Monte Carlo Method and GA-MLR-Based QSAR Modeling of NS5A Inhibitors against the Hepatitis C Virus
Abstract
:1. Introduction
2. Results and Discussion
2.1. SMILES-Based QSAR Model
2.2. GA-MLR QSAR Model
2.3. Mechanistic Interpretation
2.4. ADMET Study
3. Materials and Methods
3.1. Data Preparation
3.2. SMILES-Based QSAR Model Construction
3.3. GA-MLR QSAR Construction
3.4. QSAR Models Validation
3.4.1. Validation of GA-MLR QSAR Model
3.4.2. Validation of CORAL QSAR Model
3.5. Applicability Domain
3.6. ADMET Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- De Oliveria Andrade, L.; D’oliveira, A.; Melo, R.C.; De Souza, E.C.; Silva, C.A.C.; Parana, R. Association between hepatitis C and hepatocellular carcinoma. J. Glob. Infect. Dis. 2009, 1, 33. [Google Scholar] [CrossRef] [PubMed]
- Davis, G. Projecting future complications of chronic hepatitis C in the United States. Liver Transpl. 2003, 9, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Hepatitis, C. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c (accessed on 10 December 2021).
- Moradpour, D.; Penin, F. Hepatitis C Virus Proteins: From Structure to Function. Curr. Top. Microbiol. Immunol. 2013, 369, 113–142. [Google Scholar] [CrossRef]
- Gudi, S.K.; Chhabra, M.; Rashid, M. Genotype-8: A Modern Family Member of Hepatitis C Virus. Indian J. Pharm. Educ. Res. 2019, 53, s518–s521. [Google Scholar] [CrossRef]
- Venkatesan, A.; Prabhu Dass J, F. Review on chemogenomic approaches towards hepatitis C viral targets. J. Cell. Biochem. 2019, 120, 12167–12181. [Google Scholar] [CrossRef] [PubMed]
- Baumert, T.F.; Berg, T.; Lim, J.K.; Nelson, D.R. Status of Direct-Acting Antiviral Therapy for Hepatitis C Virus Infection and Remaining Challenges. Gastroenterology 2019, 156, 431–445. [Google Scholar] [CrossRef]
- Das, D.; Pandya, M. Recent Advancement of Direct-acting Antiviral Agents (DAAs) in Hepatitis C Therapy. Mini-Rev. Med. Chem. 2018, 18, 584–596. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Peng, E.; Huang, N.; Huang, Q.; Huq, A.; Lau, M.; Colonno, R.; Li, L. Discovery of ravidasvir (PPI-668) as a potent pan-genotypic HCV NS5A inhibitor. Bioorganic Med. Chem. Lett. 2016, 26, 4508–4512. [Google Scholar] [CrossRef]
- Pawlotsky, J.-M. NS5A inhibitors in the treatment of hepatitis C. J. Hepatol. 2013, 59, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Nakamoto, S.; Kanda, T.; Shirasawa, H.; Yokosuka, O. Antiviral therapies for chronic hepatitis C virus infection with cirrhosis. World J. Hepatol. 2015, 7, 1133. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Yoshida, K. Development of QSAR models for prediction of fish bioconcentration factors using physicochemical properties and molecular descriptors with machine learning algorithms. Ecol. Inform. 2021, 63, 101285. [Google Scholar] [CrossRef]
- Hdoufane, I.; Bjij, I.; Oubahmane, M.; Soliman, M.E.; Villemin, D.; Cherqaoui, D. In silico design and analysis of NS4B inhibitors against hepatitis C virus. J. Biomol. Struct. Dyn. 2020, 40, 1915–1929. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Akagi, Y.; Terui, T.; Fujioka, S.; Komoda, Y.; Kinoshita, W.; Maeda, K.; Ukaji, Y.; Inaba, T. Discovery of a novel unsymmetrical structural class of HCV NS5A inhibitors with low picomolar antiviral activity. Bioorganic Med. Chem. Lett. 2020, 30, 126932. [Google Scholar] [CrossRef] [PubMed]
- Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269–276. [Google Scholar] [CrossRef]
- Ojha, P.K.; Mitra, I.; Das, R.N.; Roy, K. Further exploring rm2 metrics for validation of QSPR models. Chemom. Intell. Lab. Syst. 2011, 107, 194–205. [Google Scholar] [CrossRef]
- Chirico, N.; Gramatica, P. Real external predictivity of QSAR models: How to evaluate It? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J. Chem. Inf. Modeling 2011, 51, 2320–2335. [Google Scholar] [CrossRef]
- Chirico, N.; Gramatica, P. Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J. Chem. Inf. Modeling 2012, 52, 2044–2058. [Google Scholar] [CrossRef]
- Nakamura, H.; Fujioka, S.; Terui, T.; Okuda, S.; Kondo, K.; Tamatani, Y.; Akagi, Y.; Komoda, Y.; Kinoshita, W.; Ito, S.; et al. Orally bioavailable HCV NS5A inhibitors of unsymmetrical structural class. Bioorganic Med. Chem. Lett. 2020, 30, 127361. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Fox, Gaussian 09, Wallingford C.T. 2009. Available online: http://gaussian.com/ (accessed on 18 February 2022).
- Chemical Structure Drawing Software |ACD/ChemSketch. Available online: https://www.acdlabs.com/products/draw_nom/draw/chemsketch/ (accessed on 15 February 2022).
- Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A.K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V.V.; Tanchuk, V.Y.; et al. Online chemical modeling environment (OCHEM): Web platform for data storage, model development and publishing of chemical information. J. Comput. Aided. Mol. Des. 2011, 25, 533–554. [Google Scholar] [CrossRef] [Green Version]
- CORAL/Free Software for QSAR and nanoQSAR. Available online: http://www.insilico.eu/coral/ (accessed on 9 December 2021).
- Kumar, P.; Kumar, A.; Sindhu, J.; Lal, S. QSAR Models for Nitrogen Containing Monophosphonate and Bisphosphonate Derivatives as Human Farnesyl Pyrophosphate Synthase Inhibitors Based on Monte Carlo Method. Drug Res. 2019, 69, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Duhan, M.; Singh, R.; Devi, M.; Sindhu, J.; Bhatia, R.; Kumar, A.; Kumar, P. Synthesis, molecular docking and QSAR study of thiazole clubbed pyrazole hybrid as α-amylase inhibitor. J. Biomol. Struct. Dyn. 2021, 39, 91–107. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, A. Monte Carlo Method Based QSAR Studies of Mer Kinase Inhibitors in Compliance with OECD Principles. Drug Res. 2018, 68, 189–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achary, P.; Toropova, A.; Toropov, A. Combinations of graph invariants and attributes of simplified molecular input-line entry system (SMILES) to build up models for sweetness. Food Res. Int. 2019, 122, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, A. CORAL: QSAR models of CB1 cannabinoid receptor inhibitors based on local and global SMILES attributes with the index of ideality of correlation and the correlation contradiction index. Chemom. Intell. Lab. Syst. 2020, 200, 103982. [Google Scholar] [CrossRef]
- Duhan, M.; Kumar, P.; Sindhu, J.; Singh, R.; Devi, M.; Kumar, A.; Kumar, R.; Lal, S. Exploring biological efficacy of novel benzothiazole linked 2,5-disubstituted-1,3,4-oxadiazole hybrids as efficient α-amylase inhibitors: Synthesis, characterization, inhibition, molecular docking, molecular dynamics and Monte Carlo based QSAR studies. Comput. Biol. Med. 2021, 138, 104876. [Google Scholar] [CrossRef] [PubMed]
- Toropov, A.; Raška, I.; Toropova, A.P.; Raškova, M.; Veselinović, A.M.; Veselinović, J.B. The study of the index of ideality of correlation as a new criterion of predictive potential of QSPR/QSAR-models. Sci. Total Environ. 2019, 659, 1387–1394. [Google Scholar] [CrossRef]
- Toropova, A.P.; Toropov, A.A. The index of ideality of correlation: Improvement of models for toxicity to algae. Nat. Prod. Res. 2019, 33, 2200–2207. [Google Scholar] [CrossRef]
- Toropova, A.P.; Toropov, A. The index of ideality of correlation: A criterion of predictability of QSAR models for skin permeability? Sci. Total Environ. 2017, 586, 466–472. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A.; Sindhu, J. Design and development of novel focal adhesion kinase (FAK) inhibitors using Monte Carlo method with index of ideality of correlation to validate QSAR. SAR QSAR Environ. Res. 2019, 30, 63–80. [Google Scholar] [CrossRef]
- Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem. 2013, 34, 2121–2132. [Google Scholar] [CrossRef]
- Gramatica, P.; Cassani, S.; Chirico, N. QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J. Comput. Chem. 2014, 35, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Gramatica, P. Principles of QSAR models validation: Internal and external. QSAR Comb. Sci. 2007, 26, 694–701. [Google Scholar] [CrossRef]
- Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C.P.; Agrawal, R.K. Validation of QSAR Models—Strategies and Importance. Int. J. Drug Des. Discov. 2011, 2, 511–519. [Google Scholar]
- Roy, P.P.; Paul, S.; Mitra, I.; Roy, K. On Two Novel Parameters for Validation of Predictive QSAR Models. Molecules 2009, 14, 1660–1701. [Google Scholar] [CrossRef]
- Roy, K.; Kar, S. The rm2 metrics and regression through origin approach: Reliable and useful validation tools for predictive QSAR models (Commentary on ’Is regression through origin useful in external validation of QSAR models?’). Eur. J. Pharm. Sci. 2014, 62, 111–114. [Google Scholar] [CrossRef]
- Toropov, A.; Toropova, A.; Lombardo, A.; Roncaglioni, A.; Benfenati, E.; Gini, G. CORAL: Building up the model for bioconcentration factor and defining it’s applicability domain. Eur. J. Med. Chem. 2011, 46, 1400–1403. [Google Scholar] [CrossRef]
- Dimitrov, S.; Dimitrova, G.; Pavlov, T.; Dimitrova, N.; Patlewicz, G.; Niemela, J.; Mekenyan, O. A stepwise approach for defining the applicability domain of SAR and QSAR models. J. Chem. Inf. Modeling 2005, 45, 839–849. [Google Scholar] [CrossRef]
- Guan, L.; Yang, H.; Cai, Y.; Sun, L.; Di, P.; Li, W.; Liu, G.; Tang, Y. ADMET-score—A comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm 2019, 10, 148–157. [Google Scholar] [CrossRef]
- Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev. 2015, 86, 2–10. [Google Scholar] [CrossRef]
- Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019, 35, 1067–1069. [Google Scholar] [CrossRef]
- Molecular Properties Prediction—Osiris Property Explorer. Available online: https://www.organic-chemistry.org/prog/peo/ (accessed on 10 December 2021).
Split | Set | N | R2 | CCC | IIC | Q2 | s | MAE | F | Equation | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Training | 13 | 0.872 | 0.931 | 0.800 | 0.812 | 0.671 | 0.543 | 75 | 0.820 | pEC50 = 0.655 (±0.344) + 0.101 (±0.004) × DCW(1,30) | |||||
Inv.Train | 13 | 0.899 | 0.921 | 0.565 | 0.867 | 0.580 | 0.469 | 98 | 0.845 | |||||||
Calibration | 5 | 0.964 | 0.906 | 0.982 | 0.893 | 0.909 | 0.853 | 0.942 | 0.456 | 0.367 | 81 | 0.798 | 0.615 | 0.156 | ||
Validation | 5 | 0.891 | 0.853 | 0.824 | 0.710 | 0.685 | 0.592 | 0.194 | ||||||||
2 | Training | 13 | 0.889 | 0.941 | 0.314 | 0.856 | 0.561 | 0.388 | 81 | 0.843 | pEC50 = −0.094 (±0.234) + 0.084 (±0.002) × DCW(1,30) | |||||
Inv.Train | 13 | 0.937 | 0.962 | 0.519 | 0.915 | 0.517 | 0.392 | 166 | 0.905 | |||||||
Calibration | 5 | 0.989 | 0.963 | 0.994 | 0.975 | 0.927 | 0.927 | 0.950 | 0.438 | 0.342 | 290 | 0.858 | 0.695 | 0.094 | ||
Validation | 5 | 0.860 | 0.904 | 0.691 | 0.566 | 0.592 | 0.767 | 0.132 | ||||||||
3 | Training | 13 | 0.873 | 0.932 | 0.801 | 0.837 | 0.634 | 0.498 | 76 | 0.848 | pEC50 = 0.532 (±0.184) + 0.103 (±0.003) × DCW(2,30) | |||||
Inv.Train | 13 | 0.865 | 0.871 | 0.581 | 0.829 | 0.685 | 0.510 | 71 | 0.805 | |||||||
Calibration | 5 | 0.975 | 0.960 | 0.987 | 0.909 | 0.937 | 0.935 | 0.949 | 0.428 | 0.315 | 120 | 0.851 | 0.755 | 0.072 | ||
Validation | 5 | 0.990 | 0.911 | 0.719 | 0.942 | 0.532 | 0.728 | 0.076 | ||||||||
4 | Training | 13 | 0.941 | 0.970 | 0.831 | 0.923 | 0.390 | 0.301 | 178 | 0.894 | pEC50 = 0.457 (±0.157) + 0.149 (±0.003) × DCW(1,30) | |||||
Inv.Train | 13 | 0.843 | 0.914 | 0.601 | 0.801 | 0.650 | 0.483 | 59 | 0.807 | |||||||
Calibration | 5 | 0.924 | 0.945 | 0.961 | 0.637 | 0.908 | 0.906 | 0.897 | 0.568 | 0.412 | 37 | 0.657 | 0.752 | 0.101 | ||
Validation | 5 | 0.943 | 0.892 | 0.317 | 0.399 | 0.647 | 0.777 | 0.081 |
No. | Sak | CWs Probe 1 | CWs Probe 2 | CWs Probe 3 | NT a | NiT b | NC c | Defect [SAk] d |
---|---|---|---|---|---|---|---|---|
Promoter of endpoint increase | ||||||||
1 | C...(....... | 0.137 | 0.188 | 0.464 | 13 | 13 | 5 | 0.000 |
2 | C...O...C... | 2.041 | 1.674 | 2.516 | 6 | 8 | 3 | 0.015 |
3 | O........... | 1.351 | 1.397 | 1.810 | 13 | 13 | 5 | 0.000 |
4 | N...(....... | 0.054 | 0.063 | 0.110 | 13 | 13 | 5 | 0.000 |
5 | O...C...C... | 0.093 | 0.324 | 0.338 | 6 | 11 | 4 | 0.034 |
6 | N...C...1... | 0.222 | 0.101 | 0.043 | 7 | 6 | 3 | 0.006 |
7 | N...C....... | 0.423 | 0.479 | 0.573 | 13 | 13 | 5 | 0.000 |
8 | C...N...C... | 0.648 | 0.821 | 0.356 | 9 | 9 | 3 | 0.008 |
9 | C...C....... | 0.325 | 0.382 | 0.273 | 13 | 13 | 5 | 0.000 |
10 | N........... | 0.330 | 0.111 | 0.147 | 13 | 13 | 5 | 0.000 |
11 | N...C...C... | 0.798 | 0.643 | 0.829 | 11 | 13 | 5 | 0.009 |
12 | Nmax.8...... | 0.798 | 0.510 | 0.590 | 2 | 2 | 0 | 1.000 |
13 | Omax.6...... | 0.169 | 0.527 | 0.871 | 2 | 5 | 2 | 0.061 |
Promoter of endpoint decrease | ||||||||
1 | 1........... | −0.1812 | −0.0120 | −0.0134 | 13 | 13 | 5 | 0.000 |
2 | =...O...(... | −0.0579 | −0.1326 | −0.2212 | 13 | 13 | 5 | 0.000 |
3 | C...=....... | −0.2642 | −0.0515 | −0.1487 | 13 | 13 | 5 | 0.000 |
4 | O...(....... | −1.1001 | −0.8219 | −1.2695 | 13 | 13 | 5 | 0.000 |
Designed Compound | Promoters of Endpoint Increase | pEC50 (CORAL) | pEC50 (GA-MLR) |
---|---|---|---|
25 | 9.68 | 10.01 | |
25a |
| 9.88 | 10.15 |
25b |
| 11.78 | 10.13 |
25c |
| 12.18 | 11.18 |
25d |
| 12.27 | 11.23 |
25e |
| 11.95 | 10.71 |
25f |
| 12.05 | 12.28 |
25g |
| 11.69 | 10.04 |
25h |
| 12.19 | 11.44 |
Pharmacokinetic Properties | MW (g·mol−1) | Lipophilicity (logP) | Solubility log(mol/L) | TPSA (Å2) | HBA | HBD | BBB | HIA |
---|---|---|---|---|---|---|---|---|
25 | 835.50 | 6.71 | −2.88 | 157.99 | 13 | 4 | 0.012 | 0.010 |
25a | 849.52 | 6.67 | −3.11 | 157.99 | 13 | 4 | 0.018 | 0.010 |
25b | 863.53 | 6.95 | −3.20 | 157.99 | 13 | 4 | 0.015 | 0.009 |
25c | 865.51 | 5.37 | −3.32 | 167.22 | 14 | 4 | 0.009 | 0.012 |
25d | 879.53 | 5.68 | −3.49 | 167.22 | 14 | 4 | 0.009 | 0.007 |
25e | 864.53 | 4.73 | −3.12 | 170.02 | 14 | 5 | 0.013 | 0.189 |
25f | 878.54 | 4.85 | −3.06 | 170.02 | 14 | 5 | 0.010 | 0.078 |
25g | 878.54 | 5.39 | −3.06 | 184.01 | 14 | 6 | 0.023 | 0.049 |
25h | 894.54 | 4.26 | −3.28 | 193.24 | 15 | 6 | 0.015 | 0.035 |
Compound | P | pEC50 | ||
1 t | 10.01 | |||
2 | 5.55 | |||
Compound | R1 | pEC50 | ||
3 t | 5.62 | |||
4 t | 5.89 | |||
5 | 9.16 | |||
6 | 7.25 | |||
7 | 6.21 | |||
8 t | 7.36 | |||
9 | 6.88 | |||
10 | 6.61 | |||
11 | 7.00 | |||
12 t | 7.09 | |||
13 | 8.96 | |||
14 | 6.45 | |||
15 | 6.45 | |||
Compound | R1 | R2 | pEC50 | |
16 | 7.47 | |||
17 | 8.46 | |||
18 | 8.09 | |||
19 | 8.64 | |||
20 | 10.41 | |||
Compound | P | pEC50 | ||
21 | 5 | |||
22 | 5.55 | |||
Compound | R1 | L | R2 | pEC50 |
23 t | 9.82 | |||
24 | 9.77 | |||
25 | 10.41 | |||
26 | 9.46 | |||
27 | 9.01 | |||
Compound | R1 | R3 | pEC50 | |
28 t | 8.47 | |||
29 | 9.41 | |||
30 t | 8.68 | |||
31 | 9.57 | |||
32 | 9.74 | |||
33 t | 9.89 | |||
34 t | 9.92 | |||
35 | 10.23 | |||
36 (Daclatasvir) | 10.30 |
SMILES Notation | Description |
---|---|
SK | One symbol or two symbols that cannot be examined separately |
SSK | Combination of two SMILES atoms |
SSSK | Combination of three SMILES atoms |
HARD | Existence of some chemical element |
Cmax | Number of rings |
Nmax | Number of nitrogen atoms |
Omax | Number of oxygen atoms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liman, W.; Oubahmane, M.; Hdoufane, I.; Bjij, I.; Villemin, D.; Daoud, R.; Cherqaoui, D.; El Allali, A. Monte Carlo Method and GA-MLR-Based QSAR Modeling of NS5A Inhibitors against the Hepatitis C Virus. Molecules 2022, 27, 2729. https://doi.org/10.3390/molecules27092729
Liman W, Oubahmane M, Hdoufane I, Bjij I, Villemin D, Daoud R, Cherqaoui D, El Allali A. Monte Carlo Method and GA-MLR-Based QSAR Modeling of NS5A Inhibitors against the Hepatitis C Virus. Molecules. 2022; 27(9):2729. https://doi.org/10.3390/molecules27092729
Chicago/Turabian StyleLiman, Wissal, Mehdi Oubahmane, Ismail Hdoufane, Imane Bjij, Didier Villemin, Rachid Daoud, Driss Cherqaoui, and Achraf El Allali. 2022. "Monte Carlo Method and GA-MLR-Based QSAR Modeling of NS5A Inhibitors against the Hepatitis C Virus" Molecules 27, no. 9: 2729. https://doi.org/10.3390/molecules27092729
APA StyleLiman, W., Oubahmane, M., Hdoufane, I., Bjij, I., Villemin, D., Daoud, R., Cherqaoui, D., & El Allali, A. (2022). Monte Carlo Method and GA-MLR-Based QSAR Modeling of NS5A Inhibitors against the Hepatitis C Virus. Molecules, 27(9), 2729. https://doi.org/10.3390/molecules27092729