An Approach to Minimize Tumour Proliferation by Reducing the Formation of Components for Cell Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Inclusion Complex Formation
2.2.1. Optimal Time for Complex Formation
2.2.2. Temperature Effect on Complex Formation
2.2.3. Stability Studies
2.2.4. NMR
2.2.5. UV Spectrophotometry
2.3. Validation of Inclusion Complex by In Vitro Tests
2.3.1. Cell Lines and Culture Conditions
2.3.2. In Vitro Tests
2.3.3. Cell Viability
2.3.4. Cell Cycle Analysis
2.4. Statistical Analysis and Parameters Estimation
3. Results and Discussion
3.1. Complex Formation (SBE-β-CD-FOH and SBE-β-CD-E,E-FOH)
3.2. Therapeutic Effect (In Vitro Tests)
3.2.1. Dose-Response Modelling
3.2.2. FOH Effects on Cell Viability
3.2.3. FOH Isomers Effect on Cell Viability
3.2.4. PC Effect of FOH on Cell Viability
3.3. Cell Cycle Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. Adv. Online Publ. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Millar, A.W.; Lynch, K.P. Rethinking clinical trials for cytostatic drugs. Nat. Rev. Cancer 2003, 3, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Miquel, K.; Pradines, A.; Tercé, F.; Selmi, S.; Favre, G. Competitive inhibition of choline phosphotransferase by geranylgeraniol and farnesol inhibits phosphatidylcholine synthesis and induces apoptosis in human lung adenocarcinoma A549 cells. J. Biol. Chem. 1998, 273, 26179–26186. [Google Scholar] [CrossRef] [Green Version]
- Araújo, G.; Souza, D.; Queiroz, D.; Souza, A.; Moura, I.; Lins, G.; Felipe, P.; Bandeira, R.; Barbosa, R.; Douglas, H.; et al. Toxicological and pharmacologic effects of farnesol (C15H26O): A descriptive systematic review. Food Chem. Toxicol. 2019, 129, 169–200. [Google Scholar]
- Joo, J.H.; Jetten, A.M. Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett. 2010, 287, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.Y.; Hwang, S.T.; Sethi, G.; Fan, L.; Arfuso, F.; Ahn, K.S. Potential Anti-Inflammatory and Anti-Cancer Properties of Farnesol. Molecules 2018, 23, 2827. [Google Scholar] [CrossRef] [Green Version]
- Kuete, V.; Efferth, T. Molecular determinants of cancer cell sensitivity and resistance towards the sesquiterpene farnesol. Die Pharm. 2013, 68, 608–615. [Google Scholar]
- Nickerson, K.W.; Atkin, A.L.; Hornby, J.M. Quorum sensing in dimorphic fungi: Farnesol and beyond. Appl. Environ. Microbiol. 2006, 72, 3805–3813. [Google Scholar] [CrossRef] [Green Version]
- Joo, J.H.; Liao, G.; Collins, J.B.; Grissom, S.F.; Jetten, A.M. Farnesol-induced apoptosis in human lung carcinoma cells is coupled to the endoplasmic reticulum stress response. Cancer Res. 2007, 67, 7929–7936. [Google Scholar] [CrossRef] [Green Version]
- Rioja, A.; Pizzey, A.R.; Marson, C.M.; Thomas, N.S.B. Preferential induction of apoptosis of leukaemic cells by farnesol. FEBS Lett. 2000, 467, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Scheper, M.A.; Shirtliff, M.E.; Meiller, T.F.; Peters, B.M.; Jabra-Rizk, M.A. Farnesol, a fungal quorum-sensing molecule triggers apoptosis in human oral squamous carcinoma cells. Neoplasia 2008, 10, 954–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiseman, D.A.; Werner, S.R.; Crowell, P.L. Cell cycle arrest by the isoprenoids perillyl alcohol, geraniol, and farnesol is mediated by p21(Cip1) and p27(Kip1) in human pancreatic adenocarcinoma cells. J. Pharmacol. 2007, 320, 1163–1170. [Google Scholar] [CrossRef]
- Adany, I.; Yazlovitskaya, E.M.; Haug, J.S.; Voziyan, P.A.; Melnykovych, G. Differences in sensitivity to farnesol toxicity between neoplastically- and non-neoplastically-derived cells in culture. Cancer Lett. 1994, 79, 175–179. [Google Scholar] [CrossRef]
- Yazlovitskaya, E.M.; Melnykovych, G. Selective farnesol toxicity and translocation of protein kinase C in neoplastic HeLa-S3K and non-neoplastic CF-3 cells. Cancer Lett. 1995, 88, 179–183. [Google Scholar] [CrossRef]
- Anthony, M.L.; Zhao, M.; Brindle, K.M. Inhibition of phosphatidylcholine biosynthesis following induction of apoptosis in HL-60 cells. J. Biol. Chem. 1999, 274, 19686–19692. [Google Scholar] [CrossRef] [Green Version]
- Lagace, T.A.; Ridgway, N.D. Induction of apoptosis by lipophilic activators of CTP. phosphocholine cytidylyltransferase alpha (CCTalpha). Biochem. J. 2005, 392, 449–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melnykovych, G.; Haug, J.S.; Goldner, C.M. Growth inhibition of leukemia cell line CEM-C1 by farnesol: Effects of phosphatidylcholine and diacylglycerol. Biochem. Biophys. Res. Commun. 1992, 186, 543–548. [Google Scholar] [CrossRef]
- Taylor, M.M.; Macdonald, K.; Morris, A.J.; McMaster, C.R. Enhanced apoptosis through farnesol inhibition of phospholipase D signal transduction. FEBS J. 2005, 272, 5056–5506. [Google Scholar] [CrossRef]
- Wright, M.M.; Henneberry, A.L.; Lagace, T.A.; Ridgway, N.D.; McMaster, C.R. Uncoupling farnesol-induced apoptosis from its inhibition of phosphatidylcholine synthesis. J. Biol. Chem. 2001, 276, 25254–25261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voziyan, P.A.; Goldner, C.M.; Melnykovych, G. Farnesol inhibits phosphatidylcholine biosynthesis in cultured cells by decreasing cholinephosphotransferase activity. Biochem. J. 1993, 295, 757–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miquel, K.; Pradines, A.; Favre, G. Farnesol and geranylgeraniol induce actin cytoskeleton disorganization and apoptosis in A549 lung adenocarcinoma cells. Biochem. Biophys. Res. Commun. 1996, 225, 869–876. [Google Scholar] [CrossRef]
- Ong, T.P.; Heidor, R.; de Conti, A.; Dagli, M.L.; Moreno, F.S. Farnesol and geraniol chemopreventive activities during the initial phases of hepatocarcinogenesis involve similar actions on cell proliferation and DNA damage, but distinct actions on apoptosis, plasma cholesterol and HMGCoA reductase. Carcinogenesis 2006, 27, 1194–1203. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, C.; Kim, S.H.; Sethi, G.; Ahn, K.S. Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway. Cancer Lett. 2015, 360, 16391–16399. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.H.; Ueda, E.; Bortner, C.D.; Yang, X.P.; Liao, G.; Jetten, A.M. Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells. Biochem. Pharmacol. 2015, 97, 256–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roullet, J.B.; Luft, U.C.; Xue, H.; Chapman, J.; Bychkov, R.; Roullet, C.M.; Luft, F.C.; Haller, H.; McCarron, D.A. Farnesol inhibits L-type Ca2 channels in vascular smooth muscle cells. J. Biol. Chem. 1997, 272, 32240–32246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, Y.D.; Stark, M.J.; Roach, S.L.; Sen, S.E.; Crowell, P.L. Inhibition of Pancreatic Cancer Growth by the Dietary Isoprenoids Farnesol and Geraniol. Lipids 1997, 32, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Epplen, R.; Stöckle, M.; Engelmann, U.; Heidenreich, A.; Ohlmann, C.H. Differential effects of ibandronate, docetaxel and farnesol treatment alone and in combination on the growth of prostate cancer cell lines. Acta Oncol. 2011, 50, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Liu, H.F.; Shi, X.J.; Wang, Y. Antiproliferative activity of Farnesol in HeLa cervical cancer cells is mediated via apoptosis induction, loss of mitochondrial membrane potential (ΛΨm) and PI3K.Akt signalling pathway. J. Pharmacol. Exp. Ther. 2018, 23, 752–757. [Google Scholar]
- Joo, J.H.; Jetten, A.M. NF-kappaB-dependent transcriptional activation in lung carcinoma cells by farnesol involves p65_RelA(Ser276) phosphorylation via the MEK-MSK1 signaling pathway. J. Biol. Chem. 2008, 283, 16391–16399. [Google Scholar] [CrossRef] [Green Version]
- Duncan, R.E.; Archer, M.C. Farnesol induces thyroid hormone receptor (THR) beta1 but inhibits THR-mediated signaling in MCF-7 human breast cancer cells. Biochem. Biophys. Res. Commun. 2006, 343, 239–243. [Google Scholar] [CrossRef]
- Horev, B.; Klein, M.I.; Hwang, G.; Li, Y.; Kim, D.; Koo, H.; Benoit, D.S. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS Nano 2015, 9, 2390–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carneiro, S.B.; Duarte, F.I.C.; Heimfarth, L.; Quintans, J.S.S.; Quintans-Junior, L.J.; Junior, V.V.; de Lima, A.A.N. Cyclodextrin. Drug Inclusion Complexes. In Vivo and In Vitro Approaches. Int. J. Mol. Sci. 2019, 20, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.C.; Alcantara, L.F.; Soares, J.M.D.; Silva, M.G.; Lavor, E.M.; Andrade, V.M.; Menezes, P.; Araújo, A.A.; Leite, L.H.I.; Menezes, I.R.A.; et al. Docking, characterization and investigation of β-cyclodextrin complexed with farnesol, an acyclic sesquiterpene alcohol, produces orofacial antinociceptive profile in experimental protocols. Process Biochem. 2017, 62, 193–204. [Google Scholar] [CrossRef]
- Magnusdottir, A.; Masson, M.; Loftsson, T. Cyclodextrins. J. Incl. Phenom. Macroc. Chem. 2002, 44, 213–218. [Google Scholar] [CrossRef]
- Kfoury, M.; Landy, D.; Fourmentin, S. Characterization of Cyclodextrin/Volatile Inclusion Complexes: A Review. Molecules 2018, 23, 1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cell Line | Treatment | IC50 (uM) | n | Weighted Residuals | X2 | F-Value | F-Critical | NLP Iterations | CPU Time (s) | Variance (%) |
---|---|---|---|---|---|---|---|---|---|---|
LIVER (HepG2) | CD | 1215 | 1.3 | 7 | 9.5 | 0.8 | 4.1 | 23 | 0.9 | 3.20 |
FOH-CD | 152 | 2.7 | 7 | 9.5 | 0.8 | 4.1 | 52 | 2.8 | 2.80 | |
FOH | 62 | 2.9 | 7 | 9.5 | 0.8 | 4.1 | 13 | 0.4 | 4.10 | |
BREAST (BT-474) | CD | 1605 | 1.6 | 7.1 | 9.5 | 0.8 | 4.1 | 19 | 0.6 | 5.50 |
FOH-CD | 243 | 4.2 | 7 | 9.5 | 0.8 | 4.1 | 23 | 1.0 | 2.00 | |
FOH | 101 | 6 | 7 | 11.1 | 0.4 | 4 | 12 | 0.4 | 10.0 | |
COLORECTAL (HCT-116) | CD | 1039 | 0.9 | 9 | 12.6 | 0.5 | 3.4 | 31 | 1.1 | 3.70 |
FOH-CD | 127 | 1.9 | 9 | 12.6 | 0.8 | 4.1 | 14 | 0.4 | 5.60 | |
FOH | 71 | 2.7 | 9 | 12.6 | 0.5 | 3.4 | 38 | 1.5 | 6.40 | |
FIBROBLAST (HS-5) | CD | 1191 | 1 | 9 | 12.6 | 0.5 | 3.4 | 28 | 0.6 | 2.70 |
FOH-CD | 204 | 3.2 | 7 | 9.5 | 0.8 | 4.1 | 16 | 0.7 | 4.00 | |
FOH | 113 | 6.7 | 10 | 14.1 | 0.4 | 3.1 | 15 | 0.4 | 8.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Dios-Pérez, I.; González-Garcinuño, Á.; Martín del Valle, E.M. An Approach to Minimize Tumour Proliferation by Reducing the Formation of Components for Cell Membrane. Molecules 2022, 27, 2735. https://doi.org/10.3390/molecules27092735
de Dios-Pérez I, González-Garcinuño Á, Martín del Valle EM. An Approach to Minimize Tumour Proliferation by Reducing the Formation of Components for Cell Membrane. Molecules. 2022; 27(9):2735. https://doi.org/10.3390/molecules27092735
Chicago/Turabian Stylede Dios-Pérez, Inmaculada, Álvaro González-Garcinuño, and Eva María Martín del Valle. 2022. "An Approach to Minimize Tumour Proliferation by Reducing the Formation of Components for Cell Membrane" Molecules 27, no. 9: 2735. https://doi.org/10.3390/molecules27092735
APA Stylede Dios-Pérez, I., González-Garcinuño, Á., & Martín del Valle, E. M. (2022). An Approach to Minimize Tumour Proliferation by Reducing the Formation of Components for Cell Membrane. Molecules, 27(9), 2735. https://doi.org/10.3390/molecules27092735