Forensic Analysis and Identification Processes in Mass Disasters: Explosion of Gun Powder in the Fireworks Factory
Abstract
:1. Introduction
2. Case Report
3. Materials and Methods
- -
- Sack n. 1 containing: a decayed corpse cataloged as CORPSE SACK n. 1; a head cataloged as SACK HEAD n. 1 bis;
- -
- Bag n. 2 containing: an extensively broken corpse, consisting in principle of the left hemisome (part of the half face, neck, upper limb, part of the trunk, lower limb up to the distal portion of the femur), cataloged as CORPSE BAG n. 2;
- -
- Bag n. 3 containing: soft tissue, referable in the first instance to a portion of the gastro-enteric system, cataloged as BAG n. 3;
- -
- Bag n. 4 containing: soft tissue with a parenchymatous consistency, 20 × 12 cm in size, referable in the first instance to the spleen, cataloged as BAG n. 4;
- -
- Bag n. 5 containing: soft tissue with dimensions of 17 × 8.5 cm cataloged as BAG n. 5;
- -
- Bag n. 6 containing: a corpse cataloged as CORPSE SACK n. 6;
- -
- Bag n. 7 containing: a charred corpse cataloged as CORPSE SACK n. 7;
- -
- Bag n. 8 containing: part of the right lower limb (proximal third of leg and foot) cataloged as FOOT BAG n. 8;
- -
- Bag n. 9 containing: soft tissue and bone tissue, referable in the first instance to a hemibacin, cataloged as BAG n. 9;
- -
- Bag n. 10 containing: some carbonized vertebral elements, referable to as thoracic vertebrae; a left foot 23.5 cm long cataloged as FOOT BAG n.10;
- -
- Bag n. 12 containing: a right foot 31 cm long cataloged as FOOT BAG n. 12;
- -
- Bag n. 13 containing: soft tissue and bone, referable in the first instance to the left hemibacin, with extensively charred stump of the femur, cataloged as BAG n. 13;
- -
- Bag n. 15 containing: soft tissue and bone tissue, referable in the first instance to a hemibacin, cataloged as BAG n. 15;
- -
- Bag n. 16 containing: a charred corpse cataloged as CORPSE SACK n. 16;
- -
- Bag n. 17 containing: soft tissue and bone tissue, referable in the first instance to the scapulohumeral joint, cataloged as BAG n. 17.
- -
- charred vertebral elements, referable to as thoraco-lumbar vertebrae and a complex of charred long bones surrounded by soft tissue, referable to as fragment of the thoracic cage (ribs), cataloged as SACK n. 21;
- -
- right upper limb, consisting of humerus (distal third), elbow joint, soft and bone tissues of the forearm and ipsilateral hand, cataloged as BAG n. 22;
- -
- a fragment of charred soft tissue, apparently referable to as muscle tissue and fragments of long bones, cataloged as SACK n. 23;
- -
- fragment of the right hemimandible (still including some dental elements), with carbonization of the soft tissues, cataloged as SACK n. 24;
- -
- soft tissue, referable to in the first instance as muscle tissue, extensively charred, and a fragment of long bone, referable to in the first instance as a section of the femur, cataloged as BAG n. 26;
- -
- a fragment of long bone, referable to in the first instance as a section of the femur, cataloged as SACK n. 27.
3.1. DNA Extraction from Blood Samples
3.2. Dna Extraction from Bone Fragments and Teeth
3.3. Dna Extraction from Carbonized Tissues
3.4. Dna Extraction from the Toothbrush and Razor
- DNA Sample D4 = 7 ng/µL
- DNA Sample D5 = 4.2 ng/µL
- DNA Sample D6 = 3 ng/µL
- DNA Sample D6B = 5.3 ng/µL
- DNA Sample D7 = 2.1 ng/µL
- DNA Sample G5 = 5.5 ng/µL
- DNA Sample H3 = 2.1 ng/µL
- DNA Sample I1 = 3.5 ng/µL
- DNA Sample I2 = 3.8 ng/µL
- DNA Sample L = 2.3 ng/µL
- -
- four bodies showed injuries directly related to the explosive effect of the explosion, with death coming instantly;
- -
- one corpse was instead characterized by an injury more related to blunt and compressive effects related to the collapse of one of the building structures present in the place of the accident and in which the victim was at the time of the explosion;
- -
- the other victims, on the other hand, died as a result of burns reported and involving 100% of the body surface; this is also assuming, for one of these, the recurrence of the action of minor toxic and/or contusive phenomena. We carried out histopathological examinations that showed dermo-epidermal damage extended to the skin surface, with deposition of exogenous blackish pigment. Furthermore, we highlighted vacuolation of basal keratinocytes, epidermal damage with exulceration, progressive hyalinization of the dermal collagen fibers and coarctation of the samples [20,21]. With the support of histology and after excluding other causes, we had confirmation that it was already visible at macroscopic external inspection.
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Thivaharan, Y.; Kitulwatte, I.D.G. Medico-Legal Opinion Based on Autopsy Findings of a Victim of an Explosion Involving Mass Fatality. Acad. Forensic Pathol. 2020, 10, 158–165. [Google Scholar] [CrossRef]
- Anderson, M.; Leditschke, J.; Bassed, R.; Cordner, S.M.; Drummer, O.H. Mortuary operations following mass fatality natural disasters: A review. Forensic Sci. Med. Pathol. 2017, 13, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Schuliar, Y.; Knudsen, P.J.T. Role of forensic pathologists in mass disasters. Forensic Sci. Med. Pathol. 2012, 8, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Caenazzo, L.; Tozzo, P.; Rodriguez, D. Ethical issues in DNA identification of human biological material from mass disasters. Prehospital Disaster Med. 2013, 28, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Yudianto, A.; Nuraini, I.; Furqoni, A.H.; Nzilibili, S.M.M.; Harjanto, P. The use of touch DNA analysis in forensic identification focusing on Short Tandem Repeat- Combined DNA Index System loci THO1, CSF1PO and TPOX. Infect. Dis. Rep. 2020, 12 (Suppl. 1), 8716. [Google Scholar] [CrossRef]
- Lin, T.H.; Myers, E.W.; Xing, E.P. Interpreting anonymous DNA samples from mass disasters--probabilistic forensic inference using genetic markers. Bioinformatics 2006, 22, e298–e306. [Google Scholar] [CrossRef]
- Mathews, Z.R.; Koyfman, A. Blast Injuries. J. Emerg. Med. 2015, 49, 573–587. [Google Scholar] [CrossRef] [PubMed]
- Brannon, R.B.; Kessler, H.P. Problems in mass-disaster dental identification: A retrospective review. J. Forensic Sci. 1999, 44, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Schou, M.P.; Knudsen, P.J.T. The Danish Disaster Victim Identification effort in the Thai tsunami: Organisation and results. Forensic Sci. Med. Pathol. 2012, 8, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Randolph, R.; Chacko, S.; Morsch, G. Disaster Medicine: Public Health Threats Associated With Disasters. FP Essent. 2019, 487, 11–16. [Google Scholar] [PubMed]
- Arrighi, E.; Charlot, A.M. Identifying terrorist attack victims. Forensic Sci. Res. 2020, 5, 236–241. [Google Scholar] [CrossRef]
- Lessig, R.; Rothschild, M. International standards in cases of mass Disaster Victim Identification (DVI). Forensic Sci. Med. Pathol. 2012, 8, 197–199. [Google Scholar] [CrossRef]
- Elliott, A.; Rehfisch, N. Mortuary provision in emergencies causing mass fatalities. J. Bus. Contin. Emerg. Plan. 2011, 5, 430–439. [Google Scholar]
- Bazyar, J.; Farrokhi, M.; Salari, A.; Khankeh, H.R. The Principles of Triage in Emergencies and Disasters: A Systematic Review. Prehospital Disaster Med. 2020, 35, 305–313. [Google Scholar] [CrossRef]
- Eckert, W.G. The medicolegal and forensic aspects of fires. Am. J. Forensic Med. Pathol. 1981, 2, 347–357. [Google Scholar] [CrossRef]
- Michiue, T.; Ishikawa, T.; Oritani, S.; Maeda, H. Contribution of forensic autopsy to scene reconstruction in mass fire casualties: A case of alleged arson on a floor consisting of small compartments in a building. Leg. Med. 2015, 17, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, G.; Sarode, S.C.; Sarode, G.S.; Shelke, P.; Awan, K.H.; Patil, S. Role of forensic odontology in the identification of victims of major mass disasters across the world: A systematic review. PLoS ONE 2018, 13, e0199791. [Google Scholar] [CrossRef]
- Weedn, V.W.; Baum, H.J. DNA identification in mass fatality incidents. Am. J. Forensic Med. Pathol. 2011, 32, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Leider, J.P.; DeBruin, D.; Reynolds, N.; Koch, A.; Seaberg, J. Ethical Guidance for Disaster Response, Specifically Around Crisis Standards of Care: A Systematic Review. Am. J. Public Health 2017, 107, e1–e9. [Google Scholar] [CrossRef]
- Sangita, C.; Garima, G.; Jayanthi, Y.; Arneet, A.; Neelkamal, K. Histological indicators of cutaneous lesions caused by electrocution, flame burn and impact abrasion. Med. Sci. Law 2018, 58, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, M.; Bonde, D.; Patil, S.; Gawande, M.; Hande, A.; Jain, D. Histopathological evaluation of tissue undergoing thermal insult. J. Forensic Dent. Sci. 2016, 8, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khajehaminian, M.R.; Ardalan, A.; Boroujeni, S.M.H.; Nejati, A.; Keshtkar, A.; Foroushani, A.R. Criteria and models for the distribution of casualties in trauma-related mass casualty incidents: A systematic literature review protocol. Syst. Rev. 2017, 6, 141. [Google Scholar] [CrossRef]
- Pomara, C.; Turillazzi, E.; Neri, M.; Bello, S.C.; Di Donato, S.; Riezzo, I.; D’Errico, S.; Fiore, C.; Zizzo, G.; Karch, S.B.; et al. A multidisciplinary approach to the investigation of a collapsed building. Am. J. Forensic Med. Pathol. 2010, 31, 264–268. [Google Scholar] [CrossRef]
- Chukwu-Lobelu, R.; Appukuttan, A.; Edwards, D.S.; Patel, H.D.L. Burn injuries from the london suicide bombings: A new classification of blast-related thermal injuries. Ann. Burn. Fire Disasters 2017, 30, 256–260. [Google Scholar]
- Campobasso, C.P.; Falamingo, R.; Vinci, F. Investigation of Italy’s deadliest building collapse: Forensic aspects of a mass disaster. J. Forensic Sci. 2003, 48, 635–639. [Google Scholar] [CrossRef]
- Definis Gojanović, M.; Sutlović, D. Skeletal remains from World War II mass grave: From discovery to identification. Croat. Med. J. 2007, 48, 520–527. [Google Scholar] [PubMed]
- Calacal, G.C.; De Ungria, M.C.A.; Delfin, F.C.; Lara, M.C.; Magtanong, D.L.; Fortun, R. Identification of two fire victims by comparative nuclear DNA typing of skeletal remains and stored umbilical tissues. Am. J. Forensic Med. Pathol. 2003, 24, 148–152. [Google Scholar] [CrossRef]
- Jabłońska-Milczarek, M.; Frankowski, A. Latest Interpol reports on disaster victim identification and the process of implementing international DVI standards in Poland. Arch. Med. Sadowej Kryminol. 2020, 70, 163–180. [Google Scholar] [CrossRef]
- Montelius, K.; Lindblom, B. DNA analysis in Disaster Victim Identification. Forensic Sci. Med. Pathol. 2012, 8, 140–147. [Google Scholar] [CrossRef]
- Leclair, B.; Frégeau, C.J.; Bowen, K.L.; Fourney, R.M. Enhanced kinship analysis and STR-based DNA typing for human identification in mass fatality incidents: The Swissair flight 111 disaster. J. Forensic Sci. 2004, 49, 939–953. [Google Scholar] [CrossRef]
- Watherston, J.; McNevin, D.; Gahan, M.E.; Bruce, D.; Ward, J. Current and emerging tools for the recovery of genetic information from post mortem samples: New directions for disaster victim identification. Forensic Sci. Int. Genet. 2018, 37, 270–282. [Google Scholar] [CrossRef]
- Marrone, M.; Ferorelli, D.; Stellacci, A.; Vinci, F. A fatal drowning filmed in a private pool: Analysis of the sequences of submersion. Forensic Sci. Int. Rep. 2021, 3, 100189. [Google Scholar] [CrossRef]
- Romanelli, M.C.; Marrone, M.; Veneziani, A.; Gianciotta, R.; Leonardi, S.; Beltempo, P.; Vinci, F. Hypostasis and time since death: State of the art in Italy and a novel approach for an operative instrumental protocol. Am. J. Forensic Med. Pathol. 2015, 36, 99–103. [Google Scholar] [CrossRef]
- Alonso, A.; Martín, P.; Albarrán, C.; Garcí, P.; De Simón, L.F.; Iturralde, M.J.; Fernández-Rodríguez, A.; Atienza, I.; Capilla, J.; García-Hirschfeld, J.; et al. Challenges of DNA profiling in mass disaster investigations. Croat. Med. J. 2005, 46, 540–548. [Google Scholar]
Samples Taken from Corpses or from Bags Containing Biological Remains | Samples Taken from Relatives of the Degree or from Objects Belonging to the Victims |
---|---|
Sample C1 Blood corpse Burned n. 3 (P.R.) | Sample C2 Blood P. A. presumed corpse mother Burned n. 3 |
Sample D4 Tooth 41 Cadaver Bag 2 (P.M.) | Sample D2 Blood B. R. presumed mother corpse Bag 2 |
Sample D5 Tooth 13 cadaver Sacca n. 1 bis (P.M.) | |
Sample D6 Corpse foot fragment Bag 8 (P.M.) | |
Sample D6B Corpse foot fragment Bag n. 10 (P.M.) | |
Sample D7 Fragment of humerus corpse Sacca n. 22 (P.M.) | |
Sample E1 Corpse blood Bag 6 (P.G.) | Sample E2 Blood F.E. presumed corpse mother Bag 6 |
Sample F1 Blood corpse Bag n.16 (D.C.V.) | Sample F2 Blood D.C.E. alleged corpse brother Bag 16 |
Sample G1 Corpse blood Bag 1 (N.K.P.) | Sample G2 Blood presumed corpse mother Bag 1 (K.D.) |
Sample G3 Blood presumed corpse father Bag n. 1 (R.) | |
Sample G5 Foot fragment Bag 12 (B. H.) | Sample H3 Toothbrush B.H. |
Sample I1 Fragment of humerus corpse Bag 14 (B.H.) | |
Sample L Tooth 48 Bag 24 (B. H.) | |
Sample H1 Corpse blood Bag n. 7 (M. S.) | Sample I2 razor blade M.S. |
Genetic Markers | Sample Genotype C1 | Sample Genotype C2 | Sample Genotype D2 | Sample Genotype D4 | Sample Genotype D5 | Sample Genotype D6 | Sample Genotype D6B | Sample Genotype D7 |
---|---|---|---|---|---|---|---|---|
D8S1179 | 13/14 | 13/14 | 8/16 | 8/13 | 8/13 | 8/13 | 8/13 | 8/13 |
D21S11 | 29/30 | 29/29 | 31.2/31.2 | 31.2/32.2 | 31.2/32.2 | 31.2/32.2 | 31.2/32.2 | 31.2/32.2 |
D7S820 | 9/12 | 9/11 | 10/10 | 10/10 | 10/10 | 10/10 | 10/10 | 10/10 |
CSF1P0 | 10/12 | 10/10 | 10/13 | 10/10 | 10/10 | 10/10 | 10/10 | 10/10 |
D3S1358 | 15/16 | 14/15 | 18/18 | 17/18 | 17/18 | 17/18 | 17/18 | 17/18 |
TH01 | 6/10 | 9/10 | 8/9 | 8/9 | 8/9 | 8/9 | 8/9 | 8/9 |
D13S317 | 12/12 | 11/12 | 9/10 | 10/12 | 10/12 | 10/12 | 10/12 | 10/12 |
D16S539 | 12/13 | 11/13 | 11/13 | 9/11 | 9/11 | 9/11 | 9/11 | 9/11 |
D2S1338 | 17/23 | 17/25 | 17/25 | 24/25 | 24/25 | 24/25 | 24/25 | 24/25 |
D19S433 | 13/14 | 13/14 | 14/15 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15 |
VWA | 15/17 | 17/18 | 17/17 | 16/17 | 16/17 | 16/17 | 16/17 | 16/17 |
TPOX | 9/11 | 8/11 | 8/11 | 8/11 | 8/11 | 8/11 | 8/11 | 8/11 |
D18S51 | 13/14 | 14/16 | 13/16 | 16/16 | 16/16 | 16/16 | 16/16 | 16/16 |
D5S818 | 9/11 | 11/13 | 10/12 | 12/13 | 12/13 | 12/13 | 12/13 | 12/13 |
FGA | 21/22 | 22/23 | 23/24 | 23/23 | 23/23 | 23/23 | 23/23 | 23/23 |
Amelogenina | X/Y | X/X | X/X | X/Y | X/Y | X/Y | X/Y | X/Y |
Genetic Markers | Sample Genotype E1 | Sample Genotype E2 | Sample Genotype F1 | Sample Genotype F2 | Sample Genotype G1 | Sample Genotype G2 | Sample Genotype G3 |
---|---|---|---|---|---|---|---|
D8S1179 | 13/15 | 13/13 | 11/14 | 14/14 | 12/14 | 12/14 | 12/14 |
D21S11 | 28/30.2 | 28/30.2 | 27/29 | 27/32 | 29/31.2 | 28/29 | 31.2/32.2 |
D7S820 | 10/11 | 8/10 | 10/10 | 10/11 | 8/11 | 8/11 | 8/10 |
CSF1P0 | 10/12 | 11/12 | 10/12 | 10/12 | 7/11 | 7/12 | 10/11 |
D3S1358 | 17/18 | 16/18 | 16/18 | 17/18 | 15/17 | 15/18 | 15/17 |
TH01 | 6/9 | 6/9 | 6/6 | 6/7 | 6/7 | 6/6 | 7/8 |
D13S317 | 10/10 | 9/10 | 8/12 | 11/12 | 11/12 | 12/12 | 11/12 |
D16S539 | 11/12 | 11/12 | 12/12 | 12/12 | 11/12 | 11/12 | 11/13 |
D2S1338 | 16/18 | 18/19 | 17/22 | 17/22 | 18/20 | 18/18 | 19/20 |
D19S433 | 13/16 | 14.2/16 | 12/14 | 12/14 | 13/14 | 13/14 | 14/14 |
VWA | 16/16 | 16/17 | 16/19 | 14/16 | 17/19 | 16/19 | 16/17 |
TPOX | 8/9 | 9/10 | 8/9 | 8/9 | 10/11 | 11/12 | 10/12 |
D18S51 | 14/19 | 12/14 | 15/16 | 15/16 | 15/16 | 16/16 | 15/19 |
D5S818 | 10/11 | 10/11 | 12/13 | 12/12 | 10/12 | 12/12 | 10/11 |
FGA | 19/25 | 19/21 | 22/24 | 20/20 | 20/23 | 23/26 | 20/25 |
Amelogenina | X/Y | X/Y | X/Y | X/Y | X/Y | X/X | X/Y |
Genetic Markers | Sample Genotype G5 | Sample Genotype H3 | Sample Genotype I1 | Sample Genotype L | Sample Genotype H1 | Sample Genotype I2 |
---|---|---|---|---|---|---|
D8S1179 | 10/15 | 10/15 | 10/15 | 10/15 | 11/14 | 11/14 |
D21S11 | 28/31.2 | 28/31.2 | 28/31.2 | 28/31.2 | 28/29 | 28/29 |
D7S820 | 12/13 | 12/13 | // | // | 9/9 | 9/9 |
CSF1P0 | 11/11 | 11/11 | // | // | 11/12 | 11/12 |
D3S1358 | 15/19 | 15/19 | 15/19 | 15/19 | 16/18 | 16/1 |
TH01 | 6/9 | 6/9 | 6/9 | 6/9 | 9.3/9.3 | 9.3/9.3 |
D13S317 | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 |
D16S539 | 9/12 | 9/12 | 9/12 | 9/12 | 11/11 | 11/11 |
D2S1338 | 19/19 | 19/19 | 19/19 | 19/19 | 17/17 | 17/17 |
D19S433 | 12.2/14 | 12.2/14 | 12.2/14 | 12.2/14 | 15.2/16.2 | 15.2/16.2 |
VWA | 15/17 | 15/17 | 15/17 | 15/17 | 17/17 | 17/17 |
TPOX | 8/9 | 8/9 | 8/9 | 8/9 | 11/11 | 11/11 |
D18S51 | 16/18 | 16/18 | // | // | 16/16 | 16/16 |
D5S818 | 11/11 | 11/11 | 11/11 | 11/11 | 11/13 | 11/13 |
FGA | 20/22 | 20/22 | // | 20/22 | 23/23 | 23/23 |
Amelogenina | X/Y | X/Y | X/Y | X/Y | X/Y | X/Y |
Genetic Markers | Sample F1 | Sample F2 |
---|---|---|
DYS456 | 15 | 15 |
DYS389I | 12 | 12 |
DYS390 | 22 | 22 |
DYS389II | // | 29 |
DYS458 | // | // |
DYS19 | // | 13 |
DYS385 | // | 12.15 |
DYS393 | 11 | 11 |
DYS391 | 11 | 11 |
DYS439 | // | 14 |
DYS635 | 21 | 21 |
DYS392 | // | 16 |
Y-GATA | 11 | 11 |
DYS437 | 15 | 15 |
DYS438 | // | 10 |
DYS448 | // | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrone, M.; Tarantino, F.; Stellacci, A.; Baldassarra, S.L.; Cazzato, G.; Vinci, F.; Dell’Erba, A. Forensic Analysis and Identification Processes in Mass Disasters: Explosion of Gun Powder in the Fireworks Factory. Molecules 2022, 27, 244. https://doi.org/10.3390/molecules27010244
Marrone M, Tarantino F, Stellacci A, Baldassarra SL, Cazzato G, Vinci F, Dell’Erba A. Forensic Analysis and Identification Processes in Mass Disasters: Explosion of Gun Powder in the Fireworks Factory. Molecules. 2022; 27(1):244. https://doi.org/10.3390/molecules27010244
Chicago/Turabian StyleMarrone, Maricla, Francesca Tarantino, Alessandra Stellacci, Stefania Lonero Baldassarra, Gerardo Cazzato, Francesco Vinci, and Alessandro Dell’Erba. 2022. "Forensic Analysis and Identification Processes in Mass Disasters: Explosion of Gun Powder in the Fireworks Factory" Molecules 27, no. 1: 244. https://doi.org/10.3390/molecules27010244
APA StyleMarrone, M., Tarantino, F., Stellacci, A., Baldassarra, S. L., Cazzato, G., Vinci, F., & Dell’Erba, A. (2022). Forensic Analysis and Identification Processes in Mass Disasters: Explosion of Gun Powder in the Fireworks Factory. Molecules, 27(1), 244. https://doi.org/10.3390/molecules27010244