Nanochannel Array on Electrochemically Polarized Screen Printed Carbon Electrode for Rapid and Sensitive Electrochemical Determination of Clozapine in Human Whole Blood
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrochemical Polarization of SPCE
2.2. VMSF Enquipment on the p-SPCE
2.3. Dual Signal Amplification and Significantly Enhanced CLZ Response on VMSF/p-SPCE
2.4. Optimization of Conditions for the Determination of CLZ
2.5. Determination of CLZ Using VMSF/SPCE
2.6. Anti-Interference and Anti-Fouling Properties of the VMSF/p-SPCE Sensor
2.7. Determination of CLZ in Human Whole Blood with Low Sample Consumption
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Experiments and Instrumentations
3.3. Electrochemical Polarization of SPCE
3.4. Preparation of VMSF-Modified p-SPCE
3.5. Electrochemical Determination of CLZ
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Verdoux, H.; Quiles, C.; Bachmann, C.J.; Siskind, D. Prescriber and institutional barriers and facilitators of clozapine use: A systematic review. Schizophr. Res. 2018, 201, 10–19. [Google Scholar] [CrossRef]
- Rowntree, R.; Murray, S.; Fanning, F.; Keating, D.; Szigeti, A.; Doyle, R.; McWilliams, S.; Clarke, M. Clozapine use–has practice changed? J. Psychopharmacol. Oxford 2020, 34, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Kane, J.; Honigfeld, G.; Singer, J.; Meltzer, H. Clozapine for the treatment-resistant schizophrenic: A double-blind comparison with chlorpromazine. Arch. Gerontol. Geriatr. 1988, 45, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Ereshefsky, L.; Watanabe, M.D.; Tran-Johnson, T.K. Clozapine: An atypical antipsychotic agent. Clin. Pharm. 1989, 8, 691–709. [Google Scholar] [PubMed]
- Schoretsanitis, G.; Kuzin, M.; Kane, J.M.; Hiemke, C.; Paulzen, M.; Haen, E. Elevated clozapine concentrations in clozapine-treated patients with hypersalivation. Clin. Pharmacokinet. 2021, 60, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Alvir, J.M.J.; Lieberman, J.A.; Safferman, A.Z.; Schwimmer, J.L.; Schaaf, J.A. Clozapine-induced agranulocytosis—Incidence and risk factors in the United States. N. Engl. J. Med. 1993, 329, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Hiemke, C.; Baumann, P.; Bergemann, N.; Conca, A.; Dietmaier, O.; Egberts, K.; Fric, M.; Gerlach, M.; Greiner, C.; Grunder, G.; et al. AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: Update 2011. Pharmacopsychiatry 2011, 44, 195–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jessurun, N.T.; Derijks, H.J.; van Marum, R.J.; Jongkind, A.; Giraud, E.L.; van Puijenbroek, E.P.; Grootens, K.P. Body weight gain in clozapine-treated patients: Is norclozapine the culprit? Br. J. Clin. Pharmacol. 2021, 88, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Jerónimo, J.; Santos, J.; Bastos, L. Uncommon effects of clozapine. Eur. Psychiatry 2016, 33, S614. [Google Scholar] [CrossRef]
- Jann, M.W.; Grimsley, S.R.; Gray, E.C.; Chang, W.-H. Pharmacokinetics and pharmacodynamics of clozapine. Clin. Pharm. 1993, 24, 161–176. [Google Scholar] [CrossRef]
- Saint-Marcoux, F.; Sauvage, F.L.; Marquet, P. Current role of LC-MS in therapeutic drug monitoring. Anal. Bioanal. Chem. 2007, 388, 1327–1349. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zheng, S.; Le, J.; Qian, Z.Y.; Zhang, R.S.; Hong, Z.Y.; Chai, Y.F. Ultrasound-assisted low-density solvent dispersive liquid–liquid microextraction for the simultaneous determination of 12 new antidepressants and 2 antipsychotics in whole blood by gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 2017, 142, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Schulte, P.F.J.; Bogers, J.; Bond-Veerman, S.R.T.; Cohen, D. Moving forward with clozapine. Acta Psychiatr. Scand. 2020, 142, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhu, M. Detection of pollutants in water bodies: Electrochemical detection or photo-electrochemical detection? Chem. Commun. 2020, 56, 14541–14552. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Duan, W.; Jin, Y.; Wo, F.J.; Xi, F.N.; Wu, J.M. Graphene quantum dot-decorated luminescent porous silicon dressing for theranostics of diabetic wounds. Acta Biomater. 2021, 131, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Jin, Y.; Cui, Y.; Xi, F.N.; Liu, X.Y.; Wo, F.J.; Wu, J.M. A co-delivery platform for synergistic promotion of angiogenesis based on biodegradable, therapeutic and self-reporting luminescent porous silicon microparticles. Biomaterials 2021, 272, 120772. [Google Scholar] [CrossRef]
- Wan, Y.J.; Zhao, J.W.; Deng, X.C.; Chen, J.; Xi, F.N.; Wang, X.B. Colorimetric and fluorescent dual-modality sensing platform based on fluorescent nanozyme. Front. Chem. 2021, 9, 774486. [Google Scholar] [CrossRef]
- Deng, X.C.; Zhao, J.W.; Ding, Y.; Tang, H.L.; Xi, F.N. Iron and nitrogen co-doped graphene quantum dots as highly active peroxidases for the sensitive detection of l-cysteine. New J. Chem. 2021, 45, 19056–19064. [Google Scholar] [CrossRef]
- Cui, Y.X.; Jin, Y.; Wo, F.J.; Xi, F.N.; Wu, J.M. Ratiometric fluorescent nanohybrid for noninvasive and visual monitoring of sweat glucose. ACS Sens. 2020, 5, 2096–2105. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Niu, Q.; Gu, X.; Yang, N.; Zhao, G. Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. Nanoscale 2019, 11, 11992–12014. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Xiong, Z.; Yang, L.; Shi, H.; Fang, D.; Wang, M.; Shao, P.; Luo, X. Electrochemical approach toward reduced graphene oxide-based electrodes for environmental applications: A review. Sci. Total Environ. 2021, 778, 146301. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhao, Z.; Liu, X.; Chen, P.; Fan, F.; Wu, X.; Hua, R.; Wang, Y. A novel near-infrared fluorometric method for point-of-care monitoring of Fe2+ and its application in bioimaging. J. Hazard. Mater. 2021, 406, 124767. [Google Scholar] [CrossRef] [PubMed]
- Vinoth, S.; Shalini Devi, K.S.; Pandikumar, A. A comprehensive review on graphitic carbon nitride based electrochemical and biosensors for environmental and healthcare applications. Trends. Analyt. Chem. 2021, 140, 116274. [Google Scholar] [CrossRef]
- Guo, J. Smartphone-Powered Electrochemical Dongle for point-of-care monitoring of blood beta-ketone. Anal. Chem. 2017, 89, 8609–8613. [Google Scholar] [CrossRef] [Green Version]
- Xuan, L.L.; Liao, W.Y.; Wang, M.F.; Zhou, H.X.; Ding, Y.; Yan, F.; Liu, J.Y.; Tang, H.L.; Xi, F.N. Integration of vertically-ordered mesoporous silica-nanochannel film with electro-activated glassy carbon electrode for improved electroanalysis in complex samples. Talanta 2021, 225, 122066. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lei, Y.; Lu, H.; Shi, L.; Wang, P.; Ali, Z.; Li, J. Electrochemical detection of bisphenols in food: A review. Food Chem. 2021, 346, 128895. [Google Scholar] [CrossRef]
- Xing, X.; Yao, L.; Yan, C.; Xu, Z.L.; Xu, J.G.; Liu, G.D.; Yao, B.B.; Chen, W. Recent progress of personal glucose meters integrated methods in food safety hazards detection. Crit. Rev. Food Sci. Nutr. 2021. [Google Scholar] [CrossRef]
- Liu, Q.S.; Zhong, H.G.; Chen, M.; Zhao, C.; Liu, Y.; Xi, F.N.; Luo, T. Functional nanostructure-loaded three-dimensional graphene foam as a non-enzymatic electrochemical sensor for reagentless glucose detection. RSC Adv. 2020, 10, 33739–33746. [Google Scholar] [CrossRef]
- Farhadi, K.; Karimpour, A. Electrochemical behavior and determination of clozapine on a glassy carbon electrode modified by electrochemical oxidation. Anal. Sci. 2007, 23, 479–483. [Google Scholar] [CrossRef] [Green Version]
- Tammari, E.; Nezhadali, A.; Lotfi, S.; Veisi, H. Fabrication of an electrochemical sensor based on magnetic nanocomposite Fe3O4/β-alanine/Pd modified glassy carbon electrode for determination of nanomolar level of clozapine in biological model and pharmaceutical samples. Sens. Actuators B Chem. 2017, 241, 879–886. [Google Scholar] [CrossRef]
- Aflatoonian, M.R.; Tajik, S.; Mohtat, B.; Aflatoonian, B.; Shoaie, I.S.; Beitollahi, H.; Zhang, K.Q.; Jang, H.W.; Shokouhimehr, M. Direct electrochemical detection of clozapine by RuO2 nanoparticles-modified screen-printed electrode. RSC Adv. 2020, 10, 13021–13028. [Google Scholar] [CrossRef] [Green Version]
- Walcarius, A.; Sibottier, E.; Etienne, M.; Ghanbaja, J. Electrochemically assisted self-assembly of mesoporous silica thin films. Nat. Mater. 2007, 6, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Zheng, G.; Dou, Y.; Li, W.; Mou, C.Y.; Zhang, X.; Asiri, A.M.; Zhao, D. Highly ordered mesoporous silica films with perpendicular mesochannels by a simple Stober-solution growth approach. Angew. Chem. Int. Ed. 2012, 51, 2173–2177. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, X.; Su, B. Molecular filtration by ultrathin and highly porous silica nanochannel membranes: Permeability and selectivity. Anal. Chem. 2016, 88, 10252–10258. [Google Scholar] [CrossRef] [PubMed]
- Calvo, A.; Yameen, B.; Williams, F.J.; Soler-Illia, G.J.; Azzaroni, O. Mesoporous films and polymer brushes helping each other to modulate ionic transport in nanoconfined environments. An interesting example of synergism in functional hybrid assemblies. JACS 2009, 131, 10866–10868. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Yang, L.X.; Liu, J.; Liu, J.Y. Electrochemical sensor nanoarchitectonics for sensitive detection of uric acid in human whole blood based on screen-printed carbon electrode equipped with vertically-ordered mesoporous silica-nanochannel film. Nanomaterials 2022, 12, 1157. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Yan, F.; Yao, L.; Su, B. Anti-biofouling isoporous silica-micelle membrane enabling drug detection in human whole blood. Anal. Chem. 2016, 88, 8364–8368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, F.; Wang, M.; Jin, Q.; Zhou, H.X.; Xie, L.H.; Tang, H.L.; Liu, J.Y. Vertically-ordered mesoporous silica films on graphene for anti-fouling electrochemical detection of tert-butylhydroquinone in cosmetics and edible oils. J. ElectroAnal. Chem. 2021, 881, 114969. [Google Scholar] [CrossRef]
- Ma, K.; Zheng, Y.Y.; Liu, J.; Liu, J.Y. Ultrasensitive immunosensor for prostate-specific antigen based on enhanced electrochemiluminescence by vertically ordered mesoporous silica-nanochannel film. Front. Chem. 2022, 10, 851178. [Google Scholar] [CrossRef]
- Zhou, H.X.; Ma, X.Y.; Sailjoi, A.; Zou, Y.Q.; Lin, X.Y.; Yan, F.; Su, B.; Liu, J.Y. Vertical silica nanochannels supported by nanocarbon composite for simultaneous detection of serotonin and melatonin in biological fluids. Sens. Actuators B Chem. 2022, 353, 131101. [Google Scholar] [CrossRef]
- Razzino, C.A.; Serafín, V.; Gamella, M.; Pedrero, M.; Montero-Calle, A.; Barderas, R.; Calero, M.; Lobo, A.O.; Yánñez-Sedeño, P.; Campuzano, S.; et al. An electrochemical immunosensor using gold nanoparticles-PAMAM-nanostructured screen-printed carbon electrodes for tau protein determination in plasma and brain tissues from Alzheimer patients. Biosens. Bioelectron. 2020, 163, 112238. [Google Scholar] [CrossRef] [PubMed]
- Castrovilli, M.C.; Bolognesi, P.; Chiarinelli, J.; Avaldi, L.; Cartoni, A.; Calandra, P.; Tempesta EGiardi, M.T.; Antonacci, A.; Arduini, F.; Scognamiglio, V. Electrospray deposition as a smart technique for laccase immobilisation on carbon black-nanomodified screen-printed electrodes. Biosens. Bioelectron. 2020, 163, 112299. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, L.; Saroglia, M.; Galatà, G.; De Santis, R.; Fillo, S.; Luca, V.; Faggioni, G.; D’Amore, N.; Regalbuto, E.; Salvatori, P.; et al. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens. Bioelectron. 2021, 171, 112686. [Google Scholar] [CrossRef] [PubMed]
- Nasir, T.; Herzog, G.; Hebrant, M.; Despas, C.; Liu, L.; Walcarius, A. Mesoporous Silica Thin Films for Improved Electrochemical Detection of Paraquat. ACS Sens. 2018, 3, 484–493. [Google Scholar] [CrossRef]
- Fathi, M.R.; Almasifar, D. Electrochemical sensor for square wave voltammetric determination of clozapine by glassy carbon electrode modified by WO3 nanoparticles. IEEE Sens. J. 2017, 17, 6069–6076. [Google Scholar] [CrossRef]
- Veerakumar, P.; Manavalan, S.; Chen, S.M.; Pandikumar, A.; Lin, K.C. Ultrafine Bi–Sn nanoparticles decorated on carbon aerogels for electrochemical simultaneous determination of dopamine (neurotransmitter) and clozapine (antipsychotic drug). Nanoscale 2020, 12, 22217–22233. [Google Scholar] [CrossRef]
- Mashhadizadeh, M.H.; Afshar, E. Electrochemical investigation of clozapine at TiO2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs. Electrochim. Acta 2013, 87, 816–823. [Google Scholar] [CrossRef]
Sample a | Added (μM) | Found (μM) | RSD (%) | Recovery (%) |
---|---|---|---|---|
Human whole blood a | 10.0 | 10.4 | 2.9 | 104 |
30.0 | 29.2 | 3.2 | 97.3 | |
50.0 | 51.0 | 2.6 | 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Yang, L.; Huang, H.; Lv, N.; Liu, J.; Liu, Y. Nanochannel Array on Electrochemically Polarized Screen Printed Carbon Electrode for Rapid and Sensitive Electrochemical Determination of Clozapine in Human Whole Blood. Molecules 2022, 27, 2739. https://doi.org/10.3390/molecules27092739
Wang K, Yang L, Huang H, Lv N, Liu J, Liu Y. Nanochannel Array on Electrochemically Polarized Screen Printed Carbon Electrode for Rapid and Sensitive Electrochemical Determination of Clozapine in Human Whole Blood. Molecules. 2022; 27(9):2739. https://doi.org/10.3390/molecules27092739
Chicago/Turabian StyleWang, Kai, Luoxing Yang, Huili Huang, Ning Lv, Jiyang Liu, and Youshi Liu. 2022. "Nanochannel Array on Electrochemically Polarized Screen Printed Carbon Electrode for Rapid and Sensitive Electrochemical Determination of Clozapine in Human Whole Blood" Molecules 27, no. 9: 2739. https://doi.org/10.3390/molecules27092739
APA StyleWang, K., Yang, L., Huang, H., Lv, N., Liu, J., & Liu, Y. (2022). Nanochannel Array on Electrochemically Polarized Screen Printed Carbon Electrode for Rapid and Sensitive Electrochemical Determination of Clozapine in Human Whole Blood. Molecules, 27(9), 2739. https://doi.org/10.3390/molecules27092739