Recovering Microalgal Bioresources: A Review of Cell Disruption Methods and Extraction Technologies
Abstract
:1. Introduction
2. Cell Disruption Methods
2.1. Non-Mechanical Methods
2.1.1. Osmotic Shock
2.1.2. Chemical Method
2.1.3. Enzymatic Method
2.1.4. Detergent Method
2.2. Mechanical Methods
2.2.1. Bead Milling/Bead Beating
2.2.2. High-Speed Homogenization
2.2.3. High-Pressure Homogenization
2.2.4. Microwave Irradiation
2.2.5. Ultrasonication
2.2.6. Thermal Treatments
2.2.7. Pulsed Electric Field
3. Pulsed Electric Field-Based Extractions
3.1. Protein Extraction
3.2. Extraction of Carbohydrates and Their Products
3.3. Lipid Extraction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, D.; Andreev, K.; Dupre, M.E. Major Trends in Population Growth Around the World. China CDC Wkly. 2021, 3, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Stephens, E.; Ross, I.L.; King, Z.; Mussgnug, J.H.; Kruse, O.; Posten, C.; Borowitzka, M.A.; Hankamer, B. An Economic and Technical Evaluation of Microalgal Biofuels. Nat. Biotechnol. 2010, 28, 126–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelnour, S.A.; El-Hack, M.E.A.; Arif, M.; Khafaga, A.F.; Taha, A.E. The Application of the Microalgae Chlorella Spp. as a Supplement in Broiler Feed. Worlds Poult. Sci. J. 2019, 75, 305–318. [Google Scholar] [CrossRef]
- Levasseur, W.; Perré, P.; Pozzobon, V. A Review of High Value-Added Molecules Production by Microalgae in Light of the Classification. Biotechnol. Adv. 2020, 41, 107545. [Google Scholar] [CrossRef]
- Brown, M.R. Nutritional Properties of Microalgae for Mariculture. Aquaculture 1997, 151, 315–331. [Google Scholar] [CrossRef]
- Mohn, F.H. Experiences and Strategies in the Recovery of Biomass from Mass Cultures of Microalgae; National Council for Research and Development, Israel and the Gesellschaft fur Strahlen-und Umweltforschung (GSF): Munich, Germany, 1980. [Google Scholar]
- Collis, M.A.; O’Neill, B.K.; Middelberg, A.P.J. Thermal Deactivation Affects Disruption of Escherichia Coli. Biotechnol. Tech. 1995, 9, 91–94. [Google Scholar] [CrossRef]
- Benemann, J.; Koopman, B.; Weissman, J.; Eisenberg, D.; Goebel, R. Development of Microalgae Harvesting and High-Rate Pond Technologies in California; National Council for Research and Development, Israel and the Gesellschaft fur Strahlen-und Umweltforschung (GSF): Munich, Germany, 1980. [Google Scholar]
- Singh, G.; Patidar, S.K. Microalgae Harvesting Techniques: A Review. J. Environ. Manag. 2018, 217, 499–508. [Google Scholar] [CrossRef]
- Patil, P.D.; Gude, V.G.; Mannarswamy, A.; Cooke, P.; Nirmalakhandan, N.; Lammers, P.; Deng, S. Comparison of Direct Transesterification of Algal Biomass under Supercritical Methanol and Microwave Irradiation Conditions. Fuel 2012, 97, 822–831. [Google Scholar] [CrossRef]
- Xu, L.; (Wim) Brilman, D.W.F.; Withag, J.A.M.; Brem, G.; Kersten, S. Assessment of a Dry and a Wet Route for the Production of Biofuels from Microalgae: Energy Balance Analysis. Bioresour. Technol. 2011, 102, 5113–5122. [Google Scholar] [CrossRef]
- Lee, S.Y.; Cho, J.M.; Chang, Y.K.; Oh, Y.-K. Cell Disruption and Lipid Extraction for Microalgal Biorefineries: A Review. Bioresour. Technol. 2017, 244, 1317–1328. [Google Scholar] [CrossRef]
- Ranjith Kumar, R.; Hanumantha Rao, P.; Arumugam, M. Lipid Extraction Methods from Microalgae: A Comprehensive Review. Front. Energy Res. 2015, 2, 61. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Show, P.L.; Ling, T.C.; Chang, J.-S. Single-Step Disruption and Protein Recovery from Chlorella Vulgaris Using Ultrasonication and Ionic Liquid Buffer Aqueous Solutions as Extractive Solvents. Biochem. Eng. J. 2017, 124, 26–35. [Google Scholar] [CrossRef]
- To, T.Q.; Procter, K.; Simmons, B.A.; Subashchandrabose, S.; Atkin, R. Low Cost Ionic Liquid–Water Mixtures for Effective Extraction of Carbohydrate and Lipid from Algae. Faraday Discuss. 2018, 206, 93–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Yang, J.; Lu, H.; Tu, S.-T.; Yan, J. Energy-Efficient Extraction of Fuel from Chlorella Vulgaris by Ionic Liquid Combined with CO2 Capture. Appl. Energy 2015, 160, 648–655. [Google Scholar] [CrossRef]
- Ventura, S.P.M.; Nobre, B.P.; Ertekin, F.; Hayes, M.; Garciá-Vaquero, M.; Vieira, F.; Koc, M.; Gouveia, L.; Aires-Barros, M.R.; Palavra, A.M.F. Extraction of Value-Added Compounds from Microalgae. In Microalgae-Based Biofuels and Bioproducts; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead Publishing Series in Energy; Woodhead Publishing: John Solston, UK, 2017; pp. 461–483. ISBN 978-0-08-101023-5. [Google Scholar]
- Awaluddin, S.A.; Thiruvenkadam, S.; Izhar, S.; Hiroyuki, Y.; Danquah, M.K.; Harun, R. Subcritical Water Technology for Enhanced Extraction of Biochemical Compounds from Chlorella Vulgaris. BioMed Res. Int. 2016, 2016, e5816974. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Meizoso, I.; Jaime, L.; Santoyo, S.; Señoráns, F.J.; Cifuentes, A.; Ibáñez, E. Subcritical Water Extraction and Characterization of Bioactive Compounds from Haematococcus Pluvialis Microalga. J. Pharm. Biomed. Anal. 2010, 51, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, S.M.; Kamal, S.M.M.; Harun, M.R.; Omar, R.; Siajam, S.I. Extraction of Antioxidants from Chlorella Sp. Using Subcritical Water Treatment. IOP Conf. Ser. Mater. Sci. Eng. 2017, 206, 012035. [Google Scholar] [CrossRef]
- Gim, G.H.; Kim, S.W. Optimization of Cell Disruption and Transesterification of Lipids from Botryococcus Braunii LB572. Biotechnol. Bioprocess Eng. 2018, 23, 550–556. [Google Scholar] [CrossRef]
- Halim, R.; Papachristou, I.; Kubisch, C.; Nazarova, N.; Wüstner, R.; Steinbach, D.; Chen, G.Q.; Deng, H.; Frey, W.; Posten, C.; et al. Hypotonic Osmotic Shock Treatment to Enhance Lipid and Protein Recoveries from Concentrated Saltwater Nannochloropsis Slurries. Fuel 2021, 287, 119442. [Google Scholar] [CrossRef]
- Günerken, E.; D’Hondt, E.; Eppink, M.H.M.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R.H. Cell Disruption for Microalgae Biorefineries. Biotechnol. Adv. 2015, 33, 243–260. [Google Scholar] [CrossRef]
- Phong, W.N.; Show, P.L.; Le, C.F.; Tao, Y.; Chang, J.-S.; Ling, T.C. Improving Cell Disruption Efficiency to Facilitate Protein Release from Microalgae Using Chemical and Mechanical Integrated Method. Biochem. Eng. J. 2018, 135, 83–90. [Google Scholar] [CrossRef]
- Sierra, L.S.; Dixon, C.K.; Wilken, L.R. Enzymatic Cell Disruption of the Microalgae Chlamydomonas Reinhardtii for Lipid and Protein Extraction. Algal Res. 2017, 25, 149–159. [Google Scholar] [CrossRef]
- Huang, W.-C.; Kim, J.-D. Cationic Surfactant-Based Method for Simultaneous Harvesting and Cell Disruption of a Microalgal Biomass. Bioresour. Technol. 2013, 149, 579–581. [Google Scholar] [CrossRef]
- Byreddy, A.R.; Gupta, A.; Barrow, C.J.; Puri, M. Comparison of Cell Disruption Methods for Improving Lipid Extraction from Thraustochytrid Strains. Mar. Drugs 2015, 13, 5111–5127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yucetepe, A. A Combination of Osmotic Shock and Ultrasound Pre-Treatments and the Use of Enzyme for Extraction of Proteins from Chlorella Vulgaris Microalgae: Optimization of Extraction Conditions by RSM. J. Food Meas. Charact. 2022, 16, 1516–1527. [Google Scholar] [CrossRef]
- Bremauntz, P.; Fernández-Linares, L.C.; Cañizares-Villanueva, R.O. Osmotic Stress Effect over Carbohydrate Production in a Native Starin of Scenedesmus sp. Nat. Resour. 2014, 5, 5–9. [Google Scholar] [CrossRef]
- Rakesh, S.; Dhar, D.W.; Prasanna, R.; Saxena, A.K.; Saha, S.; Shukla, M.; Sharma, K. Cell Disruption Methods for Improving Lipid Extraction Efficiency in Unicellular Microalgae. Eng. Life Sci. 2015, 15, 443–447. [Google Scholar] [CrossRef]
- González-González, L.M.; Astals, S.; Pratt, S.; Jensen, P.D.; Schenk, P.M. Impact of Osmotic Shock Pre-Treatment on Microalgae Lipid Extraction and Subsequent Methane Production. Bioresour. Technol. Rep. 2019, 7, 100214. [Google Scholar] [CrossRef]
- González-González, L.M.; Astals, S.; Pratt, S.; Jensen, P.D.; Schenk, P.M. Osmotic Shock Pre-Treatment of Chaetoceros Muelleri Wet Biomass Enhanced Solvent-Free Lipid Extraction and Biogas Production. Algal Res. 2021, 54, 102177. [Google Scholar] [CrossRef]
- Krishna Koyande, A.; Tanzil, V.; Murraly Dharan, H.; Subramaniam, M.; Robert, R.N.; Lau, P.-L.; Khoiroh, I.; Show, P.-L. Integration of Osmotic Shock Assisted Liquid Biphasic System for Protein Extraction from Microalgae Chlorella Vulgaris. Biochem. Eng. J. 2020, 157, 107532. [Google Scholar] [CrossRef]
- Kapoore, R.V.; Butler, T.O.; Pandhal, J.; Vaidyanathan, S. Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery. Biology 2018, 7, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halim, R.; Danquah, M.K.; Webley, P.A. Extraction of Oil from Microalgae for Biodiesel Production: A Review. Biotechnol. Adv. 2012, 30, 709–732. [Google Scholar] [CrossRef] [PubMed]
- Steriti, A.; Rossi, R.; Concas, A.; Cao, G. A Novel Cell Disruption Technique to Enhance Lipid Extraction from Microalgae. Bioresour. Technol. 2014, 164, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kong, X.; Wang, Z.; Sun, Y.; Zhu, S.; Li, L.; Lv, P. Optimization of Enzymatic Hydrolysis for Effective Lipid Extraction from Microalgae scenedesmus sp. Renew. Energy 2018, 125, 1049–1057. [Google Scholar] [CrossRef]
- Weber, S.; Grande, P.M.; Blank, L.M.; Klose, H. Insights into Cell Wall Disintegration of Chlorella Vulgaris. PLoS ONE 2022, 17, e0262500. [Google Scholar] [CrossRef]
- Siddiki, S.Y.A.; Mofijur, M.; Kumar, P.S.; Ahmed, S.F.; Inayat, A.; Kusumo, F.; Badruddin, I.A.; Khan, T.M.Y.; Nghiem, L.D.; Ong, H.C.; et al. Microalgae Biomass as a Sustainable Source for Biofuel, Biochemical and Biobased Value-Added Products: An Integrated Biorefinery Concept. Fuel 2022, 307, 121782. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, M.; Saraiva, J.A.; Martins, A.P.; Pinto, C.A.; Prieto, M.A.; Simal-Gandara, J.; Cao, H.; Xiao, J.; Barba, F.J. Extraction of Lipids from Microalgae Using Classical and Innovative Approaches. Food Chem. 2022, 384, 132236. [Google Scholar] [CrossRef]
- Zheng, Y.; Xiao, R.; Roberts, M. Polymer-Enhanced Enzymatic Microalgal Cell Disruption for Lipid and Sugar Recovery. Algal Res. 2016, 14, 100–108. [Google Scholar] [CrossRef]
- Gomes, T.A.; Zanette, C.M.; Spier, M.R. An Overview of Cell Disruption Methods for Intracellular Biomolecules Recovery. Prep. Biochem. Biotechnol. 2020, 50, 635–654. [Google Scholar] [CrossRef]
- Zuorro, A.; Lavecchia, R.; Maffei, G.; Marra, F.; Miglietta, S.; Petrangeli, A.; Familiari, G.; Valentea, T. Enhanced Lipid Extraction from Unbroken Microalgal Cells Using Enzymes. Chem. Eng. Trans. 2015, 43, 211–216. [Google Scholar] [CrossRef]
- Liang, K.; Zhang, Q.; Cong, W. Enzyme-Assisted Aqueous Extraction of Lipid from Microalgae. J. Agric. Food Chem. 2012, 60, 11771–11776. [Google Scholar] [CrossRef]
- Alavijeh, R.S.; Karimi, K.; Wijffels, R.H.; van den Berg, C.; Eppink, M. Combined Bead Milling and Enzymatic Hydrolysis for Efficient Fractionation of Lipids, Proteins, and Carbohydrates of Chlorella Vulgaris Microalgae. Bioresour. Technol. 2020, 309, 123321. [Google Scholar] [CrossRef] [PubMed]
- Soto-Sierra, L.; Wilken, L.R.; Dixon, C.K. Aqueous Enzymatic Protein and Lipid Release from the Microalgae Chlamydomonas Reinhardtii. Bioresour. Bioprocess. 2020, 7, 46. [Google Scholar] [CrossRef]
- Geciova, J.; Bury, D.; Jelen, P. Methods for Disruption of Microbial Cells for Potential Use in the Dairy Industry—A Review. Int. Dairy J. 2002, 12, 541–553. [Google Scholar] [CrossRef]
- Reddy, A.; Majumder, A.B. Use of a Combined Technology of Ultrasonication, Three-Phase Partitioning, and Aqueous Enzymatic Oil Extraction for the Extraction of Oil from Spirogyra sp. J. Eng. 2014, 2014, e740631. [Google Scholar] [CrossRef] [Green Version]
- Ghaly, M. Microalgae Oil Extraction Pre-Treatment Methods: Critical Review and Comparative Analysis. J. Fundam. Renew. Energy Appl. 2015, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Harun, R.; Danquah, M.K. Influence of Acid Pre-Treatment on Microalgal Biomass for Bioethanol Production. Process. Biochem. 2011, 46, 304–309. [Google Scholar] [CrossRef]
- Halim, R.; Harun, R.; Danquah, M.K.; Webley, P.A. Microalgal Cell Disruption for Biofuel Development. Appl. Energy 2012, 91, 116–121. [Google Scholar] [CrossRef]
- Farooq, W.; Mishra, S.K.; Moon, M.; Suh, W.I.; Shrivastav, A.; Kumar, K.; Kwon, J.H.; Park, M.S.; Yang, J.-W. Energy Efficient Process for Microalgae Cell Disruption for Oil Recovery Using Triiodide Resin. Algal Res. 2016, 13, 102–108. [Google Scholar] [CrossRef]
- Harun, R.; Jason, W.S.Y.; Cherrington, T.; Danquah, M.K. Exploring Alkaline Pre-Treatment of Microalgal Biomass for Bioethanol Production. Appl. Energy 2011, 88, 3464–3467. [Google Scholar] [CrossRef]
- Corrêa, P.S.; Morais Júnior, W.G.; Martins, A.A.; Caetano, N.S.; Mata, T.M. Microalgae Biomolecules: Extraction, Separation and Purification Methods. Processes 2020, 9, 10. [Google Scholar] [CrossRef]
- Wang, M.; Chen, S.; Zhou, W.; Yuan, W.; Wang, D. Algal Cell Lysis by Bacteria: A Review and Comparison to Conventional Methods. Algal Res. 2020, 46, 101794. [Google Scholar] [CrossRef]
- Tamer, I.M.; Moo-Young, M.Y. Chisti Optimization of Poly(β-Hydroxybutyric Acid) Recovery from Alcaligenes Latus: Combined Mechanical and Chemical Treatments. Bioprocess. Eng. 1998, 19, 459–468. [Google Scholar] [CrossRef]
- Postma, P.R.; Suarez-Garcia, E.; Safi, C.; Yonathan, K.; Olivieri, G.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M. Energy Efficient Bead Milling of Microalgae: Effect of Bead Size on Disintegration and Release of Proteins and Carbohydrates. Bioresour. Technol. 2017, 224, 670–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cell Disruption Technologies—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/B9780081010235000066 (accessed on 19 August 2021).
- Quesada-Salas, M.C.; Delfau-Bonnet, G.; Willig, G.; Préat, N.; Allais, F.; Ioannou, I. Optimization and Comparison of Three Cell Disruption Processes on Lipid Extraction from Microalgae. Processes 2021, 9, 369. [Google Scholar] [CrossRef]
- Suarez Garcia, E.; van Leeuwen, J.; Safi, C.; Sijtsma, L.; Eppink, M.H.M.; Wijffels, R.H.; van den Berg, C. Selective and Energy Efficient Extraction of Functional Proteins from Microalgae for Food Applications. Bioresour. Technol. 2018, 268, 197–203. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Yoo, C.; Jun, S.-Y.; Ahn, C.-Y.; Oh, H.-M. Comparison of Several Methods for Effective Lipid Extraction from Microalgae. Bioresour. Technol. 2010, 101, S75–S77. [Google Scholar] [CrossRef]
- Alhattab, M.; Kermanshahi-Pour, A.; Brooks, M.S.-L. Microalgae Disruption Techniques for Product Recovery: Influence of Cell Wall Composition. J. Appl. Phycol. 2019, 31, 61–88. [Google Scholar] [CrossRef]
- Zheng, H.; Yin, J.; Gao, Z.; Huang, H.; Ji, X.; Dou, C. Disruption of Chlorella Vulgaris Cells for the Release of Biodiesel-Producing Lipids: A Comparison of Grinding, Ultrasonication, Bead Milling, Enzymatic Lysis, and Microwaves. Appl. Biochem. Biotechnol. 2011, 164, 1215–1224. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Muylaert, K.; Foubert, I. Optimization of an Analytical Procedure for Extraction of Lipids from Microalgae. J. Am. Oil Chem. Soc. 2012, 89, 189–198. [Google Scholar] [CrossRef]
- Investigations on Cell Disruption of Oleaginous Microorganisms: Hydrochloric Acid Digestion Is an Effective Method for Lipid Extraction—Yu—2015—European Journal of Lipid Science and Technology—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/ejlt.201400195 (accessed on 19 August 2021).
- Safi, C.; Frances, C.; Ursu, A.V.; Laroche, C.; Pouzet, C.; Vaca-Garcia, C.; Pontalier, P.-Y. Understanding the Effect of Cell Disruption Methods on the Diffusion of Chlorella Vulgaris Proteins and Pigments in the Aqueous Phase. Algal Res. 2015, 8, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Postma, P.R.; Miron, T.L.; Olivieri, G.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M. Mild Disintegration of the Green Microalgae Chlorella Vulgaris Using Bead Milling. Bioresour. Technol. 2015, 184, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.-D.; Chen, C.-Y.; Lu, W.-C.; Wan, H.-P.; Ho, S.-H.; Chang, J.-S. Enhancing the Oil Extraction Efficiency of Chlorella Vulgaris with Cell-Disruptive Pretreatment Using Active Extracellular Substances from Bacillus Thuringiensis ITRI-G1. Biochem. Eng. J. 2015, 101, 185–190. [Google Scholar] [CrossRef]
- Extraction of Lipids and Pigments of Chlorella Vulgaris by Supercritical Carbon Dioxide: Influence of Bead Milling on Extraction Performance|SpringerLink. Available online: https://link.springer.com/article/10.1007/s10811-013-0212-3 (accessed on 19 August 2021).
- Zhang, A.; Deng, J.; Liu, X.; He, P.; He, L.; Zhang, F.; Linhardt, R.J.; Sun, P. Structure and Conformation of α-Glucan Extracted from Agaricus Blazei Murill by High-Speed Shearing Homogenization. Int. J. Biol. Macromol. 2018, 113, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Vauthier, C.; Ponchel, G. Polymer Nanoparticles for Nanomedicines: A Guide for Their Design, Preparation and Development; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-41421-8. [Google Scholar]
- Guedes, A.C.; Amaro, H.M.; Gião, M.S.; Malcata, F.X. Optimization of ABTS Radical Cation Assay Specifically for Determination of Antioxidant Capacity of Intracellular Extracts of Microalgae and Cyanobacteria. Food Chem. 2013, 138, 638–643. [Google Scholar] [CrossRef]
- Kwak, M.; Kang, S.G.; Hong, W.-K.; Han, J.-I.; Chang, Y.K. Simultaneous Cell Disruption and Lipid Extraction of Wet Aurantiochytrium sp. KRS101 Using a High Shear Mixer. Bioprocess. Biosyst. Eng. 2018, 41, 671–678. [Google Scholar] [CrossRef] [PubMed]
- González-Delgado, Á.D.; Kafarov, V. Microalgae Based Biorefinery: Evaluation of Oil Extraction Methods in Terms of Efficiency, Costs, Toxicity and Energy in Lab-Scale. Rev. ION 2013, 26, 27–39. [Google Scholar]
- Samarasinghe, N.; Fernando, S.; Lacey, R.; Faulkner, W.B. Algal Cell Rupture Using High Pressure Homogenization as a Prelude to Oil Extraction. Renew. Energy 2012, 48, 300–308. [Google Scholar] [CrossRef]
- Spiden, E.M.; Yap, B.H.J.; Hill, D.R.A.; Kentish, S.E.; Scales, P.J.; Martin, G.J.O. Quantitative Evaluation of the Ease of Rupture of Industrially Promising Microalgae by High Pressure Homogenization. Bioresour. Technol. 2013, 140, 165–171. [Google Scholar] [CrossRef]
- Mulchandani, K.; Kar, J.R.; Singhal, R.S. Extraction of Lipids from Chlorella Saccharophila Using High-Pressure Homogenization Followed by Three Phase Partitioning. Appl. Biochem. Biotechnol. 2015, 176, 1613–1626. [Google Scholar] [CrossRef]
- Xie, Y.; Ho, S.-H.; Chen, C.-N.N.; Chen, C.-Y.; Jing, K.; Ng, I.-S.; Chen, J.; Chang, J.-S.; Lu, Y. Disruption of Thermo-Tolerant Desmodesmus Sp. F51 in High Pressure Homogenization as a Prelude to Carotenoids Extraction. Biochem. Eng. J. 2016, 109, 243–251. [Google Scholar] [CrossRef]
- Cho, S.-C.; Choi, W.-Y.; Oh, S.-H.; Lee, C.-G.; Seo, Y.-C.; Kim, J.-S.; Song, C.-H.; Kim, G.-V.; Lee, S.-Y.; Kang, D.-H.; et al. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process. J. Biomed. Biotechnol. 2012, 2012, 359432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernaerts, T.M.M.; Gheysen, L.; Foubert, I.; Hendrickx, M.E.; Van Loey, A.M. Evaluating Microalgal Cell Disruption upon Ultra High Pressure Homogenization. Algal Res. 2019, 42, 101616. [Google Scholar] [CrossRef]
- Halim, R.; Rupasinghe, T.W.T.; Tull, D.L.; Webley, P.A. Mechanical Cell Disruption for Lipid Extraction from Microalgal Biomass. Bioresour. Technol. 2013, 140, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.; Islam, M.A.; Khalid, Z.B.; Faizal, C.K.M.; Khan, M.M.R.; Yousuf, A. Chapter 9—Microalgal Cell Disruption and Lipid Extraction Techniques for Potential Biofuel Production. In Microalgae Cultivation for Biofuels Production; Yousuf, A., Ed.; Academic Press: Amsterdam, The Netherlands, 2020; pp. 129–147. ISBN 978-0-12-817536-1. [Google Scholar]
- Piasecka, A.; Krzeminska, I.; Tys, J. Physical Methods of Microalgal Biomass Pretreatment. Int. Agrophysics 2014, 28, 3. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, S.; Allen, J.D.; Kanitkar, A.; Boldor, D. Oil Extraction from Scenedesmus Obliquus Using a Continuous Microwave System—Design, Optimization, and Quality Characterization. Bioresour. Technol. 2011, 102, 3396–3403. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Sun, J.; Huang, Y.; Feng, J.; Zhou, J.; Cen, K. Dynamic Microstructures and Fractal Characterization of Cell Wall Disruption for Microwave Irradiation-Assisted Lipid Extraction from Wet Microalgae. Bioresour. Technol. 2013, 150, 67–72. [Google Scholar] [CrossRef]
- Viner, K.J.; Champagne, P.; Jessop, P.G. Comparison of Cell Disruption Techniques Prior to Lipid Extraction from Scenedesmus Sp. Slurries for Biodiesel Production Using Liquid CO2. Green Chem. 2018, 20, 4330–4338. [Google Scholar] [CrossRef]
- Efficacy of Drying and Cell Disruption Techniques on Lipid Recovery from Microalgae for Biodiesel Production—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0016236114002075 (accessed on 19 August 2021).
- Soh, L.; Zimmerman, J. Biodiesel Production: The Potential of Algal Lipids Extracted with Supercritical Carbon Dioxide. Green Chem. 2011, 13, 1422–1429. [Google Scholar] [CrossRef]
- Optimization of Microalgae Oil Extraction under Ultrasound and Microwave Irradiation—Bermúdez Menéndez—2014—Journal of Chemical Technology & Biotechnology—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.4272 (accessed on 19 August 2021).
- Bio-Diesel Production Directly from the Microalgae Biomass of Nannochloropsis by Microwave and Ultrasound Radiation—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0960852410019346 (accessed on 19 August 2021).
- Surendhiran, D.; Vijay, M. Effect of Various Pretreatment for Extracting Intracellular Lipid from Nannochloropsis Oculata under Nitrogen Replete and Depleted Conditions. ISRN Chem. Eng. 2014, 2014, 536310. [Google Scholar] [CrossRef] [Green Version]
- Lorente, E.; Farriol, X.; Salvadó, J. Steam Explosion as a Fractionation Step in Biofuel Production from Microalgae. Fuel Process. Technol. 2015, 131, 93–98. [Google Scholar] [CrossRef]
- Prommuak, C.; Pavasant, P.; Quitain, A.T.; Goto, M.; Shotipruk, A. Microalgal Lipid Extraction and Evaluation of Single-Step Biodiesel Production. Eng. J. 2012, 16, 157–166. [Google Scholar] [CrossRef]
- Kim, J.; Yoo, G.; Lee, H.; Lim, J.; Kim, K.; Kim, C.W.; Park, M.S.; Yang, J.-W. Methods of Downstream Processing for the Production of Biodiesel from Microalgae. Biotechnol. Adv. 2013, 31, 862–876. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Ma, H.; Wang, T.; Zheng, H. Alternating Two-Frequency Countercurrent Ultrasonic-Assisted Extraction of Protein and Polysaccharide from Porphyra Yezoensis. Trans. Chin. Soc. Agric. Eng. 2013, 29, 285–292. [Google Scholar]
- Sivaramakrishnan, R.; Incharoensakdi, A. Low Power Ultrasound Treatment for the Enhanced Production of Microalgae Biomass and Lipid Content. Biocatal. Agric. Biotechnol. 2019, 20, 101230. [Google Scholar] [CrossRef]
- Ma, G.; Mu, R.; Capareda, S.C.; Qi, F. Use of Ultrasound for Aiding Lipid Extraction and Biodiesel Production of Microalgae Harvested by Chitosan. Environ. Technol. 2020, 42, 4064–4071. [Google Scholar] [CrossRef]
- Xie, Z.; Pei, H.; Zhang, L.; Yang, Z.; Nie, C.; Hou, Q.; Yu, Z. Accelerating Lipid Production in Freshwater Alga Chlorella Sorokiniana SDEC-18 by Seawater and Ultrasound during the Stationary Phase. Renew. Energy 2020, 161, 448–456. [Google Scholar] [CrossRef]
- Gordalina, M.; Pinheiro, H.M.; Mateus, M.; da Fonseca, M.M.R.; Cesário, M.T. Macroalgae as Protein Sources—A Review on Protein Bioactivity, Extraction, Purification and Characterization. Appl. Sci. 2021, 11, 7969. [Google Scholar] [CrossRef]
- Janczyk, P.; Wolf, C.; Souffrant, W.B. Evaluation of Nutritional Value and Safety of the Green Micro-Algae Chlorella Vulgaris Treated with Novel Processing Methods. Arch. Zootech. 2005, 8, 136–151. [Google Scholar]
- González-Balderas, R.M.; Velásquez-Orta, S.B.; Valdez-Vazquez, I.; Orta Ledesma, M.T. Intensified Recovery of Lipids, Proteins, and Carbohydrates from Wastewater-Grown Microalgae Desmodesmus Sp. by Using Ultrasound or Ozone. Ultrason. Sonochem. 2020, 62, 104852. [Google Scholar] [CrossRef]
- Martínez-Sanz, M.; Garrido-Fernández, A.; Mijlkovic, A.; Krona, A.; Martínez-Abad, A.; Coll-Marqués, J.M.; López-Rubio, A.; Lopez-Sanchez, P. Composition and Rheological Properties of Microalgae Suspensions: Impact of Ultrasound Processing. Algal Res. 2020, 49, 101960. [Google Scholar] [CrossRef]
- Khawli, F.A.; Martí-Quijal, F.J.; Pallarés, N.; Barba, F.J.; Ferrer, E. Ultrasound Extraction Mediated Recovery of Nutrients and Antioxidant Bioactive Compounds from Phaeodactylum Tricornutum Microalgae. Appl. Sci. 2021, 11, 1701. [Google Scholar] [CrossRef]
- Bae, M.-G.; Choi, J.-H.; Park, J.-R.; Jeong, S.-H. Cell Disruption of Microalgae by Low-Frequency Non-Focused Ultrasound. J. Korean Soc. Manuf. Process. Eng. 2020, 19, 111–118. [Google Scholar] [CrossRef]
- Fabrizio, D.C.; Pietro, A.; Francesca, P. Ultrasound-Assisted Extraction of Carbohydrates from Microalgae. Chem. Eng. Trans. 2021, 86, 25–30. [Google Scholar] [CrossRef]
- Khoo, K.S.; Chew, K.W.; Yew, G.Y.; Manickam, S.; Ooi, C.W.; Show, P.L. Integrated Ultrasound-Assisted Liquid Biphasic Flotation for Efficient Extraction of Astaxanthin from Haematococcus Pluvialis. Ultrason. Sonochem. 2020, 67, 105052. [Google Scholar] [CrossRef]
- Hao, X.; Suo, H.; Peng, H.; Xu, P.; Gao, X.; Du, S. Simulation and Exploration of Cavitation Process during Microalgae Oil Extracting with Ultrasonic-Assisted for Hydrogen Production. Int. J. Hydrogen Energy 2021, 46, 2890–2898. [Google Scholar] [CrossRef]
- Barba, F.J.; Grimi, N.; Vorobiev, E. New Approaches for the Use of Non-Conventional Cell Disruption Technologies to Extract Potential Food Additives and Nutraceuticals from Microalgae. Food Eng. Rev. 2015, 7, 45–62. [Google Scholar] [CrossRef]
- Kadam, S.U.; Álvarez, C.; Tiwari, B.K.; O’Donnell, C.P. Extraction and Characterization of Protein from Irish Brown Seaweed Ascophyllum Nodosum. Food Res. Int. 2017, 99, 1021–1027. [Google Scholar] [CrossRef]
- Priyanka, S.; Kirubagaran, R.; Leema, J.T.M. Optimization of Ultrasound-Assisted Extraction (UAE) of Zeaxanthin from Marine Microalgae Dunaliella Tertiolecta (NIOT 141) Using Response Surface Methodology. Res. J. Pharm. Technol. 2021, 14, 1729–1735. [Google Scholar] [CrossRef]
- Mechanistic Assessment of Microalgal Lipid Extraction|Industrial & Engineering Chemistry Research. Available online: https://pubs.acs.org/doi/abs/10.1021/ie9016557 (accessed on 20 August 2021).
- Guo, H.; Cheng, J.; Mao, Y.; Qian, L.; Yang, W.; Park, J.-Y. Synergistic Effect of Ultrasound and Switchable Hydrophilicity Solvent Promotes Microalgal Cell Disruption and Lipid Extraction for Biodiesel Production. Bioresour. Technol. 2022, 343, 126087. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Hu, X.; Su, W.; Zhong, M. Combined Enzymatic and Mechanical Cell Disruption and Lipid Extraction of Green Alga Neochloris Oleoabundans. Int. J. Mol. Sci. 2015, 16, 7707–7722. [Google Scholar] [CrossRef] [PubMed]
- Effect of Temperature and Nitrogen Concentration on the Growth and Lipid Content of Nannochloropsis Oculata and Chlorella Vulgaris for Biodiesel Production—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0255270109000415 (accessed on 20 August 2021).
- Balasubramanian, R.K.; Yen Doan, T.T.; Obbard, J.P. Factors Affecting Cellular Lipid Extraction from Marine Microalgae. Chem. Eng. J. 2013, 215–216, 929–936. [Google Scholar] [CrossRef]
- Effect of Ultrasonication and Grinding on the Determination of Lipid Class Content of Microalgae Harvested on Filters|SpringerLink. Available online: https://link.springer.com/article/10.1007/s11745-003-1178-6 (accessed on 20 August 2021).
- Lorente, E.; Hapońska, M.; Clavero, E.; Torras, C.; Salvadó, J. Steam Explosion and Vibrating Membrane Filtration to Improve the Processing Cost of Microalgae Cell Disruption and Fractionation. Processes 2018, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Shehadul Islam, M.; Aryasomayajula, A.; Selvaganapathy, P.R. A Review on Macroscale and Microscale Cell Lysis Methods. Micromachines 2017, 8, 83. [Google Scholar] [CrossRef]
- Campanella, A.; Muncrief, R.; Harold, M.P.; Griffith, D.C.; Whitton, N.M.; Weber, R.S. Thermolysis of Microalgae and Duckweed in a CO2-Swept Fixed-Bed Reactor: Bio-Oil Yield and Compositional Effects. Bioresour. Technol. 2012, 109, 154–162. [Google Scholar] [CrossRef]
- Chen, L.; Li, R.; Ren, X.; Liu, T. Improved Aqueous Extraction of Microalgal Lipid by Combined Enzymatic and Thermal Lysis from Wet Biomass of Nannochloropsis Oceanica. Bioresour. Technol. 2016, 214, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Florentino de Souza Silva, A.P.; Costa, M.C.; Colzi Lopes, A.; Fares Abdala Neto, E.; Carrhá Leitão, R.; Mota, C.R.; Bezerra dos Santos, A. Comparison of Pretreatment Methods for Total Lipids Extraction from Mixed Microalgae. Renew. Energy 2014, 63, 762–766. [Google Scholar] [CrossRef]
- Spiden, E.M.; Scales, P.J.; Yap, B.H.J.; Kentish, S.E.; Hill, D.R.A.; Martin, G.J.O. The Effects of Acidic and Thermal Pretreatment on the Mechanical Rupture of Two Industrially Relevant Microalgae: Chlorella sp. and Navicula sp. Algal Res. 2015, 7, 5–10. [Google Scholar] [CrossRef]
- Canelli, G.; Kuster, I.; Jaquenod, L.; Buchmann, L.; Murciano Martínez, P.; Rohfritsch, Z.; Dionisi, F.; Bolten, C.J.; Nanni, P.; Mathys, A. Pulsed Electric Field Treatment Enhances Lipid Bioaccessibility While Preserving Oxidative Stability in Chlorella Vulgaris. Innov. Food Sci. Emerg. Technol. 2022, 75, 102897. [Google Scholar] [CrossRef]
- Goettel, M.; Eing, C.; Gusbeth, C.; Straessner, R.; Frey, W. Pulsed Electric Field Assisted Extraction of Intracellular Valuables from Microalgae. Algal Res. 2013, 2, 401–408. [Google Scholar] [CrossRef]
- Zbinden, M.D.A.; Sturm, B.S.M.; Nord, R.D.; Carey, W.J.; Moore, D.; Shinogle, H.; Stagg-Williams, S.M. Pulsed Electric Field (PEF) as an Intensification Pretreatment for Greener Solvent Lipid Extraction from Microalgae. Biotechnol. Bioeng. 2013, 110, 1605–1615. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, B.; Guionet, A.; Akiyama, H.; Hosano, H. Oil Extraction From Microalgae by Pulsed Power as a Renewable Source of Energy. IEEE Trans. Plasma Sci. 2018, 46, 3518–3523. [Google Scholar] [CrossRef]
- Lai, Y.S.; Parameswaran, P.; Li, A.; Baez, M.; Rittmann, B.E. Effects of Pulsed Electric Field Treatment on Enhancing Lipid Recovery from the Microalga, Scenedesmus. Bioresour. Technol. 2014, 173, 457–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eing, C.; Goettel, M.; Straessner, R.; Gusbeth, C.; Frey, W. Pulsed Electric Field Treatment of Microalgae—Benefits for Microalgae Biomass Processing. IEEE Trans. Plasma Sci. 2013, 41, 2901–2907. [Google Scholar] [CrossRef]
- Scherer, D.; Krust, D.; Frey, W.; Mueller, G.; Nick, P.; Gusbeth, C. Pulsed Electric Field (PEF)-Assisted Protein Recovery from Chlorella Vulgaris Is Mediated by an Enzymatic Process after Cell Death. Algal Res. 2019, 41, 101536. [Google Scholar] [CrossRef]
- Straessner, R.; Silve, A.; Eing, C.; Rocke, S.; Wuestner, R.; Leber, K.; Mueller, G.; Frey, W. Microalgae Precipitation in Treatment Chambers during Pulsed Electric Field (PEF) Processing. Innov. Food Sci. Emerg. Technol. 2016, 37, 391–399. [Google Scholar] [CrossRef]
- Pataro, G.; Goettel, M.; Straessner, R.; Gusbeth, C.; Ferrari, G. Wolfgang Frey Effect of Pef Treatment on Extraction of Valuable Compounds from Microalgae C. vulgaris. Chem. Eng. Trans. 2017, 57, 67–72. [Google Scholar] [CrossRef]
- Silve, A.; Kian, C.B.; Papachristou, I.; Kubisch, C.; Nazarova, N.; Wüstner, R.; Leber, K.; Strässner, R.; Frey, W. Incubation Time after Pulsed Electric Field Treatment of Microalgae Enhances the Efficiency of Extraction Processes and Enables the Reduction of Specific Treatment Energy. Bioresour. Technol. 2018, 269, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Villagracia, A.R.C.; Enriquez, J.I.G.; Moreno, J.L.; David, M.Y.; Arboleda, N.B., Jr.; Lin, O.H.; Ubando, A.T.; Culaba, A.B.; Cuello, J. An Investigation on the Effects of Time-Independent Electric Field on Periodic DPPC Lipid Bilayer Using Molecular Dynamics for Microalgae Drying. In Proceedings of the DLSU Research Congress 2017, De La Salle University, Manila, Philippines, 20–22 June 2017. [Google Scholar]
- Papachristou, I.; Silve, A.; Jianu, A.; Wüstner, R.; Nazarova, N.; Müller, G.; Frey, W. Evaluation of Pulsed Electric Fields Effect on the Microalgae Cell Mechanical Stability through High Pressure Homogenization. Algal Res. 2020, 47, 101847. [Google Scholar] [CrossRef] [Green Version]
- Gorte, O.; Nazarova, N.; Papachristou, I.; Wüstner, R.; Leber, K.; Syldatk, C.; Ochsenreither, K.; Frey, W.; Silve, A. Pulsed Electric Field Treatment Promotes Lipid Extraction on Fresh Oleaginous Yeast Saitozyma Podzolica DSM 27192. Front. Bioeng. Biotechnol. 2020, 8, 575379. [Google Scholar] [CrossRef]
- Guionet, A.; Hosseini, B.; Akiyama, H.; Hosano, H. Medium’s Conductivity and Stage of Growth as Crucial Parameters for Efficient Hydrocarbon Extraction by Electric Field from Colonial Micro-Algae. Bioelectrochemistry 2018, 123, 88–93. [Google Scholar] [CrossRef]
- Einarsdóttir, R.; Þórarinsdóttir, K.A.; Aðalbjörnsson, B.V.; Guðmundsson, M.; Marteinsdóttir, G.; Kristbergsson, K. The Effect of Pulsed Electric Field-Assisted Treatment Parameters on Crude Aqueous Extraction of Laminaria Digitata. J. Appl. Phycol. 2021, 33, 3287–3296. [Google Scholar] [CrossRef]
- Zhang, R.; Marchal, L.; Vorobiev, E.; Grimi, N. Effect of Combined Pulsed Electric Energy and High Pressure Homogenization on Selective and Energy Efficient Extraction of Bio-Molecules from Microalga Parachlorella Kessleri. LWT 2021, 141, 110901. [Google Scholar] [CrossRef]
- Käferböck, A.; Smetana, S.; de Vos, R.; Schwarz, C.; Toepfl, S.; Parniakov, O. Sustainable Extraction of Valuable Components from Spirulina Assisted by Pulsed Electric Fields Technology. Algal Res. 2020, 48, 101914. [Google Scholar] [CrossRef]
- Guo, B.F.; Silve, A.; Frey, W.; Hornung, U.; Dahmen, N. Hydrothermal Liquefaction of Raw and Lipid-Extracted Microalgae with Assist of Pulsed Electric Field Pretreatment. In Proceedings of the 25th European Biomass Conference and Exhibition, Stockholm, Sweden, 12–15 June 2017; pp. 956–959. [Google Scholar] [CrossRef]
- Papachristou, I.; Akaberi, S.; Silve, A.; Navarro-López, E.; Wüstner, R.; Leber, K.; Nazarova, N.; Müller, G.; Frey, W. Analysis of the Lipid Extraction Performance in a Cascade Process for Scenedesmus Almeriensis Biorefinery. Biotechnol. Biofuels 2021, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, A.G. Pulse Electric Field Technology for Wastewater and Biomass Residues’ Improved Valorization. Processes 2021, 9, 736. [Google Scholar] [CrossRef]
- Outdoor Cultivation of a Novel Isolate of the Microalgae Scenedesmus sp. and the Evaluation of Its Potential as a Novel Protein Crop—Olsen—2021—Physiologia Plantarum—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/ppl.13532 (accessed on 14 October 2021).
- Liu, B.; Wang, Z.; Feng, L. Effects of Reaction Parameter on Catalytic Hydrothermal Liquefaction of Microalgae into Hydrocarbon Rich Bio-Oil. J. Energy Inst. 2021, 94, 22–28. [Google Scholar] [CrossRef]
- Nagarajan, D.; Varjani, S.; Lee, D.-J.; Chang, J.-S. Sustainable Aquaculture and Animal Feed from Microalgae—Nutritive Value and Techno-Functional Components. Renew. Sustain. Energy Rev. 2021, 150, 111549. [Google Scholar] [CrossRef]
- Hasin, M.; Gohain, M.; Deka, D. Bio-Ethanol Production from Carbohydrate-Rich Microalgal Biomass: Scenedesmus Obliquus. In Proceedings of the 7th International Conference on Advances in Energy Research, Mumbai, India, 10–12 December 2019; Bose, M., Modi, A., Eds.; Springer: Singapore, 2021; pp. 1215–1224. [Google Scholar]
- Liu, H.; Ru, G.; Zhang, Z.; Li, Y.; Xia, C.; Lu, C.; Zhang, Q. Experimental Study on Optimization of Initial PH for Photo-Fermentation Bio-Hydrogen under Different Enzymatic Hydrolysis of Chlorella Vulgaris. Bioresour. Technol. 2021, 338, 125571. [Google Scholar] [CrossRef]
- Kumari, N.; Singh, R.K. Bio-Diesel Production from Airborne Algae. Environ. Chall. 2021, 5, 100210. [Google Scholar] [CrossRef]
- Fleurence, J. Seaweed Proteins: Biochemical, Nutritional Aspects and Potential Uses. Trends Food Sci. Technol. 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Ahmad, I.; Abdullah, N.; Yuzir, A.; Koji, I.; Mohamad, S. Efficacy of Micro Algae as a Nutraceutical and Sustainable Food Supplement. In Proceedings of the 3rd ICA Research Symposium (ICARS), Johor, Malaysia, 22 September 2020. [Google Scholar]
- Lam, G.P.; van der Kolk, J.A.; Chordia, A.; Vermuë, M.H.; Olivieri, G.; Eppink, M.H.M.; Wijffels, R.H. Mild and Selective Protein Release of Cell Wall Deficient Microalgae with Pulsed Electric Field. ACS Sustain. Chem. Eng. 2017, 5, 6046–6053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, G.P.; Postma, P.R.; Fernandes, D.A.; Timmermans, R.A.H.; Vermuë, M.H.; Barbosa, M.J.; Eppink, M.H.M.; Wijffels, R.H.; Olivieri, G. Pulsed Electric Field for Protein Release of the Microalgae Chlorella Vulgaris and Neochloris Oleoabundans. Algal Res. 2017, 24, 181–187. [Google Scholar] [CrossRef]
- Safi, C.; Cabas Rodriguez, L.; Mulder, W.J.; Engelen-Smit, N.; Spekking, W.; van den Broek, L.A.M.; Olivieri, G.; Sijtsma, L. Energy Consumption and Water-Soluble Protein Release by Cell Wall Disruption of Nannochloropsis Gaditana. Bioresour. Technol. 2017, 239, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Samsu, S.; Yassin, F.; Dayou, J. Extraction of Protein from Microalgae Using Low Pulsed Electric Field. ASM Sci. J. 2018, 11, 6. [Google Scholar]
- Buchmann, L.; Brändle, I.; Haberkorn, I.; Hiestand, M.; Mathys, A. Pulsed Electric Field Based Cyclic Protein Extraction of Microalgae towards Closed-Loop Biorefinery Concepts. Bioresour. Technol. 2019, 291, 121870. [Google Scholar] [CrossRef] [PubMed]
- Carullo, D.; Pataro, G.; Donsì, F.; Ferrari, G. Pulsed Electric Fields-Assisted Extraction of Valuable Compounds From Arthrospira Platensis: Effect of Pulse Polarity and Mild Heating. Front. Bioeng. Biotechnol. 2020, 8, 551272. [Google Scholar] [CrossRef]
- Gateau, H.; Blanckaert, V.; Veidl, B.; Burlet-Schiltz, O.; Pichereaux, C.; Gargaros, A.; Marchand, J.; Schoefs, B. Application of Pulsed Electric Fields for the Biocompatible Extraction of Proteins from the Microalga Haematococcus Pluvialis. Bioelectrochemistry 2021, 137, 107588. [Google Scholar] [CrossRef] [PubMed]
- Carullo, D.; Donsì, F.; Ferrari, G.; Pataro, G. Extraction Improvement of Water-Soluble Compounds from Arthrospira Platensis through the Combination of High-Shear Homogenization and Pulsed Electric Fields. Algal Res. 2021, 57, 102341. [Google Scholar] [CrossRef]
- Axelrod, R.; Baumgartner, J.; Tanner, E.; Beyrer, M.; Mathys, A. Effects of Microsecond Pulsed Electric Field (ΜsPEF) and Modular Micro Reaction System (MMRS) Treatments on Whey Protein Aggregation. Int. Dairy J. 2021, 123, 105170. [Google Scholar] [CrossRef]
- Coustets, M.; Al-Karablieh, N.; Thomsen, C.; Teissié, J. Flow Process for Electroextraction of Total Proteins from Microalgae. J. Membr. Biol. 2013, 246, 751–760. [Google Scholar] [CrossRef]
- Grimi, N.; Dubois, A.; Marchal, L.; Jubeau, S.; Lebovka, N.I.; Vorobiev, E. Selective Extraction from Microalgae Nannochloropsis sp. Using Different Methods of Cell Disruption. Bioresour. Technol. 2014, 153, 254–259. [Google Scholar] [CrossRef]
- Parniakov, O.; Barba, F.J.; Grimi, N.; Marchal, L.; Jubeau, S.; Lebovka, N.; Vorobiev, E. Pulsed Electric Field Assisted Extraction of Nutritionally Valuable Compounds from Microalgae Nannochloropsis spp. Using the Binary Mixture of Organic Solvents and Water. Innov. Food Sci. Emerg. Technol. 2015, 27, 79–85. [Google Scholar] [CrossRef]
- Postma, P.R.; Pataro, G.; Capitoli, M.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M.; Olivieri, G.; Ferrari, G. Selective Extraction of Intracellular Components from the Microalga Chlorella Vulgaris by Combined Pulsed Electric Field–Temperature Treatment. Bioresour. Technol. 2016, 203, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Carullo, D.; Abera, B.D.; Casazza, A.A.; Donsì, F.; Perego, P.; Ferrari, G.; Pataro, G. Effect of Pulsed Electric Fields and High Pressure Homogenization on the Aqueous Extraction of Intracellular Compounds from the Microalgae Chlorella Vulgaris. Algal Res. 2018, 31, 60–69. [Google Scholar] [CrossRef]
- Leonhardt, L.; Käferböck, A.; Smetana, S.; de Vos, R.; Toepfl, S.; Parniakov, O. Bio-Refinery of Chlorella Sorokiniana with Pulsed Electric Field Pre-Treatment. Bioresour. Technol. 2020, 301, 122743. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Zhao, X.-Q.; Yen, H.-W.; Ho, S.-H.; Cheng, C.-L.; Lee, D.-J.; Bai, F.-W.; Chang, J.-S. Microalgae-Based Carbohydrates for Biofuel Production. Biochem. Eng. J. 2013, 78, 1–10. [Google Scholar] [CrossRef]
- Markou, G.; Georgakakis, D. Cultivation of Filamentous Cyanobacteria (Blue-Green Algae) in Agro-Industrial Wastes and Wastewaters: A Review. Appl. Energy 2011, 88, 3389–3401. [Google Scholar] [CrossRef]
- Ho, S.-H.; Chen, W.-M.; Chang, J.-S. Scenedesmus Obliquus CNW-N as a Potential Candidate for CO2 Mitigation and Biodiesel Production. Bioresour. Technol. 2010, 101, 8725–8730. [Google Scholar] [CrossRef]
- John, R.P.; Anisha, G.S.; Nampoothiri, K.M.; Pandey, A. Micro and Macroalgal Biomass: A Renewable Source for Bioethanol. Bioresour. Technol. 2011, 102, 186–193. [Google Scholar] [CrossRef]
- Ho, S.-H.; Chen, C.-Y.; Chang, J.-S. Effect of Light Intensity and Nitrogen Starvation on CO2 Fixation and Lipid/Carbohydrate Production of an Indigenous Microalga Scenedesmus Obliquus CNW-N. Bioresour. Technol. 2012, 113, 244–252. [Google Scholar] [CrossRef]
- Jonjaroen, V.; Intra, P.; Chittapun, S. An application of pulsed electric field for intracellular extraction from Chlorella vulgaris TISTR8580. Burapha Sci. J. 2018, 23, 1253–1267. [Google Scholar]
- Haberkorn, I.; Buchmann, L.; Hiestand, M.; Mathys, A. Continuous Nanosecond Pulsed Electric Field Treatments Foster the Upstream Performance of Chlorella Vulgaris-Based Biorefinery Concepts. Bioresour. Technol. 2019, 293, 122029. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Lebovka, N.; Marchal, L.; Vorobiev, E.; Grimi, N. Comparison of Aqueous Extraction Assisted by Pulsed Electric Energy and Ultrasonication: Efficiencies for Different Microalgal Species. Algal Res. 2020, 47, 101857. [Google Scholar] [CrossRef]
- Guionet, A.; Hosseini, B.; Teissié, J.; Akiyama, H.; Hosseini, H. A New Mechanism for Efficient Hydrocarbon Electro-Extraction from Botryococcus Braunii. Biotechnol. Biofuels 2017, 10, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, A.; Kumar, N.; Varjani, S.J.; Guria, C.; Bandopadhyay, R.; Shukla, P.; Banerjee, C. Computational Modelling and Prediction of Microalgae Growth Focused Towards Improved Lipid Production. In Biosynthetic Technology and Environmental Challenges; Varjani, S.J., Parameswaran, B., Kumar, S., Khare, S.K., Eds.; Energy, Environment, and Sustainability; Springer: Singapore, 2018; pp. 223–232. ISBN 978-981-10-7434-9. [Google Scholar]
- Saini, D.K.; Pabbi, S.; Shukla, P. Cyanobacterial Pigments: Perspectives and Biotechnological Approaches. Food Chem. Toxicol. 2018, 120, 616–624. [Google Scholar] [CrossRef]
- Zhu, L.D.; Li, Z.H.; Hiltunen, E. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock. BioMed Res. Int. 2016, 2016, e8792548. [Google Scholar] [CrossRef] [Green Version]
- Silve, A.; Papachristou, I.; Wüstner, R.; Sträßner, R.; Schirmer, M.; Leber, K.; Guo, B.; Interrante, L.; Posten, C.; Frey, W. Extraction of Lipids from Wet Microalga Auxenochlorella Protothecoides Using Pulsed Electric Field Treatment and Ethanol-Hexane Blends. Algal Res. 2018, 29, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Sheng, J.; Vannela, R.; Rittmann, B.E. Evaluation of Cell-Disruption Effects of Pulsed-Electric-Field Treatment of Synechocystis PCC 6803. Environ. Sci. Technol. 2011, 45, 3795–3802. [Google Scholar] [CrossRef]
- La, H.-J.; Choi, G.-G.; Cho, C.; Seo, S.-H.; Srivastava, A.; Jo, B.-H.; Lee, J.-Y.; Jin, Y.-S.; Oh, H.-M. Increased Lipid Productivity of Acutodesmus Dimorphus Using Optimized Pulsed Electric Field. J. Appl. Phycol. 2016, 28, 931–938. [Google Scholar] [CrossRef]
- Han, S.-F.; Jin, W.; Yang, Q.; El-Fatah Abomohra, A.; Zhou, X.; Tu, R.; Chen, C.; Xie, G.-J.; Wang, Q. Application of Pulse Electric Field Pretreatment for Enhancing Lipid Extraction from Chlorella Pyrenoidosa Grown in Wastewater. Renew. Energy 2019, 133, 233–239. [Google Scholar] [CrossRef]
- Yap, B.H.J.; Dumsday, G.J.; Scales, P.J.; Martin, G.J.O. Energy Evaluation of Algal Cell Disruption by High Pressure Homogenisation. Bioresour. Technol. 2015, 184, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Yang, B.; Silve, A.; Akaberi, S.; Scherer, D.; Papachristou, I.; Frey, W.; Hornung, U.; Dahmen, N. Hydrothermal Liquefaction of Residual Microalgae Biomass after Pulsed Electric Field-Assisted Valuables Extraction. Algal Res. 2019, 43, 101650. [Google Scholar] [CrossRef]
- Zhang, R.; Gu, X.; Xu, G.; Fu, X. Improving the Lipid Extraction Yield from Chlorella Based on the Controllable Electroporation of Cell Membrane by Pulsed Electric Field. Bioresour. Technol. 2021, 330, 124933. [Google Scholar] [CrossRef] [PubMed]
- Flisar, K.; Meglic, S.H.; Morelj, J.; Golob, J.; Miklavcic, D. Testing a Prototype Pulse Generator for a Continuous Flow System and Its Use for E. coli Inactivation and Microalgae Lipid Extraction. Bioelectrochem. Amst. Neth. 2014, 100, 44–51. [Google Scholar] [CrossRef]
- Carullo, D.; Abera, B.D.; Scognamiglio, M.; Donsì, F.; Ferrari, G.; Pataro, G. Application of Pulsed Electric Fields and High-Pressure Homogenization in Biorefinery Cascade of C. vulgaris Microalgae. Foods 2022, 11, 471. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Shahid, A.; Haider, M.N.; Amin, M.; Betenbaugh, M.J.; Mehmood, M.A.; Haq, M.A.U.; Syafiuddin, A.; Boopathy, R. Prospects of Multiproduct Algal Biorefineries Involving Cascading Processing of the Biomass Employing a Zero-Waste Approach. Curr. Pollut. Rep. 2022. [Google Scholar] [CrossRef]
- Fu, C.-C.; Hung, T.-C.; Chen, J.-Y.; Su, C.-H.; Wu, W.-T. Hydrolysis of Microalgae Cell Walls for Production of Reducing Sugar and Lipid Extraction. Bioresour. Technol. 2010, 101, 8750–8754. [Google Scholar] [CrossRef]
- Manzoor, F.; Munir, N.; Sharif, N.; Naz, S.; Saleem, F. Harvesting and Processing of Microalgae Biomass Fractions for Biodiesel Production (a Review). Sci Technol. Dev. 2013, 32, 235–243. [Google Scholar]
- Chemat, F.; Zill-e-Huma; Khan, M.K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Luque-García, J.L.; Luque de Castro, M.D. Ultrasound: A Powerful Tool for Leaching. TrAC Trends Anal. Chem. 2003, 22, 41–47. [Google Scholar] [CrossRef]
- Toepfl, S.; Mathys, A.; Heinz, V.; Knorr, D. Review: Potential of High Hydrostatic Pressure and Pulsed Electric Fields for Energy Efficient and Environmentally Friendly Food Processing. Food Rev. Int. 2006, 22, 405–423. [Google Scholar] [CrossRef]
- Joannes, C.; Sipaut, C.S.; Dayou, J.; Yasir, S.M.; Mansa, R.F. The Potential of Using Pulsed Electric Field (PEF) Technology as the Cell Disruption Method to Extract Lipid from Microalgae for Biodiesel Production. Int. J. Renew. Energy Res. IJRER 2015, 5, 598–621. [Google Scholar]
- Buchmann, L. Emerging Pulsed Electric Field Process Development for Bio-Based Applications; ETH Zurich: Zurich, Switzerland, 2020; 212p. [Google Scholar]
- Ranjha, M.M.A.N.; Kanwal, R.; Shafique, B.; Arshad, R.N.; Irfan, S.; Kieliszek, M.; Kowalczewski, P.Ł.; Irfan, M.; Khalid, M.Z.; Roobab, U.; et al. A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules 2021, 26, 4893. [Google Scholar] [CrossRef]
Microalgae | Parameters of Bead-Beating Technique | Extracted Products (%) | Reference |
---|---|---|---|
Nannochloropsis gaditana | BD: 0.4 mm, DW: 10 g kg−1, rotation: 10 m s−1 | Lipid (17.7%) | [59] |
Chlorella vulgaris | BD: 0.4 mm, DW: 25 g L−1, 10 min, 2039 rpm | Lipid (35%) | [45] |
Tetraselmis suecica | BD: 0.4 mm, DW: 100 g L−1, 30 min, 2039 rpm | Lipid (17.6%) | [60] |
1012Scenedesmus sp. (Chlorophyceae) | BD: 0.1 mm, DCW: 0.5 g L−1, 5 min, 2800 rpm | Lipid (9%) | [61] |
Botryococcus sp. (Trebouxiophyceae) | BD: 0.1 mm, DCW: 0.5 g L−1, 5 min, 2800 rpm | Lipid (28%) | [61] |
Chlorella vulgaris (Trebouxiophyceae) | BD: 0.1 mm, DCW: 0.5 g L−1, 5 min, 2800 rpm | Lipid (8%) | [61] |
Tetradesmus dimorphus (Chlorophyceae) | DCW: 40 g L−1, 5 min, borosilicate glass balls: 0.1 mm | FAME (20%) | [62] |
Chlorella sp. (Trebouxiophyceae) | Chamber: 240 mL, 160 mL, 20 min, 1500 rpm, glass beads: 0.40–0.60 mm | Lipid (10%) | [63] |
Phaeodactylum tricornutum (Bacillariophyceae) | DCW: 100 mg, 10 min, 2000 rpm | Lipid (39%) | [64] |
C. sorokiniana (Trebouxiophyceae) | DCW: 25 g L−1, 5 min, 2800 rpm | Lipid (6.6%) | [65] |
Chlorella. vulgaris (Trebouxiophyceae) | BD: 1–1.6 mm, 1–30 min, 2500 rpm | Protein (2–50%) | [66] |
Chlorella. vulgaris (Trebouxiophyceae) | DCW: 25–145 g kg−1, AS: 6–12 m s−1, 3 min | Protein (32–42%) | [67] |
C. vulgaris (Trebouxiophyceae) | DW: 40 mg, speed: 1/30 s, 25 min | Lipid (40%) | [68] |
C. vulgaris (Trebouxiophyceae) | DW: 7.7%, 1 h, 2500 rpm | Lipid (10%) | [69] |
Microalgae | Parameters of Microwave Technique | Extracted Products (%) | Reference |
---|---|---|---|
Nannochloropsis gaditana | DW: 10 g kg−1, T: 91 °C, 5 min | Lipid (49%) | [59] |
Scenedesmus sp. (Chlorophyceae) | DCW: 0.5 g mL−1, T: 100 °C, 5 min, F: 2450 MHz | Lipid (11%) | [61] |
Botryococcus sp. (Trebouxiophyceae) | DCW: 0.5 g mL−1, T: 100 °C, 5 min, F: 2450 MHz | Lipid (29%) | [61] |
Chlorella vulgaris (Trebouxiophyceae) | DCW: 0.5 g mL−1, T: 100 °C, 5 min, F: 2450 MHz | Lipid (10%) | [61] |
Scenedesmus sp. (Chlorophyceae) | DCW: 50 g L−1, T: 100 °C, 10 min, 100 W | Lipid (28.33%) | [87] |
Tetradesmus dimorphus (Chlorophyceae) | DCW: 40 g L−1, T: 100 °C, 5 min | FAME (80%) | [88] |
Chlorella sp. (Trebouxiophyceae) | WB: 5 g L−1, T: 100 °C, 5 min, F: 2450 MHz | Lipid (18%) | [63] |
Nannochloropsis gaditana (Eustigmatophyceae) | T: 60–90 °C, 10–20 min, 25–35 W | Lipid (30–40%) | [89] |
Nannochloropsis (Eustigmatophyceae) | DW: 1 g, 5 min cycle mode, on: 21 s, off: 9 s, F: 2450 MHz | FAME (37%) | [90] |
Nannochloropsis oculata (Eustigmatophyceae) | DCW: 2 g, T: 100 °C, 5–15 min, F: 2455 MHz, 900 W | Lipid (17–27%) | [91] |
Nannochloropsis gaditana (Eustigmatophyceae) | WB: 20 mL, T: 150 °C, 5 min, F: 2450 MHz | Lipid (11.2%) | [92] |
C. sorokiniana (Trebouxiophyceae) | WB: 20 mL, T: 150 °C, 5 min, F: 2450 MHz | Lipid (14.5%) | [92] |
Phaeodactylum tricornutum (Bacillariophyceae) | WB: 20 mL, T: 150 °C, 5 min, F: 2450 MHz | Lipid (27.1%) | [92] |
Chlorococcum sp. (Chlorophyceae) | DCW: 20 g L−1, T: 100 °C, 2–6 min, F: 2450 MHz | Lipid (18–24%) | [30] |
Botryococcus sp. (Trebouxiophyceae) | DCW: 20 g L−1, T: 100 °C, 2–6 min, F: 2450 MHz | Lipid (22–48%) | [30] |
C. sorokiniana (Trebouxiophyceae) | DCW: 20 g L−1, T: 100 °C, 2–6 min, F: 2450 MHz | Lipid (11–35%) | [30] |
C. sorokiniana (Trebouxiophyceae) | DCW: 25 g L−1, T: 100 °C, 5 min, F: 2450 MHz | Lipid (0.9%) | [65] |
C. vulgaris (Trebouxiophyceae) | B/S: 1/100, T: 40–50 °C, 5–30 min, 300 W | Lipid (70–72%) | [93] |
Microalgae | Parameters of Sonication Technique | Extracted Products (%) | Reference |
---|---|---|---|
Nannochloropsis gaditana | DW: 10 g kg−1, F: 20 kHz, 30 min, 130 W | Lipid (21.7%) | [59] |
Scenedesmus sp. (Chlorophyceae) | DCW 0.5 g L−1, 5 min, F: 10 kHz | Lipid (6%) | [61] |
Botryococcus sp. (Trebouxiophyceae) | DCW: 0.5 g L−1, 5 min, F: 10 kHz | Lipid (9%) | [86] |
Chlorella vulgaris (Trebouxiophyceae) | DCW: 0.5 g L−1, 5 min, F: 10 kHz | Lipid (6%) | [86] |
Scenedesmus sp. (Chlorophyceae) | DCW: 50 g L−1, 2 min, F: 15 kHz | Lipid (19%) | [87] |
Scenedesmus sp. (Chlorophyceae) | DCW: 2 g L−1, 30 min, 100 W | Lipid (6%) | [111] |
Spirulina platensis | DCW: 0.4 g L−1, 5 min, F: 24 kHz, 400 W | Proteins (27%) | [102] |
Nannochloropsis gaditana | DCW: 0.4 g L−1, 5 min, F: 24 kHz, 400 W | Lipids (41%), Carbohydrates (33%) | [102] |
Scenedesmus almeriensis | DCW: 0.4 g L−1, 5 min, F: 24 kHz, 400 W | Carbohydrates (44%), proteins (32%) | [102] |
Tetradesmus dimorphus (Chlorophyceae) | DCW: 40 g L−1, 30 min, F: 50/60 Hz | FAME (73%) | [88] |
Nannochloropsis oceanica | WB 1 mL, 120 min F: 20 kHz | Lipid (98.2%) | [112] |
Neochloris oleoabundans (Chlorophyceae) | DCW: 20 g L−1, 30 min, F: 25 kHz, 600 W | Lipid (4 g L−1) | [113] |
Nannochloropsis oculata (Eustigmatophyceae) | DW: 100 g, 360 min, 30 kHz | Lipid (24.3 g) | [114] |
Nannochloropsis gaditana (Eustigmatophyceae) | 5–20 min, T: 50–60 °C, F: 19.5 kHz, 100 W | Lipid (31–38%) | [89] |
Nannochloropsis (Eustigmatophyceae) | DCW: 1 g, T: 50–60 °C, 5 min, F: 20 kHz | FAME (21%) | [90] |
Nannochloropsis sp. (Eustigmatophyceae) | DW: 1 g, 5 min, interval: 1 min, F: 50 Hz, 30 W | Lipid (22.5%) | [115] |
Nannochloropsis oculata (Eustigmatophyceae) | DCW: 3 g, 5–15 min, T: 50 °C, F: 24 kHz | Lipid (28–30%) | [91] |
Nannochloropsis gaditana (Eustigmatophyceae) | WB: 20 mL, 5 min, F: 37 kHz | Lipid (10.5%) | [92] |
C. sorokiniana (Trebouxiophyceae) | WB: 20 mL, 5 min, F: 37 kHz | Lipid (14.1%) | [92] |
Phaeodactylum tricornutum (Bacillariophyceae) | WB: 20 mL, 5 min, F: 37 kHz | Lipid (28%) | [92] |
Phaeodactylum tricornutum (Bacillariophyceae) | DCW 100 mg, 15 min, T: 40 °C | Lipid (38%) | [64] |
C. sorokiniana (Trebouxiophyceae) | DCW 25 g L−1, 10 min, F: 10 kHz | Lipid (4.4%) | [65] |
C. vulgaris (Trebouxiophyceae) | 5–30 min, on at 5 s, off for 15 s, F: 20 kHz | Protein (4–9%) | [66] |
C. vulgaris (Trebouxiophyceae) | B/S:1/100, 5–30 min, 300 W, T: 40–50 °C, F: 40 kHz | Lipid (70–80%) | [93] |
C. vulgaris (Trebouxiophyceae) | DCW: 2.68 g L−1, 20 min, interval: 5 s and 30 s, 600 W | Lipid (15%) | [63] |
C. vulgaris (Trebouxiophyceae) | DCW: 18%, pH: 5.8, T: 37 °C, concentration: 0.5–8% | Lipid (19–35%) | [44] |
C. vulgaris (Trebouxiophyceae) | DW: 40 mg, 25 min, 400 W | Lipid (35%) | [68] |
Chaetoceros ceratosporus (Mediophyceae) | 30 min, T: 5 °C, 50 W | TAG: 1.5 to 3 μg | [116] |
Microalgae | Parameters of Autoclaving Technique | Extracted Products (%) | Reference |
---|---|---|---|
Scenedesmus sp. | DCW: 0.5 g L−1, 1.5 MPa, 5 min, T: 125 °C | Lipid (5%) | [61] |
Botryococcus sp. | DCW: 0.5 g L−1, 1.5 MPa, 5 min, T: 125 °C | Lipid (12%) | [61] |
Chlorella vulgaris | DCW: 0.5 g L−1, 1.5 MPa, 5 min, T: 125 °C | Lipid (10%) | [61] |
Chlorella sp. (Trebouxiophyceae) | WB: 5 g L−1, Pressure: 15 lbs. in−2, 5 min, T: 121 °C | Lipid (0.11 g) | [63] |
Chlorella sp. (Trebouxiophyceae) | 20 min, T: 105 °C | Lipid (27%) | [122] |
Nannochloropsis oculate | DW: 2 g, Pressure: 15 lbs. in−2, 10–30 min, T: 121 °C | Lipid (28–29%) | [91] |
Nannochloropsis gaditana | WB: 20 mL, Pressure: 29 lbs. in−2, 5 min, T: 120 °C | Lipid (10.8%) | [92] |
C. sorokoniana | WB: 20 mL, Pressure: 29 lbs. in−2, 5 min, T: 120 °C | Lipid (14.4%) | [92] |
Phaeodactylum tricornutum | WB: 20 mL, Pressure: 29 lbs. in−2, 5 min, T: 120 °C | Lipid (27.2%) | [92] |
Chlorococcum sp. | DCW: 20 g L−1, 1.5 MPa, 15 min, T: 121 °C | Lipid (15–25%) | [30] |
Botryococcus sp. (Trebouxiophyceae) | DCW: 20 g L−1, 1.5 MPa, 15 min, T: 121 °C | Lipid (38–48%) | [30] |
C. sorokiniana (Trebouxiophyceae) | DCW: 20 g L−1, 1.5 MPa, 15 min, T: 121 °C | Lipid (15–32%) | [30] |
C. sorokiniana (Trebouxiophyceae) | DCW: 25 g L−1, 15 min, T: 121 °C | Lipid (0.6%) | [65] |
Microalgae | PEF Parameters | Extracted Protein (%) | Reference |
---|---|---|---|
A. platensis | FS: 10–30 kV cm−1, IE: 20–100 kJ kg−1 sus, pulse delay: 1–20 µs, T: 25 °C | 17.4% | [156] |
Chlorella vulgaris and Neochloris oleoabundans | FS: 7.5–130 kV cm−1, Pulses: 1–40, pulse delay: 0.05–5 ms pulses: 1–40, pulse delay: 0.05–5 ms, IE: 0.05–150 kWh kg−1 DW | 13% | [152] |
Nannochloropsis gaditana | FS: 30 kV cm−1, DCW: 15–60 g L−1, Pulses: 2–10, pulse interval: 5 s, Pulse delay: 5 ms | 10% | [153] |
Nannochloropsis salina | FS: 3–6 kV cm−1, IE: 15.4–30.9 kWh kg−1, T: 37 °C | 12% | [160] |
Auxenochlorella prothecoides | FS: 23–43 kV cm−1, Pulse delay: 5 ns, IE: 0.15–0.6 kWh kg−1, T:14–22 °C | DCW: 2 µg L−1 | [124] |
Nannochloropsis salina | FS: 20 kV cm−1, IE: 13.3–53.1 kJ kg−1, pulse delay: 1–4 ms | 3.6% | [161] |
Nannochloropsis salina | IE: 0.02–14 kWh kg−1, T: 5.74–34.45 °C | 10% | [162] |
Chlorella vulgaris | IE: 0.55–1.1 kWh kg−1, flow rate: 33 mL min−1, T: 25–65 °C | 4.9% | [163] |
Chlorella vulgaris | FS: 10–30 kV cm−1, IE: 20–100 kJ kg−1 sus, flow rate: 33.3 mL min−1, T: 25 °C | 5.2% | [164] |
Chlorella vulgaris | FS: 10–20 kV cm−1, IE: 1.94 kJ kg−1 sus | 29.1% | [155] |
C. sorokiniana | FS: 5–15 kV cm−1, IE: 25–150 kJ kg−1, T: 20 °C | 5.6% | [165] |
A. platensis | FS: 20 kV cm−1, IE: 100 kJ kg−1 sus | 8.1% | [158] |
Microalgae | PEF Parameters | Extracted Carbohydrate (%) | Reference |
---|---|---|---|
A. platensis | FS: 10–30 kV cm−1, IE: 20–100 kJ kg−1 sus, pulse delay: 1–20 µs, T: 25 °C | 10.1% | [156] |
platensis | FS: 20 kV cm−1, IE: 100 kJ kg−1 sus | 13.7% | [158] |
Laminaria digitata | Pulses: 12–268, T: 12–48 °C | 15% | [137] |
Chlorella vulgaris | FS: 27–35 kV cm−1, T: 20–25 °C, IE: 50–150 kJ kg−1 | 8% | [131] |
Chlorella vulgaris | FS: 5 kV cm−1, T: 7 °C, Pulses: 1500–4500 | 23.19 mg L−1 | [171] |
Chlorella vulgaris | FS: 10 kV cm−1, F: 5 Hz, pulsed delay: 100 ns | 17.53% | [172] |
Nannochloropsis sp. | FS: 20–40 kV cm−1, IE: 704 kJ kg−1, pulses: 1–800, T: 20 °C | 20.2% | [173] |
Phaeodactylum tricornutum | 19.7% | ||
Parachlorallea kessleri | 11.1% |
Microalgae | PEF Parameters | Extracted Lipids (%) | Reference |
---|---|---|---|
Scenedesmus | IE: 30.6–33.7 kWh m−3, T: 13.5–36 °C | 21% | [127] |
Acutodesmus dimorphus | FS: 10 kV cm−1, 10 pulses s−1, T: 20–25 °C | 28.8% | [180] |
Chlorella pyrenoidosa | FS: 20 kV cm−1, F: 150 Hz, pulse width: 0–10 µs | 128 mg g−1 | [181] |
Auxenochlorella protothecoides | FS: 4 MV m−1, pulse delay: 1 µs, IE: 150 kJ kg−1, F: 5 Hz, | 30–35% | [178] |
A. protothecoides | IE: 1.5 MJ kg−1, T: 15 °C, pulse delay: 1 µs | 39.8% | [183] |
Chlorella sp. | FS: 20–55 kV cm−1, pulse delay: 10 µs, flow rate: 50 mL min−1, F: 50 Hz | 45.7% | [184] |
Scenedesmus almeriensis | IE: 1.5 MJ kg−1 DW, T: 20–33 °C | 43% | [141] |
Auxenochlorella protothecoides | FS: 35 kV cm−1, IE: 1.5 MJ kg−1 DW, pulse delay: 1 µs | 20% | [75] |
Auxenochlorella protothecoides | FS: 23–43 kV kg−1, IE: 52–211 kJ kg−1, pulse delay: 20 ns | 20% | [124] |
Chlorella vulgaris | FS: 5 kV cm−1, pulse delay: 10 µs–10 ms | 22% | [185] |
C. vulgaris | FS: 20 kV/cm, IE: 100 kJ kg−1 SUS, T: 25 °C | 21% | [186] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Hosano, N.; Hosano, H. Recovering Microalgal Bioresources: A Review of Cell Disruption Methods and Extraction Technologies. Molecules 2022, 27, 2786. https://doi.org/10.3390/molecules27092786
Rahman MM, Hosano N, Hosano H. Recovering Microalgal Bioresources: A Review of Cell Disruption Methods and Extraction Technologies. Molecules. 2022; 27(9):2786. https://doi.org/10.3390/molecules27092786
Chicago/Turabian StyleRahman, Md. Mijanur, Nushin Hosano, and Hamid Hosano. 2022. "Recovering Microalgal Bioresources: A Review of Cell Disruption Methods and Extraction Technologies" Molecules 27, no. 9: 2786. https://doi.org/10.3390/molecules27092786
APA StyleRahman, M. M., Hosano, N., & Hosano, H. (2022). Recovering Microalgal Bioresources: A Review of Cell Disruption Methods and Extraction Technologies. Molecules, 27(9), 2786. https://doi.org/10.3390/molecules27092786