Short and Long Time Bloodstains Age Determination by Colorimetric Analysis: A Pilot Study
Abstract
:1. Introduction
2. Results
Bloodstain Age Estimation Models
3. Discussion
4. Materials and Methods
4.1. Preparation of the Blood Samples
4.2. Colorimetric Analysis of the Blood Samples
4.3. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bremmer, R.H.; De Bruin, K.G.; Van Gemert, M.J.C.; Van Leeuwen, T.G.; Aalders, M.C.G. Forensic quest for age determination of bloodstains. Forensic Sci. Int. 2012, 216, 1–11. [Google Scholar] [CrossRef]
- Krassowski, K. Challenges of dating of fingerprints and bloodstains. J. Mod. Sci. 2018, 38, 209–219. [Google Scholar] [CrossRef]
- Bremmer, R.H.; de Bruin, D.M.; de Joode, M.; Buma, W.J.; van Leeuwen, T.G.; Aalders, M.C.G. Biphasic oxidation of Oxy-Hemoglobin in bloodstains. PLoS ONE 2011, 6, e21845. [Google Scholar] [CrossRef]
- Tsutsumi, A.; Yamamoto, Y.; Ishizu, H. Determination of the age of bloodstains by enzyme activities in blood cells. Jpn. J. Leg. Med. 1983, 37, 770–776. [Google Scholar]
- Strasser, S.; Zink, A.; Kada, G.; Hinterdorfer, P.; Peschel, O.; Heckl, W.M.; Nerlich, A.G.; Thalhammer, S. Age determination of blood spots in forensic medicine by force spectroscopy. Forensic Sci. Int. 2007, 170, 8–14. [Google Scholar] [CrossRef]
- Bauer, M.; Polzin, S.; Patzelt, D. Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: A possible indicator of the age of bloodstains? Forensic Sci. Int. 2003, 138, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, K.; Ballantyne, K.N.; Kayser, M. Estimating trace deposition time with circadian biomarkers: A prospective and versatile tool for crime scene reconstruction. Int. J. Legal Med. 2010, 124, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Menżyk, A.; Damin, A.; Martyna, A.; Alladio, E.; Vincenti, M.; Martra, G.; Zadora, G. Toward a novel framework for bloodstains dating by Raman spectroscopy: How to avoid sample photodamage and subsampling errors. Talanta 2020, 209, 120565. [Google Scholar] [CrossRef] [PubMed]
- Zadora, G.; Menżyk, A. In the pursuit of the holy grail of forensic science–Spectroscopic studies on the estimation of time since deposition of bloodstains. TrAC-Trends Anal. Chem. 2018, 105, 137–165. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, Y.; Wang, Q.; Li, B.; Huang, P.; Wang, Z. Estimation of the age of human bloodstains under the simulated indoor and outdoor crime scene conditions by ATR-FTIR spectroscopy. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Lu, Z.; DeJong, S.A.; Cassidy, B.M.; Belliveau, R.G.; Myrick, M.L.; Morgan, S.L. Detection Limits for Blood on Fabrics Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy and Derivative Processing. Appl. Spectrosc. 2017, 71, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Mc Shine, S.; Suhling, K.; Beavil, A.; Daniel, B.; Frascione, N. The applicability of fluorescence lifetime to determine the time since the deposition of biological stains. Anal. Methods 2017, 9, 2007–2013. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Achilefu, S.; Berezin, M.Y. Dating bloodstains with fluorescence lifetime measurements. Chemistry 2012, 18, 1303–1305. [Google Scholar] [CrossRef] [Green Version]
- Muro, C.K.; Doty, K.C.; Bueno, J.; Halámková, L.; Lednev, I.K. Vibrational spectroscopy: Recent developments to revolutionize forensic science. Anal. Chem. 2015, 87, 306–327. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sharma, K.; Sharma, V. Bloodstain age estimation through infrared spectroscopy and Chemometric models. Sci. Justice 2020, 60, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Choi, S.; Yang, J.S.; Song, J.; Choi, J.S.; Jung, H. Il Smart Forensic Phone: Colorimetric analysis of a bloodstain for age estimation using a smartphone. Sens. Actuators B Chem. 2017, 243, 221–225. [Google Scholar] [CrossRef]
- Choi, W.; Shin, J.; Hyun, K.A.; Song, J.; Jung, H. Il Highly sensitive and accurate estimation of bloodstain age using smartphone. Biosens. Bioelectron. 2019, 130, 414–419. [Google Scholar] [CrossRef]
- Ballester, P.J.; Mitchell, J.B.O. Comments on “leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets”: Significance for the validation of scoring functions. J. Chem. Inf. Model. 2011, 51, 1739–1741. [Google Scholar] [CrossRef]
- Li, B.; Beveridge, P.; O’Hare, W.T.; Islam, M. The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis. Sci. Justice 2013, 53, 270–277. [Google Scholar] [CrossRef]
- Doty, K.C.; McLaughlin, G.; Lednev, I.K. A Raman “spectroscopic clock” for bloodstain age determination: The first week after deposition. Anal. Bioanal. Chem. 2016, 408, 3993–4001. [Google Scholar] [CrossRef] [PubMed]
- Doty, K.C.; Muro, C.K.; Lednev, I.K. Predicting the time of the crime: Bloodstain aging estimation for up to two years. Forensic Chem. 2017, 5, 1–7. [Google Scholar] [CrossRef]
- Williams, C.K.I. Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. J. Am. Stat. Assoc. 2003, 98, 489. [Google Scholar] [CrossRef]
- Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. London Edinburgh Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
Period | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
24 h | 60 days | |||||||||||
Training | Test | Training | Test | |||||||||
Prediction Models | r | MAD | CCR | r | MAD | CCR | r | MAD | CCR | r | MAD | CCR |
MLR | 0.902 (0.009) | 2.70(0.25) | 59.1 (6.69) | 0.743 (0.041) | 3.82 (0.32) | 53.8 (4.4) | 0.964 (0.003) | 3.80 (0.19) | 49.5 (2.8) | 0.957 (0.005) | 3.92 (0.35) | 52.6 (6.0) |
MQR | 0.967 (0.007) | 1.54(0.16) | 87.6 (2.23) | 0.281 (0.193) | 8.93 (5.79) | 64.7 (6.66) | 0.993 (0.001) | 1.72 (0.17) | 82.8 (3.9) | 0.820 (0.135) | 3.48 (0.65) | 64.7 (4.1) |
SVMr | 0.982 (0.006) | 1.12(0.18) | 94.1 (2.75) | 0.933 (0.012) | 2.29 (0.27) | 71.2 (5.6) | 0.995 (0.001) | 1.56 (0.10) | 91.5 (2.8) | 0.982 (0.003) | 3.05 (0.18) | 60.6 (3.7) |
SVMp | 0.961 (0.006) | 1.69(0.19) | 80.0 (2.46) | 0.942 (0.013) | 2.32 (0.28) | 69.7 (6.5) | 0.988 (0.003) | 2.24 (0.36) | 74.3 (9.0) | 0.974 (0.002) | 3.17 (0.09) | 58.7 (3.6) |
PCs | 0.682 (0.010) | 4.85 (0.11) | 29.7 (2.83) | 0.687 (0.005) | 4.80 (0.09) | 32.9 (4.0) | 0.944 (0.008) | 4.79 (0.42) | 41.1 (5.7) | 0.941 (0.008) | 4.99 (0.25) | 43.2 (4.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrone, A.; La Russa, D.; Montesanto, A.; Lagani, V.; La Russa, M.F.; Pellegrino, D. Short and Long Time Bloodstains Age Determination by Colorimetric Analysis: A Pilot Study. Molecules 2021, 26, 6272. https://doi.org/10.3390/molecules26206272
Marrone A, La Russa D, Montesanto A, Lagani V, La Russa MF, Pellegrino D. Short and Long Time Bloodstains Age Determination by Colorimetric Analysis: A Pilot Study. Molecules. 2021; 26(20):6272. https://doi.org/10.3390/molecules26206272
Chicago/Turabian StyleMarrone, Alessandro, Daniele La Russa, Alberto Montesanto, Vincenzo Lagani, Mauro F. La Russa, and Daniela Pellegrino. 2021. "Short and Long Time Bloodstains Age Determination by Colorimetric Analysis: A Pilot Study" Molecules 26, no. 20: 6272. https://doi.org/10.3390/molecules26206272
APA StyleMarrone, A., La Russa, D., Montesanto, A., Lagani, V., La Russa, M. F., & Pellegrino, D. (2021). Short and Long Time Bloodstains Age Determination by Colorimetric Analysis: A Pilot Study. Molecules, 26(20), 6272. https://doi.org/10.3390/molecules26206272