitro gastrointestinal digestion and evaluation of their potential anti-diabetic properties. Food Res. Int. 2019, 122, 283–294. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J. An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Mol. Nutr. Food Res. 2019, 63, 1801045. [Google Scholar] [CrossRef] [Green Version]
- Meléndez-Martínez, A.J.; Stinco, C.M.; Mapelli-Brahm, P. Skin carotenoids in public health and nutricosmetics: The emerging roles and applications of the UV radiation-absorbing colourless carotenoids phytoene and phytofluene. Nutrients 2019, 11, 1093. [Google Scholar] [CrossRef] [Green Version]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Pelayo, R.; Hornero-Méndez, D. Identification and quantitative analysis of carotenoids and their esters from sarsaparilla (Smilax aspera L.) berries. J. Agric. Food Chem. 2012, 60, 8225–8232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, S.C.; Olsson, M.E.; Johansson, E.; Rumpunen, K. Carotenoids in sea buckthorn (Hippophae rhamnoides L.) berries during ripening and use of pheophytin a as a maturity marker. J. Agric. Food Chem. 2009, 57, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.G.; Olmedilla-Alonso, B.; Hornero-Méndez, D.; Mercadante, A.Z.; Osorio, C.; Vargas-Murga, L.; Meléndez-Martínez, A.J. Comprehensive database of carotenoid contents in ibero-american foods. A valuable tool in the context of functional foods and the establishment of recommended intakes of bioactives. J. Agric. Food Chem. 2018, 66, 5055–5107. [Google Scholar] [CrossRef] [Green Version]
- Piłat, B.; Zadernowski, R. Fruits of sea buckthorn (Hippophae rhamnoides L.)—Rich source of biologically active compounds. Postępy Fitoterapii. 2016, 17, 298–306. [Google Scholar]
- Kallio, H.; Yang, B.; Peippo, P.; Tahvonen, R.; Pan, R. Triacylglycerols, Glycerophospholipids, Tocopherols, and Tocotrienols in Berries and Seeds of Two Subspecies (ssp. sinensis and mongolica) of Sea Buckthorn (Hippophaë rhamnoides). J. Agric. Food Chem. 2002, 50, 3004–3009. [Google Scholar] [CrossRef]
- Srinivasan, R.; Aruna, A.; Manigandan, K.; Pugazhendhi, A.; Kim, M.; Shivakumar, M.S.; Natarajan, D. Phytohemical, antioxidant, antimicrobial and antiproliferative potential of Elaeagnus indica. Biocatal. Ana Agric. Biotechnol. 2019, 20, 101265. [Google Scholar] [CrossRef]
- Mahomoodally, M.F.; Zengin, G.; Aumeeruddy, M.Z.; Sezgin, M.; Aktumsek, A. Phytochemical profile and antioxidant properties of two Brassicaceae species: Cardaria draba subsp. Draba and Descurainia sophia. Biocatalysis Agric. Biotechnol. 2018, 16, 453–458. [Google Scholar] [CrossRef]
- Gołba, M.; Sokół-Łętowska, A.; Kucharska, A.Z. Health properties and composition of honeysuckle berry Lonicera caerulea L. an update on recent studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef] [Green Version]
- Kolniak-Ostek, J.; Kłopotowska, D.; Rutkowski, K.P.; Skorupińska, A.; Kruczyńska, D.E. Bioactive Compounds and Health-Promoting Properties of Pear (Pyrus communis L.) Fruits. Molecules 2020, 25, 4444. [Google Scholar] [CrossRef] [PubMed]
- Gayer, B.A.; Avendano, E.E.; Edelson, E.; Nirmala, A.; Johnson, E.J.; Raman, G. Effects of intake of apples, pears, or their products on cardiometabolic risk factors and clinical outcomes: A systematic review and meta-Analysis. Curr. Dev. Nutr. 2019, 3, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pawlowska, E.; Szczepanska, J.; Koskela, K.; Kaarniranta, K.; Blasiak, J. Dietary polyphenols in age-related macular degeneration: Protection against oxidative stress and beyond. Oxid. Med. Cell. Longev. 2019, 2019, 9682318. [Google Scholar] [CrossRef] [PubMed]
- Lizardo, R.C.M.; Cho, H.-D.; Won, Y.S.; Seo, K.-I. Fermentation with mono- and mixedcultures of Lactobacillus plantarum and casei enhances the phytochemical content and biological activities of cherry silverberry (Elaeagnus multiflora Thunb.) fruit. J. Sci. Food Agric. 2020, 100, 3687–3696. [Google Scholar] [CrossRef]
- Lizardo, R.C.M.; Cho, H.-D.; Lee, J.-H.; Won, Y.S.; Seo, K.-I. Extracts of Elaeagnus multiflora Thunb. Fruit fermented by lactic acid bacteria ihibit SW 480 human colon adenocarcinoma via induction of cell cycle arrest and suppression of metastatic potential. J. Food Sci. Health Nutr. Food 2020, 85, 2565–2577. [Google Scholar] [CrossRef]
- Jung, M.-A.; Jo, A.; Shin, J.; Kang, H.; Kim, Y.; Oh, D.-R.; Choi, C.-Y. Anti-fatigue effects of Elaeagnus multiflora fruit extracts in mice. J. Appl. Biol. Chem. 2020, 63, 69–74. [Google Scholar] [CrossRef]
- Jung, M.-A.; Shin, J.; Jo, A.; Kang, H.; Lee, G.; Oh, D.-R.; Yun, H.J.; Im, S.; Bae, D.; Kim, J.; et al. Alleviating effects of the mixture of Elaeagnus multiflora and Cynanchum wilfordii extracts on testosteronedeficiency syndrome. J. Appl. Biol. Chem. 2020, 63, 451–455. [Google Scholar] [CrossRef]
- Dehghan, M.H.; Soltani, J.; Kalantar, E.; Farnad, M.; Kamalinejad, M.; Khodaii, Z.; Hatami, S.; Natanzi, M.M. Characterization of an Antimicrobial Extract from Elaeagnus angustifolia. Int. J. Enteric. Pathog. 2014, 2, e20157. [Google Scholar] [CrossRef] [Green Version]
- Sá, M.B.; Ralph, M.T.; Nascimento, D.C.O.; Ramos, C.S.; Barbosa, I.M.S.; Sá, F.B.; Lima-Filho, J.V. Phytochemistry and Preliminary Assessment of the Antibacterial Activity of Chloroform Extract of Amburana cearensis (Allemão) AC Sm. against Klebsiella pneumoniae Carbapenemase-Producing Strains. Evid. Based Complementary Altern. Med. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Nageeb, A.; Al-Tawashi, A.; Emwas, A.M.; Al-Talla, Z.A.; Al-Rifai, N. Comparison of Artemisia annua Bioactivities between Traditional Medicine and Chemical Extracts. Curr. Bioact. Compd. 2013, 9, 324. [Google Scholar] [CrossRef]
- Gurbuz, I.; Ustun, O.; Yesilada, E.; Sezik, E.; Kutsal, O. Anti-ulcerogenic activity of some plants used as folk remedy in Turkey. J. Ethnopharmacol. 2003, 88, 93–97. [Google Scholar] [CrossRef]
- Rawat, S.; Singh, R.; Thakur, P.; Kaur, S.; Semwal, A. Wound healing Agents from Medicinal Plants: A Review. Asian Pac. J. Trop. Biomed. 2012, 2, S1910–S1917. [Google Scholar] [CrossRef]
- Lima-Filho, J.V.; Martins, L.V.; de Oliveira Nascimento, D.C.; Ventura, R.F.; Batista, J.E.C.; Silva, A.F.B.; Taciana Ralpha, M.; ValençaVaza, R.; Boa-Viagem Rabello, C.; da Silvac, I.M.M.; et al. Zoonotic potential of multidrug-resistant extraintestinal pathogenic Escherichia coli obtained from healthy poultry carcasses in Salvador, Brazil. Braz. J. Infect. Dis. 2013, 17, 54–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowann, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Uddin, G.; Rauf, A. Phytochemical screening and biological activity of the aerial parts of Elaeagnus Umbellate. Sci. Res. Essays 2012, 7, 3690–3694. [Google Scholar]
- Khan, S.U.; Khan, A.U.; Ali Shah, A.U.; Shah, S.M.; Hussain, S.; Ayz, M.; Ayz, S. Heavy metals content, phytochemical composition, antimicrobial and insecticidal evaluation of Elaeagnus angustifolia. Toxicol. Ind. Health 2013, 9, 92. [Google Scholar] [CrossRef]
- Okmen, G.; Turkcan, O. The antibacterial activity of Elaeagnus angustifolia L. against mastitis pathogens and antioxidant capacity of the leaf methanolic extracts. J. Anim. Vet. Adv. 2013, 12, 491–496. [Google Scholar]
- Okmen, G.; Turkcan, O. A study on antimicrobial, antioxidant and antimutagenic activities of Elaeagnus angustifolia L. leaves. Afr. J. Tradit. Complementary Altern. Med. 2014, 11, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.P.; Chang, Y.B.; Ya-ling, J.; Xiang, Y.G.; Chao, L. Study on the Antibacterial Activity of Elaeagnus Macrophylla Thunb. Leaf Extract. North. Hortic. 2001, 1, 144–145. [Google Scholar]
- Fenjuan, S.; Zhiyong, C.; Ling, X.; Guiqin, Y. Study on Antimicrobial Activity of the Alkaloids from Elaeagnus Mollis. Plant Prot. 2009, 1, 126–128. [Google Scholar]
- Merculieff, Z.; Ramnath, S.; Sankoli, S.M.; Venkataramegowda, S.; Murthy, S.G.; Ceballos, R.M. Phytochemical, antioxidant and antibacterial potential of Elaeagnus kologa (Schlecht.) leaf. Asian Pac. J. Trop. Biomed. 2014, 4, 687–691. [Google Scholar] [CrossRef] [Green Version]
- Arias, R.M.; Prado, A.; Hernandez-Perez, B.M.; Sanchez Mateo, C.C. Antimicrobial studies on three species of Hypericum from the Canary Islands. J. Ethnopharmacol. 2002, 40, 287–292. [Google Scholar]
- Mubasher, S.; Sabir; Dilnawaz, S.A.; Imtiaz, M.H.; Kaleem, M.T. Antibacterial activity of Elaeagnus umbellata (Thunb.) a medicinal plant from Pakistan. Saudi Med. J. 2007, 28, 259. [Google Scholar]
- Lee, H.B.; Kim, C.S.; Ahn, Y.J. Anti-helicobacter pylori activity of methanol extracts from Korean native plant species in Jeju Island. Agric. Chem. Biotechnol. 2004, 47, 91–96. [Google Scholar]
- RameshKannan, N.; Nayagam, A.A.J.; Gurunagara, S.; Muthukumar, B.; Ekambaram, N.; Manimaran, A. Photochemical screening from Elaeagnus indica activity against human pathogens and cancer cells. Adv. Biol. Res. 2013, 7, 95–103. [Google Scholar]
- Nikolaeva, G.; Krivenchuk, P.E. Prokopenko. Elaeagnus angustifolia flavonoids. Farm. 1971, 26, 56–60. [Google Scholar]
- Zargari, A. Medicinal Plants; Tehran University Press: Tehran, Iran, 1990; Volume 4, pp. 275–277. [Google Scholar]
- Minhas, F.A.; Rehaman, H.; Yasin, A.; Awan, Z.I.; Ahmed, N. Antimicrobial activities of the leaves and roots of Elaeagnus umbellate Thunb. Afr. J. Biotechnol. 2013, 12, 6754–6760. [Google Scholar]
- Wang, B.; Lin, L.; Ni, Q.; Lian Su, C. Hippophae rhamnoides Linn. For treatment of diabetes mellitus: A review. J. Med. Plants Res. 2011, 5, 2599–2607. [Google Scholar]
- Lavinia, S.; Gabi, D.; Drinceanu, D.; Stef, D.; Daniela, M.; Julean, C.; Tetileanu, R.; Corcionivoschi, N. The effect of medicinal plants and plant extracted oils on broiler duodenum morphology and immunological profile. Rom. Biotech. Lett. 2009, 14, 4606–4616. [Google Scholar]
- Nazir, N.; Zahoor, M.; Nisar, M.; Khan, I.; Karim, N.; Abdel-Halim, H.; Ali, A. Phytochemical analysis and antidiabetic potential of Elaeagnus umbellate (Thunb.) in streptozotocin-induced diabetic rats: Pharmacological and computational approach. BMC Complement. Altern. Med. 2018, 18, 332. [Google Scholar] [CrossRef]
- Saltan, F.Z.; Okutucu, B.; Canby, H.S.; Ozel, D. In vitro α-Glucosidase and α-Amylase Enzyme Inhibitory Effects in Elaeagnus angustifolia Leaves Extracts. Eurasian J. Anal. Chem. 2017, 12, 117–126. [Google Scholar] [CrossRef]
- Ducep, J.B.; Kastner, P.R.; Marshall, F.N.; Danzin, C. New potent α-glucohydrolase inhibitor MDL 73945 with long duration of action in rats. Diabetes 1991, 40, 825–830. [Google Scholar]
- Fernandes, B.; Sagman, U.; Auger, M.; Demetrio, M.; Dennism, J.W. Β-6 branched oligosaccharides as a marker of tumor progression in human breast and clon neoplasia. Cancer Res. 1991, 51, 718–723. [Google Scholar] [PubMed]
- Ogawa, S.; Maruyama, A.; Odagiri, T.; Yuasa, H.; Hashimoto, H. Synthesis and biological evaluation of α-L-fucosidase inhibitors: 5a-carba- α-L-fucopyranosylamine and related compounds. Eur. J. Org. Chem. 2001, 967–974. [Google Scholar] [CrossRef]
- Skiepko, N.; Chwastowska-Siwiecka, I.; Kondratowicz, J. Properties of lycopene and utilizing it to produce functional foods. ŻYWOŚĆ Nauka Technol. Jakość 2015, 6, 20–32. [Google Scholar]
- Bramley, P.M. Is lycopene beneficial to human health? Phytochemistry 2000, 54, 233–236. [Google Scholar] [CrossRef]
- Larsson, S.C.; Orsini, N.; Wolk, A. Processed meat consumption and stomach cancer risk: A metaanalysis. J. Natl. Cancer Inst. 2006, 98, 1078–1087. [Google Scholar] [CrossRef] [Green Version]
- Omoni, A.O.; Aluko, R.E. The anti-carcinogenic and anti-atherogenic effects of lycopene: A review. Trends Food Sci. Technol. 2005, 16, 344–350. [Google Scholar] [CrossRef]
- Rao, A.V.; Agarwal, S. Role of antioxidant lycopene in cancer and heart disease. J. Am. Coll. Nutr. 2000, 5, 563–569. [Google Scholar] [CrossRef]
- Yang, T.; Yang, X.; Wang, X.; Wang, Y.; Song, Z. The role of tomato products and lycopene in the prevention of gastric cancer: A meta-analysis of epidemiologic studies. Med. Hypotheses 2013, 80, 383–388. [Google Scholar] [CrossRef]
- De Stefani, E.; Oreggia, F.; Boffetta, P.; Deneo-Pellegrini, H.; Ronco, A.; Mendilaharsu, M. Tomatoes, tomato-rich foods, lycopene and cancer of the upper aerodigestive tract: A case-control in Uruguay. Oral Oncol. 2000, 36, 47–53. [Google Scholar] [CrossRef]
Components | Contents | Ref. | Components | Contents | Ref. |
---|---|---|---|---|---|
Dry weight [%] | 12.64–15.55 | [9,44] | Amino acids [mg/100 g FW] | 89.68 | [44] |
Total saccharides [%] | 5.34–6.30 | [9] | serine | 13.93 | [44] |
Monosaccharides [%] | 1.54–1.96 | [9] | phosphoethanolamine | 13.93 | [44] |
Total free sugars [mg/100 g FW *] | 781.44 | [44] | alanine | 13.16 | [44] |
fructose | 370.34 | [44] | β-alanine | 13.16 | [44] |
glucose | 401.96 | [44] | aspartic acid | 4.62 | [44] |
sucrose | 5.80 | [44] | phosphoserine | 4.62 | [44] |
trehalose | 3.34 | [44] | cystine | 4.45 | [44] |
Crude protein [%] | 1.29 | [44] | methionine | 3.89 | [44] |
Soluble protein [g/100 g FW] | 0.48 | [44] | phenylalanine | 2.85 | [44] |
pH | 3.29 | [44] | threonine | 2.63 | [44] |
Crude ash [%] | 0.46–0.62 | [2,44] | taurine | 2.63 | [44] |
Biominerals [mg/100 g FW] | 1353.70–1855.94 | [17,44] | tyrosine | 2.17 | [44] |
potassium | 1627.44 | [44] | leucine | 1.41 | [44] |
magnesium | 140.28 | [44] | isoleucine | 1.16 | [44] |
sodium | 56.70 | [44] | valine | 1.12 | [44] |
calcium | 14.70 | [44] | β-aminoisobutyric acid | 1.12 | [44] |
iron | 7.98 | [44] | α-aminoisobutyric acid | 0.62 | [44] |
manganese | 5.53 | [44] | ornithine | 0.57 | [44] |
zinc | 2.89 | [44] | glutamic acid | 0.51 | [44] |
copper | 0.10 | [44] | sarcosine | 0.51 | [44] |
lithium | 0.20 | [44] | Polyphenolic compounds [mg/100 g DW] | 417.02–1268.90 | [2,8,37] |
nickel | 0.12 | [44] | phenolic acids | 1.22–3.80 | [2,8,37] |
Lipids [g/100 g] | 1.40 | [1,9] | flavonols | 37.29–56.25 | [2,8,37] |
unsaturated fatty acids account [%], of which | 48.70–54.50 | [1,9] | hydrolyzable tannins | 3.07–10.60 | [2,8,37] |
α-linolenic acid [%] | 17.50–20.80 | [1,9] | stilbenes | 0.91–1.71 | [2,8,37] |
linolinic acid [%] | 21.80–25.90 | [1,9] | polymeric procyanidins | 861.36–1197.34 | [2,8,37] |
oleic acid [%] | 19.30–22.70 | [9] | Carotenoids [mg/100 g DW] | 40.09–170.00 | [2,8,37] |
Organic acids [g/100 g DW **], of which | 18.48–34.11 | [2,36] | phytoene | 0.93–0.97 | [2,8,37] |
malic acid account [%] | 55–60 | [2] | lycopene | 39.16–169.00 | [2,8,37] |
quinic account [%] | 11–15 | [2] | β-carotene | 0.21–0.31 | [2,8,37] |
tartaric acid account [%] | 9–18 | [2] | Tocopherols [mg/100 g DW] | 2.00–9.93 | [37] |
Vitamin C [mg/100 g] | 4.22–562.72 | [9,44] | Chlorophylls [mg/100 g DW] | 393.00 | [2,37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bieniek, A.; Lachowicz-Wiśniewska, S.; Bojarska, J. The Bioactive Profile, Nutritional Value, Health Benefits and Agronomic Requirements of Cherry Silverberry (Elaeagnus multiflora Thunb.): A Review. Molecules 2022, 27, 2719. https://doi.org/10.3390/molecules27092719
Bieniek A, Lachowicz-Wiśniewska S, Bojarska J. The Bioactive Profile, Nutritional Value, Health Benefits and Agronomic Requirements of Cherry Silverberry (Elaeagnus multiflora Thunb.): A Review. Molecules. 2022; 27(9):2719. https://doi.org/10.3390/molecules27092719
Chicago/Turabian StyleBieniek, Anna, Sabina Lachowicz-Wiśniewska, and Justyna Bojarska. 2022. "The Bioactive Profile, Nutritional Value, Health Benefits and Agronomic Requirements of Cherry Silverberry (Elaeagnus multiflora Thunb.): A Review" Molecules 27, no. 9: 2719. https://doi.org/10.3390/molecules27092719
APA StyleBieniek, A., Lachowicz-Wiśniewska, S., & Bojarska, J. (2022). The Bioactive Profile, Nutritional Value, Health Benefits and Agronomic Requirements of Cherry Silverberry (Elaeagnus multiflora Thunb.): A Review. Molecules, 27(9), 2719. https://doi.org/10.3390/molecules27092719