A Quinoxaline−Naphthaldehyde Conjugate for Colorimetric Determination of Copper Ion
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Crystal Structure Description
2.3. Naked Eye Sensing
2.4. Photophysical Studies of QNH towards Cu2+
2.5. Theoretical Study and the Elucidation of a Proposed Model
2.6. Absorption Spectroscopic Studies of QNH–Cu2+ Complex towards Histidine
2.7. Application
2.8. Proposed Sensing Mechanism of Cu2+ by QNH
3. Conclusions
4. Experimental Section
4.1. Materials and Physical Methods
4.2. Single-Crystal X-Ray Crystallography
4.3. Computational Details
4.4. Synthesis of the Ligand (QNH)
4.5. Synthesis of the Cu2+ Complex (QNH)
4.6. Sample Preparation for Spectroscopic Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wang, H.; Zhu, Q.-L.; Zou, R.; Xu, Q. Metal-organic frameworks for energy applications. Chem 2017, 2, 52–80. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.-H.; Lu, M.-Y.; Chen, L.-J. Metal sulfide nanostructures: Synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 2012, 22, 19–30. [Google Scholar] [CrossRef]
- Liu, W.; Yin, X.-B. Metal–organic frameworks for electrochemical applications. Trends Anal. Chem. 2016, 75, 86–96. [Google Scholar] [CrossRef]
- Aron, A.T.; Ramos-Torres, K.M.; Cotruvo, J.A.; Chang, C.J. Recognition- and reactivity-based fluorescent probes for studying transition metal signalling in living systems. Acc. Chem. Res. 2015, 48, 2434–2442. [Google Scholar] [CrossRef] [Green Version]
- Assche, F.V.; Clijsters, H. Effects of metals on enzyme activity in plants. Plant Cell Environ. 1990, 13, 195–206. [Google Scholar] [CrossRef]
- Kumar, M.; Puri, A. A review of permissible limits of drinking water. Indian J. Occup. Environ. Med. 2012, 16, 40–44. [Google Scholar]
- Narayanaswamy, N.; Govindaraju, T. Aldazine-based colorimetric sensors for Cu2+ and Fe3+. Sens. Actuators B Chem. 2012, 161, 304–310. [Google Scholar] [CrossRef]
- Tigineh, G.T.; Liu, L.-K. A simple and facile colorimetric chemosensor for selective detection of Cu2+ ion in aqueous solution. Bull. Chem. Soc. Ethiop. 2017, 31, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.S.; Jung, J.M.; Kang, J.H.; Ahn, H.M.; Kim, P.-G.; Kim, C. A new indazole-based colorimetric chemosensor for sequential detection of Cu2+ and GSH in aqueous solution. Tetrahedron 2017, 73, 4750–4757. [Google Scholar] [CrossRef]
- Huster, D. Wilson disease. Best Pract. Res. Clin. Gastroenterol. 2010, 24, 531–539. [Google Scholar] [CrossRef]
- Zimbrean, P.C.; Schilsky, M.L. Psychiatric aspects of Wilson disease: A review. Gen. Hosp. Psychiatry 2014, 36, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Goedert, M.; Spillantini, M.G. A century of alzheimer’s disease. Science 2006, 314, 777–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tümer, Z.; Møller, L.B. Menkes disease. Eur. J. Hum. Genet. 2010, 18, 511–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauer, W.; Przedborski, S. Parkinson’s Disease: Mechanisms and Models. Neuron 2003, 39, 889–909. [Google Scholar] [CrossRef] [Green Version]
- Collins, S.J.; Lawson, V.A.; Masters, C.L. Transmissible spongiform encephalopathies. Lancet 2004, 363, 51–61. [Google Scholar] [CrossRef]
- Sahu, S.; Sikdar, Y.; Bag, R.; Maiti, D.K.; Cerón–Carrasco, J.P.; Goswami, S. Visual detection of fluoride ion based on ICT mechanism. Spectrochim. Acta -A Mol. Biomol. Spectrosc. 2019, 213, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.; Sikdar, Y.; Bag, R.; Cerón–Carrasco, J.P.; Goswami, S. A novel quinoxaline-rhodamine conjugate for a simple and efficient detection of hydrogen sulphate ion. Compounds 2021, 1, 4. [Google Scholar] [CrossRef]
- Chang, I.J.; Choi, M.G.; Jeong, Y.A.; Lee, S.H.; Chang, S.-K. Colorimetric determination of Cu2+ in simulated wastewater using naphthalimide-based Schiff base. Tetrahedron Lett. 2017, 58, 474–477. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Lv, Y.-Z.; Huang, X.-H.; Hu, S.-L. A new rhodamine-based colorimetric chemosensor for naked-eye detection of Cu2+ in aqueous solution. Spectrochim. Acta -A Mol. Biomol. Spectrosc. 2016, 157, 164–169. [Google Scholar] [CrossRef]
- Liu, H.; Cui, S.; Shi, F.; Pu, S. A diarylethene based multi-functional sensor for fluorescent detection of Cd2+ and colorimetric detection of Cu2+. Dye. Pigm. 2019, 161, 34–43. [Google Scholar] [CrossRef]
- Roy, P.; Das, S.; Aich, K.; Gharami, S.; Patra, L.; Mondal, T.K. A new highly selective and ratiometric chromogenic sensor for Cu2+ detection. J. Indian Chem. Soc. 2017, 94, 755–760. [Google Scholar]
- Pannipara, M.; Sehemi, A.G.A.; Assiri, M.; Kalama, A. A colorimetric turn-on optical chemosensor for Cu2+ ions and its application as solid state sensor. Opt. Mater. 2018, 79, 255–258. [Google Scholar] [CrossRef]
- Patil, P.A.; Sehlangia, S.; Pradeep, C.P. Dipicolinimidamide functionalized chromogenic chemosensor for recognition of Cu2+ ions and its applications. Sens. Int. 2021, 2, 100075. [Google Scholar] [CrossRef]
- Shi, S.-M.; Li, Q.; Hu, S.-L. A new hydrazone-based colorimetric chemosensor for naked-eye detection of copper ion in aqueous medium. J. Chem. Res. 2019, 43, 426–430. [Google Scholar] [CrossRef]
- Tavallali, H.; Deilamy-Rad, G.; Karimi, M.A.; Rahimy, E. A novel dye-based colorimetric chemosensors for sequential detection of Cu2+ and cysteine in aqueous solution. Anal. Biochem. 2019, 583, 113376. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.-T.; Kang, X.-X.; Ge, M.; Feng, H.-Y.; Han, J.; Wang, D.-H.; Zhao, D.-Z. Azobenzene disperse dye-based colorimetric probe for naked eye detection of Cu2+ in aqueous media: Spectral properties, theoretical insights, and applications. J. Photochem. Photobiol. A Chem. 2018, 356, 652–660. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Y.; Zheng, X.; Li, Z.; Xu, S. High selective and sensitive optical probe with effective recognition for Cu2+ based on a novel aniline squarylium dye. Inorg. Chem. Commun. 2020, 121, 108198. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Diwan, U.; Upadhyay, K.K. Highly sensitive and selective naked-eye detection of Cu2+ in aqueous medium by a ninhydrin–quinoxaline derivative. Sens. Actuators B Chem. 2013, 176, 420–427. [Google Scholar] [CrossRef]
- Goswami, S.; Chakraborty, S.; Adak, M.K.; Halder, S.; Quah, C.K.; Fun, H.-K.; Pakhira, B.; Sarkar, S. A highly selective ratiometric chemosensor for Ni2+ in a quinoxaline matrix. New J. Chem. 2014, 38, 6230–6235. [Google Scholar] [CrossRef]
- Abu–Dief, A.M.; Mohamed, I.M.A. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ. J. Appl. 2015, 4, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; De, S.; Das, G. Naphthyl-functionalized ninhydrin-derived receptor for ‘CHEF’-based sequential sensing of Al(III) and PPi: Prospective chemosensing applications under physiological conditions. J. Photochem. Photobiol. A Chem. 2021, 418, 113442. [Google Scholar] [CrossRef]
- Analytical Methods Committee. Recommendations for the definition, estimation and use of the detection limit. Analyst 1987, 112, 199–204. [Google Scholar] [CrossRef]
- Kim, Y.S.; Park, G.J.; Lee, S.A.; Kim, C. A colorimetric chemosensor for the sequential detection of copper ion and amino acids (cysteine and histidine) in aqueous solution. RSC Adv. 2015, 5, 31179–31188. [Google Scholar] [CrossRef]
- Bhowmik, M.; Kumari, P.; Sarkar, G. Effect of xanthan gum and guar gum on in situ gelling ophthalmic drug delivery system based on poloxamer−40. Int. J. Biol. Macromol. 2013, 62, 117–123. [Google Scholar] [CrossRef]
- Pereira, G.G.; Kechinski, C.P. Formulation and characterization of poloxamer 407: Thermoreversible gel containing polymeric microparticles and hyaluronic acid. Quim. Nova 2013, 36, 1121–1125. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Huang, X.; Yu, H. A colorimetric assay for ultrasensitive detection of copper (II) ions based on pH-dependent formation of heavily doped molybdenum oxide nanosheets. Mater. Sci. Eng. 2019, 101, 614–618. [Google Scholar] [CrossRef]
- Shojaeifard, Z.; Hemmateenejad, B.; Shamsipur, M.; Ahmadi, R. Dual fluorometric and colorimetric sensor based on quenching effect of copper (II) sulfate on the copper nanocluster for determination of sulfide ion in water samples. J. Photochem. Photobiol. A 2019, 384, 112030. [Google Scholar] [CrossRef]
- Chen, X.; Lu, Q.; Liu, D.; Wu, C.; Liu, M.; Li, H.; Zhang, Y.; Yao, S. Highly sensitive and selective determination of copper(II) based on a dual catalytic effect and by using silicon nanoparticles as a fluorescent probe. Mikrochim. Acta 2018, 185, 188. [Google Scholar] [CrossRef]
- Kalaiyarasan, G.; Joseph, J. Efficient dual-mode colorimetric/fluorometric sensor for the detection of copper ions and vitamin C based on pH-sensitive amino-terminated nitrogen-doped carbon quantum dots: Effect of reactive oxygen species and antioxidants. Anal. Bioanal. Chem. 2019, 411, 2619–2633. [Google Scholar] [CrossRef]
- Mohammadi, A.; Khalili, B.; Saberi Haghayegh, A. A novel chromone based colorimetric sensor for highly selective detection of copper ions: Synthesis, optical properties and DFT calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 222, 117193. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Y.; Li, F.; Guo, S.; Shui, Y.; Xue, H.; Wang, L. Portable colorimetric detection of copper ion in drinking water via red beet pigment and smartphone. Microchem. J. 2019, 150, 104176. [Google Scholar] [CrossRef]
- Khoshmaram, L.; Saadati, M.; Karimi, A. A simple and rapid technique for the determination of copper based on air-assisted liquid–liquid microextraction and image colorimetric analysis. Anal. Methods 2020, 12, 3490–3498. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. A short history of SHELX. ActaCryst. 2008, A64, 112–122. [Google Scholar]
- Sheldrick, G.M. SADABS, a Software for Empirical Absorption Correction, Version 2.05; University of Göttingen: Göttingen, Germany, 2002. [Google Scholar]
- Bradenburg, K. Diamond, Version 3.0; Crystal Impact GbR: Bonn, Germany, 2005. [Google Scholar]
- Curtis, K.; Panthi, D.; Odoh, S.O. Time-Dependent Density Functional Theory Study of Copper(II) Oxo Active Sites for Methane-to-Methanol Conversion in Zeolites. Inorg. Chem. 2021, 60, 1149–1159. [Google Scholar] [CrossRef]
- Melekhova, A.A.; Novikov, A.S.; Luzyanin, K.V.; Bokach, N.A.; Starova, G.L.; Gurzhiy, V.V.; Kukushkin, V.Y. Tris-isocyanide copper(I) complexes: Synthetic, structural, and theoretical study. Inorg. Chim. Acta 2015, 434, 31–36. [Google Scholar] [CrossRef]
- Bozic-Weber, B.; Chaurin, V.; Constable, E.C.; Housecroft, C.E.; Meuwly, M.; Neuburger, M.; Rudd, J.A.; Schönhofera, E.; Siegfried, L. Exploring copper(I)-based dye-sensitized solar cells: A complementary experimental and TD-DFT investigation. Dalton Trans. 2012, 41, 14157–14169. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, non− covalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06−class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Cerón-Carrasco, J.P.; Ruiz, J.; Vicente, C.; de Haro, C.; Bautista, D.; Zúñiga, J.; Requena, A. DFT simulation of structural and optical properties of 9−Aminoacridine half−sandwich Ru(II), Rh(III), and Ir(III) antitumoral complexes and their interaction with DNA. J. Chem. Theory Comput. 2017, 13, 3898–3910. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Sciortino, G.; Meréchal, J.-D.; Fábián, I.; Lihi, N.; Garribba, E. Quantitative prediction of electronic absorption spectra of copper(II)–bioligand systems: Validation and applications. J. Inorg. Biochem. 2020, 204, 110953. [Google Scholar] [CrossRef] [PubMed]
- Shyamal, M.; Mazumdar, P.; Maity, S.; Samanta, S.; Sahoo, G.P.; Misra, A. Highly selective turn-on fluorogenic chemosensor for robust quantification of Zn(II) based on aggregation induced emission enhancement feature. ACS Sens. 2016, 1, 739–747. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahu, S.; Sikdar, Y.; Bag, R.; Drew, M.G.B.; Cerón-Carrasco, J.P.; Goswami, S. A Quinoxaline−Naphthaldehyde Conjugate for Colorimetric Determination of Copper Ion. Molecules 2022, 27, 2908. https://doi.org/10.3390/molecules27092908
Sahu S, Sikdar Y, Bag R, Drew MGB, Cerón-Carrasco JP, Goswami S. A Quinoxaline−Naphthaldehyde Conjugate for Colorimetric Determination of Copper Ion. Molecules. 2022; 27(9):2908. https://doi.org/10.3390/molecules27092908
Chicago/Turabian StyleSahu, Sutapa, Yeasin Sikdar, Riya Bag, Michael G. B. Drew, José P. Cerón-Carrasco, and Sanchita Goswami. 2022. "A Quinoxaline−Naphthaldehyde Conjugate for Colorimetric Determination of Copper Ion" Molecules 27, no. 9: 2908. https://doi.org/10.3390/molecules27092908
APA StyleSahu, S., Sikdar, Y., Bag, R., Drew, M. G. B., Cerón-Carrasco, J. P., & Goswami, S. (2022). A Quinoxaline−Naphthaldehyde Conjugate for Colorimetric Determination of Copper Ion. Molecules, 27(9), 2908. https://doi.org/10.3390/molecules27092908