SALDI Substrate-Based FeNi Magnetic Alloy Nanoparticles for Forensic Analysis of Poisons in Human Serum
Abstract
:1. Introduction
2. Experiments
2.1. Chemicals and Reagents
2.2. Synthesis of FeNi Magnetic Alloy Nanoparticles
2.3. Characterization of FeNi Magnetic Alloy Nanoparticles
2.4. Sample Preparation and SALDI-MS Analysis
2.5. Analysis of Spiked Human Serum
2.6. Reproducibility and Limit of Detection (LOD)
3. Results and Discussion
3.1. Optimization and Characterization of FeNi Magnetic Alloy Nanoparticles
3.2. Effects of Reducing Agent on SALDI-MS Analysis
3.3. Analysis of Poisons Using FeNi MANPs
3.4. Analysis of Spiked Human Serum Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fleischmann, A.; De Leo, D. The World Health Organization’s Report on Suicide: A Fundamental Step in Worldwide Suicide Prevention; American Psychological Association: Washington, DC, USA, 2014. [Google Scholar]
- Gunnell, D.; Eddleston, M. Suicide by intentional ingestion of pesticides: A continuing tragedy in developing countries. Int. J. Epidemiol. 2003, 32, 902–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- House, A.; Owens, D.; Patchett, L. Deliberate self harm. Qual. Health Care QHC 1999, 8, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mew, E.J.; Padmanathan, P.; Konradsen, F.; Eddleston, M.; Chang, S.-S.; Phillips, M.R.; Gunnell, D. The global burden of fatal self-poisoning with pesticides 2006-15: Systematic review. J. Affect. Disord. 2017, 219, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, M.R.; Yang, G.; Zhang, Y.; Wang, L.; Ji, H.; Zhou, M. Risk factors for suicide in China: A national case-control psychological autopsy study. Lancet 2002, 360, 1728–1736. [Google Scholar] [CrossRef]
- Somasundaram, D.J.; Rajadurai, S. War and suicide in northern Sri Lanka. Acta Psychiatr. Scand. 1995, 91, 1–4. [Google Scholar] [CrossRef]
- Hutchinson, G.; Daisley, H.; Simeon, D.; Simmonds, V.; Shetty, M.; Lynn, D. High rates of paraquat-induced suicide in southern Trinidad. Suicide Life-Threat. Behav. 1999, 29, 186–191. [Google Scholar]
- Maniam, T. Suicide and Parasuicide in a Hill Resort in Malaysia. Br. J. Psychiatry 1988, 153, 222–225. [Google Scholar] [CrossRef]
- Eskes, D.; Brown, J.K. Heroin-caffeine-strychnine mixtures—Where and why. Bull. Narc. 1975, 27, 67–69. [Google Scholar]
- Shannon, M. Clinical toxicity of cocaine adulterants. Ann. Emerg. Med. 1988, 17, 1243–1247. [Google Scholar] [CrossRef]
- Cole, C.; Jones, L.; McVeigh, J.; Kicman, A.; Syed, Q.; Bellis, M. Adulterants in illicit drugs: A review of empirical evidence. Drug Test. Anal. 2010, 3, 89–96. [Google Scholar] [CrossRef]
- Otter, J.; D’Orazio, J.L. Strychnine Toxicity; StatPearls Publishing: Treasure Island, FL, USA, 2017. [Google Scholar]
- Shin, Y.; Lee, J.; Lee, J.-H.; Lee, J.; Kim, E.; Liu, K.-H.; Lee, H.S.; Kim, J.-H. Validation of a Multiresidue Analysis Method for 379 Pesticides in Human Serum Using Liquid Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2018, 66, 3550–3560. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Pang, Y.; Zhang, J.; Li, Z.; Liu, J.; Wang, B. Application of molecularly imprinted polymers for the analysis of polycyclic aromatic hydrocarbons in lipid matrix-based biological samples. Anal. Bioanal. Chem. 2017, 409, 6851–6860. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, T.; Wang, Y.; Shi, Z.; Zhou, X.; Sun, Z. Simple and fast analysis of tetrabromobisphenol A, hexabromocyclododecane isomers, and polybrominated diphenyl ethers in serum using solid-phase extraction or QuEChERS extraction followed by tandem mass spectrometry coupled to HPLC and GC. J. Sep. Sci. 2017, 40, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Mouskeftara, T.; Virgiliou, C.; Iakovakis, A.; Raikos, N.; Gika, H.G. Liquid chromatography tandem mass spectrometry for the determination of nine insecticides and fungicides in human postmortem blood and urine. J. Chromatogr. B 2021, 1179, 122824. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Mikrochim. Acta 2018, 185, 200. [Google Scholar] [CrossRef]
- Lim, A.Y.; Ma, J.; Boey, Y.C.F. Development of Nanomaterials for SALDI-MS Analysis in Forensics. Adv. Mater. 2012, 24, 4211–4216. [Google Scholar] [CrossRef]
- Amin, M.O.; Madkour, M.; Al-Hetlani, E. Metal oxide nanoparticles for latent fingerprint visualization and analysis of small drug molecules using surface-assisted laser desorption/ionization mass spectrometry. Anal. Bioanal. Chem. 2018, 410, 4815–4827. [Google Scholar] [CrossRef]
- D’Cruz, B.; Madkour, M.; Amin, M.O.; Al-Hetlani, E. Efficient and recoverable magnetic AC-Fe3O4 nanocomposite for rapid removal of promazine from wastewater. Mater. Chem. Phys. 2019, 240, 122109. [Google Scholar] [CrossRef]
- Liu, C.-W.; Chien, M.-W.; Su, C.-Y.; Chen, H.-Y.; Li, L.-J.; Lai, C.-C. Analysis of flavonoids by graphene-based surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst 2012, 137, 5809–5816. [Google Scholar] [CrossRef]
- Amin, M.O.; Al-Hetlani, E. Development of efficient SALDI substrate based on Au–TiO2 nanohybrids for environmental and forensic detection of dyes and NSAIDs. Talanta 2021, 233, 122530. [Google Scholar] [CrossRef]
- Ismail, M.M.; Amin, M.O.; Al-Hetlani, E. Analysis of drugs and pesticides for forensic purposes using noble metal-modified silica monolith as SALDI-MS substrate. Microchem. J. 2021, 166, 106201. [Google Scholar] [CrossRef]
- Yang, B.; Wu, Y.; Li, X.; Yu, R. Chemical Synthesis of High-Stable Amorphous FeCo Nanoalloys with Good Magnetic Properties. Nanomaterials 2018, 8, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slaton, R.D.; Bae, I.T.; Lutz, P.S.; Pathade, L.; Maye, M.M. The transformation of α-Fe nanoparticles into multi-domain FeNi–M3O4 (M = Fe, Ni) heterostructures by galvanic exchange. J. Mater. Chem. C 2015, 3, 6367–6375. [Google Scholar] [CrossRef]
- Acharya, P.; Nelson, Z.J.; Benamara, M.; Manso, R.H.; Bakovic, S.I.P.; Abolhassani, M.; Lee, S.; Reinhart, B.; Chen, J.; Greenlee, L.F. Chemical Structure of Fe–Ni Nanoparticles for Efficient Oxygen Evolution Reaction Electrocatalysis. ACS Omega 2019, 4, 17209–17222. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhao, Q.; Hou, H.; Wu, Y.; Yu, W.; Ji, X.; Shao, L. Nickel nanoparticles supported on nitrogen-doped honeycomb-like carbon frameworks for effective methanol oxidation. RSC Adv. 2017, 7, 14152–14158. [Google Scholar] [CrossRef] [Green Version]
- Dupin, J.-C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319–1324. [Google Scholar] [CrossRef]
- Chiang, C.-K.; Chen, W.-T.; Chang, H.-T. Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem. Soc. Rev. 2010, 40, 1269–1281. [Google Scholar] [CrossRef]
- Yagnik, G.B.; Hansen, R.L.; Korte, A.R.; Reichert, M.D.; Vela, J.; Lee, Y.J. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry. Anal. Chem. 2016, 88, 8926–8930. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.T.; Tomalová, I.; Preisler, J.; Chang, H.T. Analysis of Biomolecules through Surface-Assisted Laser, Desorption/Ionization Mass Spectrometry Employing Nanomaterials. J. Chin. Chem. Soc. 2011, 58, 769–778. [Google Scholar] [CrossRef]
- Xiao, Y.; Retterer, S.T.; Thomas, D.K.; Tao, J.-Y.; He, L. Impacts of Surface Morphology on Ion Desorption and Ionization in Desorption Ionization on Porous Silicon (DIOS) Mass Spectrometry. J. Phys. Chem. C 2009, 113, 3076–3083. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Schürenberg, M.; Dreisewerd, K.; Hillenkamp, F. Laser Desorption/Ionization Mass Spectrometry of Peptides and Proteins with Particle Suspension Matrixes. Anal. Chem. 1998, 71, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Cheng, Q. Desorption and ionization mechanisms and signal enhancement in surface assisted laser desorption ionization mass spectrometry (SALDI-MS). Appl. Spectrosc. Rev. 2019, 55, 220–242. [Google Scholar] [CrossRef]
- Wei, J.; Buriak, J.; Siuzdak, G. Desorption–ionization mass spectrometry on porous silicon. Nature 1999, 399, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Adole, P.S.; Bora, S.; Chaudhari, V.A. Clinical utility of validated gas chromatography–ion trap mass spectrometry in patients with anticholinesterase pesticides poisoning. Anal. Biochem. 2021, 621, 114158. [Google Scholar] [CrossRef] [PubMed]
- Blakey, K.; Cusack, V.; Burnett, C.; Carter, S.; Croft, S.; Nienaber, L.; Keen, I.; Cross, M.; McGowan, J. Identification of the rodenticide coumatetralyl in seized tablets. Forensic Chem. 2021, 23, 100305. [Google Scholar] [CrossRef]
- Gordon, A.M., Jr.; Richards, D.W. Strychnine intoxication. JACEP 1979, 8, 520–522. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, H.; Akira, T.; Watanabe, T.; Nozaki, K.; Yonezawa, T.; Arakawa, R. Sulfonate group-modified FePtCu nanoparticles as a selective probe for LDI-MS analysis of oligopeptides from a peptide mixture and human serum proteins. Anal. Bioanal. Chem. 2009, 395, 1423–1431. [Google Scholar] [CrossRef]
- Korte, A.R.; Stopka, S.A.; Morris, N.; Razunguzwa, T.; Vertes, A. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays. Anal. Chem. 2016, 88, 8989–8996. [Google Scholar] [CrossRef]
- Nizioł, J.; Rode, W.; Zieliński, Z.; Ruman, T. Matrix-free laser desorption–ionization with silver nanoparticle-enhanced steel targets. Int. J. Mass Spectrom. 2013, 335, 22–32. [Google Scholar] [CrossRef]
- Al-Hetlani, E.; Amin, M.O.; Madkour, M.; D’Cruz, B. Forensic determination of pesticides in human serum using metal ferrites nanoparticles and SALDI-MS. Talanta 2020, 221, 121556. [Google Scholar] [CrossRef] [PubMed]
Element | Mass (%) | Atom (%) |
---|---|---|
Ni | 48.13 | 37.04 |
Fe | 41.44 | 33.53 |
O | 10.42 | 29.43 |
Compound Name | Ion Formed | m/z | Average Intensity | %RSD | LOD |
---|---|---|---|---|---|
Dimethametryn | [Dim + H]+ | 256.19 | 23,077.00 | 2.30 | 1 ng/mL |
[Dim + Na]+ | 278.18 | 11,366.61 | 6.16 | ||
Napropamide | [Nap]+ | 271.18 | 735.47 | 9.66 | 100 pg/mL |
[Nap + H]+ | 278.16 | 660.36 | 13.97 | ||
[Nap + Na]+ | 294.14 | 28,464.64 | 8.21 | ||
[Nap + K]+ | 310.08 | 1204.82 | 11.07 | ||
Thiodicarb | [Thi + Na]+ | 376.95 | 76,877.32 | 9.27 | 10 ng/mL |
Strychnine | [Sty]+ | 334.28 | 11,014.64 | 15.83 | 200 ng/mL |
[Sty + H]+ | 335.29 | 16,570.42 | 17.70 | ||
[Sty + Na]+ | 357.26 | 34,571.31 | 19.15 | ||
[Sty + K]+ | 373.25 | 1838.68 | 23.81 |
Compound Name | Ion Formed | m/z | Average Intensity | %RSD | LOD (ng/mL) |
---|---|---|---|---|---|
Dimethamtetryn | [Dim + Na]+ | 278.23 | 2582.67 | 22.45 | 700 |
Napropamide | [Nap + Na]+ | 294.22 | 5649.92 | 14.94 | 700 |
[Nap + K]+ | 310.18 | 1089.33 | 18.06 | ||
Thiodicarb | [Thi + Na]+ | 376.05 | 20,357.78 | 23.93 | 800 |
[Thi +K]+ | 393.01 | 7831.50 | 17.68 | ||
Strychnine | [Sty]+ | 334.19 | 608.68 | 13.62 | 500 |
[Sty + H]+ | 335.21 | 659.65 | 4.65 | ||
[Sty + Na]+ | 356.97 | 21,779.79 | 2.19 | ||
[Sty + K]+ | 373.06 | 2430.85 | 9.16 |
Substrate Used | Surface Area (m2/g) | Analyte | LOD | Ref |
---|---|---|---|---|
Silicon nanopost arrays | - | Small metabolites and lipids | - | [42] |
Silver NPs | - | 5-fluorouracil | - | [43] |
FePtCu NPs | - | Lysozyme | - | [41] |
Au-SiO2 monolith | 368.2 | Dimethametryn and thiodicarb | 100 ng/mL | [23] |
Napropamide and metalaxyl | 1 ng/mL | |||
CuFe2O4 NPs | 19.7 | Napropamide | 10 μg/mL | [44] |
Metalaxyl | 10 ng/mL | |||
Thiodicarb | 100 pg/mL | |||
FeNi NPs | 6.47 | Dimethametryn | 700 ng/mL | This work |
Napropamide | 700 ng/mL | |||
Thiodicarb | 800 ng/mL | |||
Strychnine | 500 ng/mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Sayed, S.A.; Amin, M.O.; Al-Hetlani, E. SALDI Substrate-Based FeNi Magnetic Alloy Nanoparticles for Forensic Analysis of Poisons in Human Serum. Molecules 2022, 27, 2720. https://doi.org/10.3390/molecules27092720
Al-Sayed SA, Amin MO, Al-Hetlani E. SALDI Substrate-Based FeNi Magnetic Alloy Nanoparticles for Forensic Analysis of Poisons in Human Serum. Molecules. 2022; 27(9):2720. https://doi.org/10.3390/molecules27092720
Chicago/Turabian StyleAl-Sayed, Sara A., Mohamed O. Amin, and Entesar Al-Hetlani. 2022. "SALDI Substrate-Based FeNi Magnetic Alloy Nanoparticles for Forensic Analysis of Poisons in Human Serum" Molecules 27, no. 9: 2720. https://doi.org/10.3390/molecules27092720
APA StyleAl-Sayed, S. A., Amin, M. O., & Al-Hetlani, E. (2022). SALDI Substrate-Based FeNi Magnetic Alloy Nanoparticles for Forensic Analysis of Poisons in Human Serum. Molecules, 27(9), 2720. https://doi.org/10.3390/molecules27092720