Inverse Boltzmann Iterative Multi-Scale Molecular Dynamics Study between Carbon Nanotubes and Amino Acids
Abstract
:1. Introduction
2. Simulation System and Research Method
2.1. Simulation System
2.2. Coarse-Grained Mapping Method
2.3. Iterative Boltzmann Inversion Method
3. Results and Discussion
3.1. Initial PMF of CNT55L3-20aminoacids
- (1)
- The initial distribution and PMF of the non-bond group. Figure 3A is a schematic diagram of the non-bond radial distribution function g(r) between 20 amino acids and CNT55L3 and the potential energy function of each group. We use the coarse-grained distribution of centroids to accurately reflect the adsorption characteristics of each amino acid and CNT55L3. Among them, the RDF of aromatic amino acids (Figure 3A(c1,c2)) has a higher first peak. There are also differences between the different amino acids within. In Figure 3A(d1,d2), we can observe that the potential energy depth of 17-Arg is comparable to that of aromatic amino acids. This is very necessary, because this part of the potential energy is the same as the initial potential energy curve for the next iteration of IBI.
- (2)
- The initial distribution and PMF of the bond group.Figure 3B describes the distribution of the bond group extracted by the AA system and the potential energy curve. Among them, Figure 3B(a1,a2) is the bond distribution function and potential energy curve of NH2-Trp; Figure 3B(b1,b2) is the bond distribution function and potential energy curve of Trp-ACE; Figure 3B(c1,c2) shows the bond distribution function and potential energy curve of CNT-CNT. The extraction of this part of the potential energy curve is the force field parameter that needs to be used in the next iteration of IBI.
- (3)
- The initial distribution and PMF of the angle group. Figure 3C describes the distribution function of the angle part and the potential energy curve extracted by the AA system. Among them, Figure 3C(a1,a2) is the distribution of the angle part of NH2-Trp-ACE and the potential energy curve; Figure 3C(b1,b2) is the distribution of the angle part of CNT-CNT-CNT and the potential energy curve. Generally speaking, this part of the average field potential can either choose to iterate or not to iterate. Since the focus of our research is on the non-bonded interaction energy of CNT-amino acids, we will not do iterative optimization for this part of the content.
3.2. The Iteration Process of CNT55L3-20aminoacids
3.2.1. IBI-Representative Amino Acid Research
3.2.2. The Distribution during IBI Iteration
3.2.3. Potential Energy in the Iterative Process of IBI
4. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Luo, N.; Weber, J.K.; Wang, S.; Luan, B.; Yue, H.; Xi, X.; Du, J.; Yang, Z.; Wei, W.; Zhou, R.; et al. PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Nat. Commun. 2017, 8, 14537. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Meng, X.-Y.; Perez-Aguilar, J.M.; Zhou, R. An In Silico study of TiO2 nanoparticles interaction with twenty standard amino acids in aqueous solution. Sci. Rep. 2016, 6, 37761. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, J.; Zhang, J.; Takada, S.; Wang, W. Overcoming the Bottleneck of the Enzymatic Cycle by Steric Frustration. Phys. Rev. Lett. 2019, 122, 238102. [Google Scholar] [CrossRef]
- Zuo, G.; Kang, S.-G.; Xiu, P.; Zhao, Y.; Zhou, R. Interactions between Proteins and Carbon-Based Nanoparticles: Exploring the Origin of Nanotoxicity at the Molecular Level. Small 2013, 9, 1546–1556. [Google Scholar] [CrossRef]
- Arash, B.; Park, H.S.; Rabczuk, T. Mechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model. Compos. Part B Eng. 2015, 80, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Maximova, T.; Moffatt, R.; Ma, B.; Nussinov, R.; Shehu, A. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. PLoS Comput. Biol. 2016, 12, e1004619. [Google Scholar] [CrossRef] [Green Version]
- Saunders, M.G.; Voth, G.A. Coarse-graining methods for computational biology. Annu. Rev. Biophys. 2013, 42, 73–93. [Google Scholar] [CrossRef]
- Site, L. What is a Multiscale Problem in Molecular Dynamics? Entropy 2013, 16, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Bianco, A.; Kostarelos, K.; Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 2005, 9, 674–679. [Google Scholar] [CrossRef]
- Shandilya, N.; Marcoulaki, E.; Vercauteren, S.; Witters, H.; Salazar-Sandoval, E.J.; Viitanen, A.-K.; Bressot, C.; Fransman, W. Blueprint for the Development and Sustainability of National Nanosafety Centers. NanoEthics 2020, 14, 169–183. [Google Scholar] [CrossRef] [Green Version]
- Bressot, C.; Shandilya, N.; Nogueira, E.S.D.C.; Cavaco-Paulo, A.; Morgeneyer, M.; le Bihan, O.; Aguerre-Chariol, O. Exposure Assessment Based Recommendations to Improve Nanosafety at Nanoliposome Production Sites. J. Nanomater. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Warheit, D.B. Hazard and risk assessment strategies for nanoparticle exposures: How far have we come in the past 10 years? F1000Research 2018, 7, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, A.S.; Puelles, R.; Perez-Fernandez, M.; Goméz, P.; Barruetabeña, L.; Jacobsen, N.R.; Suarez-Merino, B.; Micheletti, C.; Manier, N.; Trouiller, B.; et al. Safe by design implementation in the nanotechnology industry. NanoImpact 2020, 20, 100267. [Google Scholar] [CrossRef]
- Zorgati, H.; Larsson, M.; Ren, W.; Sim, A.Y.L.; Gettemans, J.; Grimes, J.M.; Li, W.; Robinson, R.C. The role of gelsolin domain 3 in familial amyloidosis (Finnish type). Proc. Natl. Acad. Sci. USA 2019, 116, 13958–13963. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.; Li, J.; Lu, J.; Li, W.; Wang, W. Role of substrate-product frustration on enzyme functional dynamics. Phys. Rev. E 2019, 100, 052409. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, D.; Ji, B.; Shi, X.; Gao, H. Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: Atomistic and coarse-grained simulations. J. Mol. Graph. Model. 2010, 29, 171–177. [Google Scholar] [CrossRef]
- Chu, J.W.; Ayton, G.S.; Izvekov, S.; Voth, G.A. Emerging methods for multiscale simulation of biomolecular systems. Mol. Phys. 2007, 105, 167–175. [Google Scholar] [CrossRef]
- Chu, J.W.; Voth, G.A. Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. Biophys. J. 2006, 90, 1572–1582. [Google Scholar] [CrossRef] [Green Version]
- Potter, T.D.; Tasche, J.; Wilson, M.R. Assessing the transferability of common top-down and bottom-up coarse-grained molecular models for molecular mixtures. Phys. Chem. Chem. Phys. 2019, 21, 1912–1927. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Lu, T.; Guo, H. Developing a Transferable Coarse-Grained Model for the Prediction of Thermodynamic, Structural, and Mechanical Properties of Polyimides at Different Thermodynamic State Points. J. Chem. Inf. Modeling 2019, 59, 2009–2025. [Google Scholar] [CrossRef]
- Mashayak, S.Y.; Miao, L.; Aluru, N.R. Integral equation theory based direct and accelerated systematic coarse-graining approaches. J. Chem. Phys. 2018, 148, 214105. [Google Scholar] [CrossRef]
- Rebič, M.; Mocci, F.; Laaksonen, A.; Uličný, J. Multiscale Simulations of Human Telomeric G-Quadruplex DNA. J. Phys. Chem. B 2015, 119, 105–113. [Google Scholar] [CrossRef]
- Kuo, A.-T.; Okazaki, S.; Shinoda, W. Transferable coarse-grained model for perfluorosulfonic acid polymer membranes. J. Chem. Phys. 2017, 147, 094904. [Google Scholar] [CrossRef]
- Deng, L.; Zhao, Y.; Xu, H.; Wang, Y. Intrinsic defect formation in peptide self-assembly. Appl. Phys. Lett. 2015, 107, 043701. [Google Scholar]
- Deng, L.; Wang, Y. Multiscale computational prediction of β-sheet peptide self-assembly morphology. Mol. Simul. 2021, 47, 428–438. [Google Scholar] [CrossRef]
- Reith, D.; Pütz, M.; Müller-Plathe, F. Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem. 2003, 24, 1624–1636. [Google Scholar] [CrossRef] [Green Version]
- Milano, G.; Müller-Plathe, F. Mapping Atomistic Simulations to Mesoscopic Models: A Systematic Coarse-Graining Procedure for Vinyl Polymer Chains. J. Phys. Chem. B 2005, 109, 18609–18619. [Google Scholar] [CrossRef]
- Kremer, K.; Müller-Plathe, F. Multiscale Problems in Polymer Science: Simulation Approaches. MRS Bull. 2001, 26, 205–210. [Google Scholar] [CrossRef]
- Müller-Plathe, F. Coarse-Graining in Polymer Simulation: From the Atomistic to the Mesoscopic Scale and Back. ChemPhysChem 2002, 3, 754–769. [Google Scholar] [CrossRef]
- He, Z.; Zhou, J. Probing carbon nanotube–amino acid interactions in aqueous solution with molecular dynamics simulations. Carbon 2014, 78, 500–509. [Google Scholar] [CrossRef]
- Nechaeva, L.S.; Butyrskaya, E.V.; Zapryagaev, S.A. Computer simulation of amino acid sorption on carbon nanotubes. J. Struct. Chem. 2017, 58, 217–225. [Google Scholar] [CrossRef]
- Piao, L.; Liu, Q.; Li, Y. Interaction of Amino Acids and Single-Wall Carbon Nanotubes. J. Phys. Chem. C 2012, 116, 1724–1731. [Google Scholar] [CrossRef]
- Rajesh, C.; Majumder, C.; Mizuseki, H.; Kawazoe, Y. A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube. J. Chem. Phys. 2009, 130, 124911. [Google Scholar] [CrossRef]
- Roman, T.; Diño, W.A.; Nakanishi, H.; Kasai, H. Amino acid adsorption on single-walled carbon nanotubes. Eur. Phys. J. D 2006, 38, 117–120. [Google Scholar] [CrossRef]
- Wang, J. Carbon-Nanotube Based Electrochemical Biosensors: A Review. Electroanalysis 2005, 17, 7–14. [Google Scholar] [CrossRef]
- Ruhle, C.J.V.; Lukyanov, A.; Kremer, K.; Andrienko, D. Versatile Object-Oriented Toolkit for Coarse-Graining Applications. J. Chem. Theory Comput. 2009, 5, 3211–3223. [Google Scholar] [CrossRef]
- Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.M.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; et al. A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical Calculations. J. Comput. Chem. 1999, 2003, 24. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; Hermans, J. Intermolecular Forces. Pullman, B., Ed.; Reidel: Dordrecht, The Netherlands, 1981; p. 331. [Google Scholar]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: AnN⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, T.E.; Netz, P.A.; Kremer, K.; Junghans, C.; Mukherji, D. C–IBI: Targeting cumulative coordination within an iterative protocol to derive coarse-grained models of (multi-component) complex fluids. J. Chem. Phys. 2016, 144, 174106. [Google Scholar] [CrossRef]
- Andrews, C.T.; Elcock, A.H. COFFDROP: A Coarse-Grained Nonbonded Force Field for Proteins Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of Amino Acids. J. Chem. Theory Comput. 2014, 10, 5178–5194. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Bian, X.; Yang, X.; Karniadakis, G.E. A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization. J. Chem. Phys. 2016, 145, 044102. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M.; Zhang, H.; Ishiguro, T.; Fukuzawa, K.; Itoh, S. Structure-based coarse-graining for inhomogeneous liquid polymer systems. J. Chem. Phys. 2013, 139, 054901. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.-C.; Kulkarni, P.M.; Shell, M.S.; Leal, L.G. A test of systematic coarse-graining of molecular dynamics simulations: Thermodynamic properties. J. Chem. Phys. 2012, 137, 164106. [Google Scholar] [CrossRef]
- Karimi-Varzaneh, H.A.; Qian, H.-J.; Chen, X.; Carbone, P.; Müller-Plathe, F. IBIsCO: A molecular dynamics simulation package for coarse-grained simulation. J. Comput. Chem. 2011, 32, 1475–1487. [Google Scholar] [CrossRef] [PubMed]
- Mirzoev, A.; Lyubartsev, A.P. MagiC: Software Package for Multiscale Modeling. J. Chem. Theory Comput. 2013, 9, 1512–1520. [Google Scholar] [CrossRef]
- Maurel, G.; Schnell, B.; Goujon, F.; Couty, M.; Malfreyt, P. Multiscale Modeling Approach toward the Prediction of Viscoelastic Properties of Polymers. J. Chem. Theory Comput. 2012, 8, 4570–4579. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.L.; Salerno, K.M.; Agrawal, A.; Perahia, D.; Grest, G.S. Coarse-Grained Modeling of Polyethylene Melts: Effect on Dynamics. J. Chem. Theory Comput. 2017, 13, 2890–2896. [Google Scholar] [CrossRef]
- Yoshimoto, Y.; Li, Z.; Kinefuchi, I.; Karniadakis, G.E. Construction of non-Markovian coarse-grained models employing the Mori–Zwanzig formalism and iterative Boltzmann inversion. J. Chem. Phys. 2017, 147, 244110. [Google Scholar] [CrossRef]
- Henderson, R.L. A uniqueness theorem for fluid pair correlation functions. Phys. Lett. A 1974, 49, 197–198. [Google Scholar] [CrossRef]
- Tschöp, W.; Kremer, K.; Batoulis, J.; Bürger, T.; Hahn, O. Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates. Acta Polym. 1998, 49, 61–74. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Ou, X.; Luo, J. Inverse Boltzmann Iterative Multi-Scale Molecular Dynamics Study between Carbon Nanotubes and Amino Acids. Molecules 2022, 27, 2785. https://doi.org/10.3390/molecules27092785
Huang W, Ou X, Luo J. Inverse Boltzmann Iterative Multi-Scale Molecular Dynamics Study between Carbon Nanotubes and Amino Acids. Molecules. 2022; 27(9):2785. https://doi.org/10.3390/molecules27092785
Chicago/Turabian StyleHuang, Wanying, Xinwen Ou, and Junyan Luo. 2022. "Inverse Boltzmann Iterative Multi-Scale Molecular Dynamics Study between Carbon Nanotubes and Amino Acids" Molecules 27, no. 9: 2785. https://doi.org/10.3390/molecules27092785
APA StyleHuang, W., Ou, X., & Luo, J. (2022). Inverse Boltzmann Iterative Multi-Scale Molecular Dynamics Study between Carbon Nanotubes and Amino Acids. Molecules, 27(9), 2785. https://doi.org/10.3390/molecules27092785