Skeletal Torsion Tunneling and Methyl Internal Rotation: The Coupled Large Amplitude Motions in Phenyl Acetate
Abstract
:1. Introduction
2. Results
2.1. Quantum Chemical Calculations
2.2. Rotational Spectroscopy
2.2.1. Experimental Setups
2.2.2. Assignment of the vt = 0, A Species (A0)
2.2.3. Assignment of the vt = 1, A Species (A1)
- (i)
- the overall rotation including quartic centrifugal distortion constants:
- (ii)
- the torsional splitting between the and the energy levels:
- (iii)
- and the Coriolis interaction:
2.2.4. Assignment of the vt = 0, E Species (E0)
2.2.5. Assignment of the vt = 1, E Species (E1)
2.2.6. Global Fitting of the A0, E0, A1, E1 Sub-States
2.3. Flexible Model Calculations
3. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajabi, F.; Luque, R. Solventless Acetylation of Alcohols and Phenols Catalyzed by Supported Iron Oxide Nanoparticles. Catal. Commun. 2014, 45, 129–132. [Google Scholar] [CrossRef]
- González-Núñez, M.E.; Mello, R.; Olmos, A.; Asensio, G. Baeyer−Villiger Oxidation with Potassium Peroxomonosulfate Supported on Acidic Silica Gel. J. Org. Chem. 2005, 70, 10879–10882. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Taylor, J.B.; Greaney, M.F. Protodecarboxylation of Benzoic Acids under Radical Conditions. Chem. Commun. 2012, 48, 8270–8272. [Google Scholar] [CrossRef] [PubMed]
- Samid, D.; Shack, S.; Sherman, L.T. Phenylacetate: A Novel Nontoxic Inducer of Tumor Cell Differentiation. Cancer Res. 1992, 52, 1988–1992. [Google Scholar] [PubMed]
- Nguyen, H.V.L.; Kleiner, I.; Shipman, S.T.; Mae, Y.; Hirose, K.; Hatanaka, S.; Kobayashi, K. Extension of the Measurement, Assignment, and Fit of the Rotational Spectrum of the Two-Top Molecule Methyl Acetate. J. Mol. Spectrosc. 2014, 299, 17–21. [Google Scholar] [CrossRef]
- Jelisavac, D.; Cortés-Gómez, D.C.; Nguyen, H.V.L.; Sutikdja, L.W.; Stahl, W.; Kleiner, I. The Microwave Spectrum of the Trans Conformer of Ethyl Acetate. J. Mol. Spectrosc. 2009, 257, 111. [Google Scholar] [CrossRef]
- Sutikdja, L.W.; Stahl, W.; Sironneau, V.; Nguyen, H.V.L.; Kleiner, I. Structure and Internal Dynamics of n-Propyl Acetate Studied by Microwave Spectroscopy and Quantum Chemistry. Chem. Phys. Lett. 2016, 663, 145–149. [Google Scholar] [CrossRef]
- Attig, T.; Sutikdja, L.W.; Kannengießer, R.; Kleiner, I.; Stahl, W. The Microwave Spectrum of n-Butyl Acetate. J. Mol. Spectrosc. 2013, 284–285, 8–15. [Google Scholar] [CrossRef]
- Attig, T.; Kannengießer, R.; Kleiner, I.; Stahl, W. Conformational Analysis of n-Pentyl Acetate Using Microwave Spectroscopy. J. Mol. Spectrosc. 2013, 290, 24–30. [Google Scholar] [CrossRef]
- Attig, T.; Kannengießer, R.; Kleiner, I.; Stahl, W. The Microwave Spectrum of n-Hexyl Acetate and Structural Aspects of n-Alkyl Acetates. J. Mol. Spectrosc. 2014, 298, 47. [Google Scholar] [CrossRef]
- Velino, B.; Maris, A.; Melandri, S.; Caminati, W. Millimeter Wave Free-Jet Spectrum of Vinyl Acetate. J. Mol. Spectrosc. 2009, 256, 228–231. [Google Scholar] [CrossRef]
- Nguyen, H.V.L.; Jabri, A.; Van, V.; Stahl, W. Methyl Internal Rotation in the Microwave Spectrum of Vinyl Acetate. J. Phys. Chem. A 2014, 118, 12130–12136. [Google Scholar] [CrossRef] [PubMed]
- Jabri, A.; Van, V.; Nguyen, H.V.L.; Stahl, W.; Kleiner, I. Probing the Methyl Torsional Barriers of the E and Z Isomers of Butadienyl Acetate by Microwave Spectroscopy. ChemPhysChem 2016, 17, 2660–2665. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.V.L.; Stahl, W. The Microwave Spectrum of Isopropenyl Acetate: An Asymmetric Molecule with Two Internal Rotors. J. Mol. Spectrosc. 2010, 264, 120–124. [Google Scholar] [CrossRef]
- Reinhold, B.; Finneran, I.A.; Shipman, S.T. Room Temperature Chirped-Pulse Fourier Transform Microwave Spectroscopy of Anisole. J. Mol. Spectrosc. 2011, 270, 89–97. [Google Scholar] [CrossRef]
- Ferres, L.; Stahl, W.; Nguyen, H.V.L. The Molecular Structure of Phenetole Studied by Microwave Spectroscopy and Quantum Chemical Calculations. Mol. Phys. 2016, 114, 2788–2793. [Google Scholar] [CrossRef] [Green Version]
- Melandri, S.; Giuliano, B.M.; Maris, A.; Favero, L.B.; Ottaviani, P.; Velino, B.; Caminati, W. Methylsalicylate: A Rotational Spectroscopy Study. J. Phys. Chem. A 2007, 111, 9076–9079. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, J.; Feng, G.; Grabow, J.-U.; Gou, Q. Conformational Preference Determined by Inequivalent n-Pairs: Rotational Studies on Acetophenone and its Monohydrate. Phys. Chem. Chem. Phys. 2019, 21, 22888–22894. [Google Scholar] [CrossRef]
- Utzat, K.A.; Bohn, R.K.; Montgomery, J.A., Jr.; Michels, H.H.; Caminati, W. Rotational Spectrum, Tunneling Motions, and Potential Barriers of Benzyl Alcohol. J. Phys. Chem. A 2010, 114, 6913–6916. [Google Scholar] [CrossRef]
- Evangelisti, L.; Caminati, W. Modeling the Internal Rotation Tunnelling in Benzyl Alcohol by Ring Fluorination: The Rotational Spectrum of 3,5-Difluorobenzyl Alcohol. Chem. Phys. Lett. 2019, 737S, 100004. [Google Scholar] [CrossRef]
- Godfrey, P.D.; Hatherley, L.D.; Brown, R.D. The Shapes of Neurotransmitters by Millimeter-Wave Spectroscopy: 2-Phenylethylamine. J. Am. Chem. Soc. 1995, 117, 8204. [Google Scholar] [CrossRef]
- López, J.C.; Cortijo, V.; Blanco, S.; Alonso, J.L. Conformational Study of 2-Phenylethylamine by Molecular-Beam Fourier Transform Microwave Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 4521–4527. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, C.; Varela, M.; Caminati, W.; Mata, S.; López, J.C.; Alonso, J.L. The Two Conformers of Acetanilide Unraveled Using LA-MB-FTMW Spectroscopy. J. Mol. Spectrosc. 2011, 268, 42–46. [Google Scholar] [CrossRef]
- Aviles Moreno, J.-R.; Petitprez, D.; Huet, T.R. The Conformational Flexibility in N-Phenylformamide: An Ab Initio Approach Supported by Microwave Spectroscopy. Chem. Phys. Lett. 2006, 419, 411–416. [Google Scholar] [CrossRef]
- Ferres, L.; Mouhib, H.; Stahl, W.; Schwell, M.; Nguyen, H.V.L. Molecular Structure and Ring Tunneling of Phenyl Formate as Observed by Microwave Spectroscopy and Quantum Chemistry. J. Mol. Spectrosc. 2017, 337, 59–64. [Google Scholar] [CrossRef]
- Cleeton, C.E.; Williams, N.H. Electromagnetic Waves of 1.1 cm Wave-Length and the Absorption Spectrum of Ammonia. Phys. Rev. 1934, 45, 234. [Google Scholar] [CrossRef]
- Nguyen, H.V.L.; Gulaczyk, I.; Kręglewski, M.; Kleiner, I. Large Amplitude Inversion Tunneling Motion in Ammonia, Methylamine, Hydrazine, and Secondary Amines: From Structure Determination to Coordination Chemistry. Coord. Chem. Rev. 2021, 436, 213797. [Google Scholar] [CrossRef]
- Pickett, H.M. The Fitting and Prediction of Vibration-Rotation Spectra with Spin Interactions. J. Mol. Spectrosc. 1991, 148, 371–377. [Google Scholar] [CrossRef]
- Herbers, S.; Zingsheim, O.; Nguyen, H.V.L.; Bonah, L.; Heyne, B.; Wehres, N.; Schlemmer, S. Internal Rotation Arena: Program Performances on the Low Barrier Problem of 4-Methylacetophenone. J. Chem. Phys. 2021, 155, 224302. [Google Scholar] [CrossRef]
- Hartwig, H.; Dreizler, H. The Microwave Spectrum of trans-2,3-Dimethyloxirane in Torsional Excited States. Z. Naturforsch. 1996, 51a, 923–932. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01. Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Moran, D.; Simmonett, A.C.; Leach, F.E.; Allen, W.D.; Schleyer, P.v.R.; Schaefer, H.F. Popular Theoretical Methods Predict Benzene and Arenes To Be Nonplanar. J. Am. Chem. Soc. 2006, 128, 9342–9343. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, H.B. Optimization of Equilibrium Geometries and Transition Structures. J. Comput. Chem. 1982, 3, 214–218. [Google Scholar] [CrossRef]
- Melandri, S.; Caminati, W.; Favero, L.B.; Millemaggi, A.; Favero, P.G. A Microwave Free Jet Absorption Spectrometer and its First Applications. J. Mol. Struct. 1995, 352–353, 253–258. [Google Scholar] [CrossRef]
- Melandri, S.; Maccaferri, G.; Maris, A.; Millemaggi, A.; Caminati, W.; Favero, P.G. Observation of the Rotational Spectra of van der Waals Complexes by Free Jet Absorption Millimeter Wave Spectroscopy: Pyridine-Argon. Chem. Phys. Lett. 1996, 261, 267–271. [Google Scholar] [CrossRef]
- Calabrese, C.; Maris, A.; Evangelisti, L.; Favero, L.B.; Melandri, S.; Caminati, W. Keto–Enol Tautomerism and Conformational Landscape of 1,3-Cyclohexanedione from Its Free Jet Millimeter-Wave Absorption Spectrum. J. Phys. Chem. A 2013, 117, 13712–13718. [Google Scholar] [CrossRef]
- Evangelisti, L.; Maris, A.; Melandri, S.; Caminati, W. Internal Dynamics in Phenylacetate, Poster communication D42, 22nd ed.; International Conference on High Resolution Molecular Spectroscopy: Praha, Czech Republic, 2012. [Google Scholar]
- Caminati, W.; Millemaggi, A.; Alonso, J.L.; Lesarri, A.; Lopez, J.C.; Mata, S. Molecular Beam Fourier Transform Microwave Spectrum of the Dimethylether–Xenon Complex: Tunnelling Splitting and 131Xe Quadrupole Coupling Constants. Chem. Phys. Lett. 2004, 392, 1–6. [Google Scholar] [CrossRef]
- Grabow, J.-U.; Stahl, W.; Dreizler, H. A Multioctave Coaxially Oriented Beam-resonator Arrangement Fourier-Transform Microwave Spectrometer. Rev. Sci Instrum. 1996, 67, 4072–4084. [Google Scholar] [CrossRef]
- Grabow, J.-U.; Stahl, W. A Pulsed Molecular Beam Microwave Fourier Transform Spectrometer with Parallel Molecular Beam and Resonator Axes. Z. Naturforsch. 1990, 45a, 1043–1044. [Google Scholar] [CrossRef]
- Zhao, Y.; Nguyen, H.V.L.; Stahl, W.; Hougen, J.T. Unusual Internal Rotation Coupling in the Microwave Spectrum of Pinacolone. J. Mol. Spectrosc. 2015, 318, 91–100. [Google Scholar] [CrossRef]
- Herbers, S.; Fritz, S.M.; Mishra, P.; Nguyen, H.V.L.; Zwier, T.S. Local and Global Approaches to Treat the Torsional Barriers of 4-Methylacetophenone Using Microwave Spectroscopy. J. Chem. Phys. 2020, 152, 074301. [Google Scholar] [CrossRef]
- Evangelisti, L.; Favero, L.B.; Maris, A.; Melandri, S.; Vega-Toribio, A.; Lesarri, A.; Caminati, W. Rotational Spectrum of Trifluoroacetone. J. Mol. Spectrosc. 2010, 259, 65–69. [Google Scholar] [CrossRef]
- Maris, A.; Calabrese, C.; Favero, L.B.; Evangelisti, L.; Usabiaga, I.; Mariotti, S.; Codella, C.; Podio, L.; Balucani, N.; Ceccarelli, C.; et al. Laboratory Measurements and Astronomical Search for Thioacetamide. ACS Earth Space Chem. 2019, 21, 1537–1549. [Google Scholar] [CrossRef]
- Maris, A.; Melandri, S.; Evangelisti, L.; Vigorito, A.; Sigismondi, S.; Calabrese, C.; Usabiaga, I. Structure and Dynamics of Methacrylamide, a Computational and Free-Jet Rotational Spectroscopic Study. J. Mol. Struct. 2022, 1248, 131391. [Google Scholar] [CrossRef]
- Herschbach, D.R. Tables of Mathieu Integrals for the Internal Rotation Problem. J. Chem. Phys. 1957, 27, 975. [Google Scholar] [CrossRef]
- Meyer, R. Flexible Models for Intramolecular Motion, a Versatile Treatment and its Application to Glyoxal. J. Mol. Spectrosc. 1979, 76, 266–300. [Google Scholar] [CrossRef]
- Ohashi, N.; Hougen, J.T.; Suenram, R.; Lovas, F.J.; Kawashima, Y.; Fujitake, M.; Pyka, J. Analysis and Fit of the Fourier-Transform Microwave Spectrum of the Two-Top Molecule N-Methylacetamide. J. Mol. Spectrosc. 2004, 227, 28–42. [Google Scholar] [CrossRef]
- Mélan, J.; Khemissi, S.; Nguyen, H.V.L. Steric Effects on Two Inequivalent Methyl Internal Rotations of 3,4-Dimethylfluorobenzene. Spectrochim. Acta A 2021, 253, 119564. [Google Scholar] [CrossRef]
- Khemissi, S.; Pérez Salvador, A.; Nguyen, H.V.L. Large Amplitude Motions in 2,3-Dimethylfluorobenzene: Steric Effects Failing to Interpret Hindered Methyl Torsion. J. Phys. Chem. A 2021, 125, 8542–8548. [Google Scholar] [CrossRef]
- Nguyen, T.; Stahl, W.; Nguyen, H.V.L.; Kleiner, I. Local Versus Global Approaches to Treat Two Equivalent Methyl Internal Rotations and 14N Nuclear Quadrupole Coupling of 2,5-Dimethylpyrrole. J. Chem. Phys. 2021, 154, 204304. [Google Scholar] [CrossRef]
- Nguyen, H.V.L.; Kleiner, I. Understanding (Coupled) Large Amplitude Motions: The Interplay of Microwave Spectroscopy, Spectral Modeling, and Quantum Chemistry. Phys. Sci. Rev. 2020, 20200037. [Google Scholar] [CrossRef]
- Kleiner, I.; Hougen, J.T. A Hybrid Program for Fitting Rotationally Resolved Spectra of Floppy Molecules with One Large-Amplitude Rotatory Motion and One Large-Amplitude Oscillatory Motion. J. Phys. Chem. A 2015, 119, 10664–10676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Par. a | Unit | A0 | A1 | E0 | E1 |
---|---|---|---|---|---|
A | MHz | 3637.78667(33) | 3640.89405(39) | 3622.9532(38) | 3627.018(13) |
B | MHz | 803.88947(10) | 803.39084(22) | 803.80593(60) | 803.3164(40) |
C | MHz | 750.97790(11) | 749.94839(46) | 750.94959(64) | 749.8638(26) |
DJ | kHz | 0.2243(17) | −0.0429(32) | −1.582(53) | 2.99(18) |
DJK | kHz | 2.3359(92) | 2.451(13) | 7.78(77) | −35.56(19) |
DK | kHz | 0.193(13) | |||
d1 | kHz | −0.00130(24) | 0.0366(18) | 0.1360(13) | -- |
d2 | kHz | 0.1583(13) | −0.0142(23) | 1.509(48) | -- |
ΔE | GHz | 36.40881(32) | 33.533(75) | ||
Fbc | MHz | 28.0660(25) | 25.07(11) | ||
FbcK | kHz | 0.1877(69) | −0.334(53) | ||
Fab | MHz | 78.5913(19) | 76.77(12) | ||
FabJ | kHz | 3.307(47) | 0.0139(10) | ||
FabK | kHz | 1.009(14) | 0.01385(41) | ||
Da | MHz | 401.8794(20) | 380.792(12) | ||
Dc | MHz | 32.6882(22) | 36.129(92) | ||
DaJ | MHz | −0.14776(32) | −0.0762(12) | ||
DcJ | MHz | 2.376(76) | −8.860(98) | ||
DaK | kHz | 7.596(90) | −11.42(27) | ||
DcK | kHz | −7.73(27) | −9.49(97) | ||
Nb | 240 | ||||
σ/σexp c | 1.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferres, L.; Evangelisti, L.; Maris, A.; Melandri, S.; Caminati, W.; Stahl, W.; Nguyen, H.V.L. Skeletal Torsion Tunneling and Methyl Internal Rotation: The Coupled Large Amplitude Motions in Phenyl Acetate. Molecules 2022, 27, 2730. https://doi.org/10.3390/molecules27092730
Ferres L, Evangelisti L, Maris A, Melandri S, Caminati W, Stahl W, Nguyen HVL. Skeletal Torsion Tunneling and Methyl Internal Rotation: The Coupled Large Amplitude Motions in Phenyl Acetate. Molecules. 2022; 27(9):2730. https://doi.org/10.3390/molecules27092730
Chicago/Turabian StyleFerres, Lynn, Luca Evangelisti, Assimo Maris, Sonia Melandri, Walther Caminati, Wolfgang Stahl, and Ha Vinh Lam Nguyen. 2022. "Skeletal Torsion Tunneling and Methyl Internal Rotation: The Coupled Large Amplitude Motions in Phenyl Acetate" Molecules 27, no. 9: 2730. https://doi.org/10.3390/molecules27092730
APA StyleFerres, L., Evangelisti, L., Maris, A., Melandri, S., Caminati, W., Stahl, W., & Nguyen, H. V. L. (2022). Skeletal Torsion Tunneling and Methyl Internal Rotation: The Coupled Large Amplitude Motions in Phenyl Acetate. Molecules, 27(9), 2730. https://doi.org/10.3390/molecules27092730